Functional Challenges for Technology Fraser Armstrong1, Kylie A

Total Page:16

File Type:pdf, Size:1020Kb

Functional Challenges for Technology Fraser Armstrong1, Kylie A J Biol Inorg Chem (2007) 12 (Suppl 1):S53–S98 DOI 10.1007/s00775-007-0256-4 2. METALLOPROTEINS DNA; the properties of two of these enzymes (hABH1 and hABH5) are described. KEYNOTE LECTURES KL10 KL08 Towards the Mechanism of N2 Reduction by Nitrogenase Electrocatalytic hydrogen cycling by hydrogenases in the Brian M. Hoffman, Northwestern University, Evanston, IL, USA. Contact e-mail: [email protected] presence of O2: functional challenges for technology Fraser Armstrong1, Kylie A. Vincent1, James A. Cracknell1, 1 1 2 A major obstacle to understanding the reduction of N2 to NH3 by Annemarie Wait , Gabrielle Goldet , Baebel Friedrich , Oliver nitrogenase has been the impossibility of synchronizing electron Lenz2, Marcus Ludwig3, 1University of Oxford, Department of 2 delivery to the MoFe protein so that intermediates along the N2 Chemistry, Oxford, United Kingdom; Institut für reduction pathway can be accumulated for characterization. Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Germany; 3 Recently, however, in a collaboration with the groups of Dennis Institut für Biologie/Mikrobiologie,, Humboldt-Universität zu Dean and Lance Seefeldt, a number of intermediates have been Berlin, Germany. trapped by freeze-quenching, and ENDOR spectroscopy has proven Contact e-mail: [email protected] to be the method of choice for characterizing substrate-derived species bound to FeMo-co of trapped enzymatic intermediates. This Hydrogenases are usually inactivated under oxidizing conditions presentation will describe current understanding of the structure of [1]. Yet many aerobic microbes obtain energy using [NiFe]- trapped intermediates and of the mechanistic sequence of hydrogen hydrogenases that can oxidize traces of H in air [2,3]. Enzymes 2 addition to N2. from Ralstonia have such high selectivity for H against O that 2 2 Even when an intermediate is trapped, the process of electron they can be used as electrocatalysts in the simplest of fuel cells- delivery requires that this occur without synchronous electron lacking a membrane or even just an anode and cathode separated by delivery, and as a result the number of electrons (and protons), n, an electrolyte film [4,5]. Using a ‘blue’ Cu oxidase, laccase as that has been accumulated during its formation is unknown. cathode catalyst, sufficient power is produced from 3% H in air to 2 Consequently, the intermediate is untethered from Lowe-Thornely power a wristwatch - not a high demand, but a visible and (LT) kinetic schemes for reduction, which are indexed by n. We demanding test of a hydrogenase’s ability to function in air. This have shown that a trapped intermediate itself provides a lecture addresses how these hydrogenases function in low levels of 'synchronously prepared' initial state whose relaxation to the resting H . 2 state under conditions that prevent electron delivery to MoFe 1. K. A. Vincent, A. Parkin, O. Lenz, S. P. J. Albracht, J. C. protein can be analyzed to disclose n and the nature of its relaxation Fontecilla-Camps, R. Cammack, B. Friedrich and F. A. Armstrong, reactions. We will describe the relaxation protocol and outline J. Am. Chem. Soc. (2005) 127, 18179. current understanding of the connections of trapped nitrogenous 2. T. Burgdorf, O. Lenz, T. Buhrke, E. van der Linden, A.K. Jones, intermediates to the LT kinetic scheme for N2 reduction, as well as S.P.J. Albracht and B. Friedrich, J. Mol. Microbiol. Biotech. (2005) the mechanisms by which intermediates relax. 10, 181. 3. K. Knuttel, K. Schneider, A. Erkens, W. Plass, A. Muller, E. Bill and A.X. Trautwein, Bull. Polish Acad. Sci.-Chem. (1994) 42, 495. KL11 4. K. A. Vincent, J. A. Cracknell, O. Lenz, B. Friedrich and F. A. Armstrong, Proc. Natl Acad. Sci. USA, (2005) 102, 16951-16954. Copper Prion Interactions. Specificity from mammalians 5. K. A. Vincent, J. A. Cracknell, J. Clark, O. Lenz, M. Ludwig, B. to Fishes 1 1 1 Friedrich and F. A. Armstrong, Chem. Commun. (2006) 5033-5034. Henryk Kozáowski , Anna Janicka , Paweá StaĔczak , Daniela Valensin2, Gianni Valensin2, 1Faculty of Chemistry, University of Wroclaw, Wrocáaw, Poland; 2Department of Chemistry, University KL09 of Siena, Siena, Italy. Fe(II)/2-oxoglutarate-dependent hydroxylases Contact e-mail: [email protected] Robert P. Hausinger1, Piotr K. Grzyska1, Meng Li2, Jana M. Prion diseases are fatal neurodegenerative disorders including Simmons3, Tina A. Müller1, 1Michigan State University, spongiform encephalopathies in cattle and sheeps and Creutzfeld- Microbiology and Molecular Genetics, East Lansing, MI, USA; Jacob syndrome in humans. Although biological functioning of 2Michigan State University, Chemistry, East Lansing, MI, USA; prion protein (PrP) is still unknown it seems to be generally 3Michigan State University, Biochemistry and Molecular Biology, accepted that it may play a critical role in copper homeostasis and East Lansing, MI, USA. copper based enzymatic activity.1 Contact e-mail: [email protected] Mammalian protein possesses two specific binding sites in the unstructured domain: i) octarepeat region2 and ii) neurotoxic 2-oxoglutarate-dependent hydroxylases are mononuclear non-heme peptide fragment.3 In all cases histidine residues play a basic role in Fe(II) enzymes that couple the oxidative decarboxylation of an oxo- the metal protein interactions. Avian proteins contain the acid to the transformation of a primary substrate. The archetype hexapeptide repeats having also one His residue critical for Cu(II) representative of this enzyme family is TauD, an Escherichia coli binding.4 Surprisingly the fish proteins e.g. that of Japanese enzyme that converts taurine (2-aminoethanesulfonate) to sulfite pufferfish may be even more potent Cu(II) binder than those of and aminoacetaldehyde. Recent spectroscopic findings related to mammalians and avian.5 In the latter case the repeat domain is very TauD and its variants will be presented and corresponding insights different than those in human or chicken, but containing multi- into the enzyme mechanism will be described. To illustrate the histidine region is very effective in the interactions with copper. versatility of this group of catalysts, three representative enzymes 1. E. Gaggelli, H. Kozlowski, D. Valensin, and G. Valensin, Chem. from eukaryotic sources will be discussed. Aspergillus nidulans Rev., 106, 1995, 2006. contains XanA which was demonstrated to be a xanthine 2. D. Valensin, M. Luczkowski, et al., Dalton Trans., 1284, 2004. hydroxylase; this enzyme utilizes 2-oxoglutarate-dependent 3. F. Berti, E. Gaggelli, R. Guerrini, A. Janicka, et al., Chem. Eur. J. chemistry rather than the better known molybdopterin system for 13, 1991, 2007. producing uric acid. Trypanosoma brucei, the protozoan responsible 4. P. Stanczak, D. Valensin, et al., Chem. Commun., 3298, 2005. for African sleeping sickness, is known to modify specific thymine 5. P. Stanczak, D. Valensin, et al., Biochemistry, 45, 12227, 2006. bases in its DNA to create the J base; evidence is presented related to the potential use of a 2-oxoglutarate-dependent thymine hydroxylase catalyzing this activity. Finally, humans possess eight homologues to AlkB, an enzyme that repairs alkylation-damaged 123 S54 J Biol Inorg Chem (2007) 12 (Suppl 1):S53–S98 KL12 Living on acetylene: structure and function of acetylene hydratase, a novel bacterial tungsten enzyme Grazyna Seiffert1, Felix TenBrink1, Bernhard Schink1, Albrecht Messerschmidt2, Oliver Einsle3, Peter M. H. Kroneck1, 1Universität Konstanz, Konstanz, Germany; 2MPI Biochemie, Martinsried, Germany; 3Universität Göttingen, Göttingen, Germany. Contact e-mail: [email protected] To date, acetylene is the only hydrocarbon known to be metabolized in the absence and presence of molecular oxygen. The novel W,Fe- S enzyme acetylene hydratase (AH) from the strictly anaerobic bacterium P. acetylenicus stands out from its class in that it catalyzes a non-redox reaction, the addition of water to the C,C triple bond to form acetaldehyde. However, Ti(III)-citrate or dithionite, is required for activity. AH belongs to the dimethylsulfoxide reductase family, and it contains a bis-MGD- ligated W and a [4Fe:4S] cluster, with a redox potential of - 410 ± 20 mV [1]. The 3D structure (1.26 Å) reveals a water molecule at the W site that gets activated by an aspartate to attack acetylene bound in a hydrophobic pocket. A strong shift in pKa of the aspartate residue is required, caused by the [4Fe:4S] cluster. To KL14 access this novel W site, AH evolved a substrate channel distant The molybdenum cofactor: Biosynthesis, function and from where it is found in related Mo and W enzymes [2]. P. deficiency acetylenicus can also insert Mo (but not V) into the bis-MGD Guenter Schwarz, Institute of Biochemistry at the University cofactor of AH, but the specific activity of the Mo isoenzyme was of Cologne, Cologne, Germany. significantly lower. Contact e-mail: [email protected] [1] Boll, M., Schink, B., Messerschmidt, A., Kroneck, P.M.H., Novel bacterial molybdenum and tungsten enzymes: Three- The molybdenum cofactor (Moco) forms the active site of all dimensional structure, spectroscopy, and reaction mechanism, Biol. molybdenum enzymes, except nitrogenase. Molybdenum enzymes Chem., 2005, 386, 999-1006. catalyze important redox reactions in global metabolic cycles. Moco [2] Seiffert, G.B., Ullmann, G.M., Messerschmidt, A., Schink, B., consists of molybdenum covalently bound to one or two dithiolates Kroneck, P.M.H., Einsle, O. Structure of the non-redox-active attached to
Recommended publications
  • Chapter 5 High-Pressure Stopped-Flow Kinetic Studies of Nnos
    Probing the dynamics and conformational landscape of neuronal nitric oxide synthase A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Life Sciences 2013 Anna Sobolewska-Stawiarz Contents Contents ...................................................................................................................... 2 List of Figures ............................................................................................................. 6 List of Tables ............................................................................................................ 10 Abstract ..................................................................................................................... 12 Declaration ................................................................................................................ 13 Copyright Statement ................................................................................................ 13 Acknowledgements ................................................................................................... 14 List of Abbreviations ............................................................................................... 15 List of Amino Acids Abbreviations ........................................................................ 17 CHAPTER 1. INTRODUCTION ........................................................................... 18 1.1 Nitric oxide synthase .........................................................................................
    [Show full text]
  • Protein S-Nitrosylation: Methods of Detection and Cellular Regulation
    Protein S-Nitrosylation: Methods of Detection and Cellular Regulation by Michael Tcheupdjian Forrester Department of Biochemistry Duke University Date:_______________________ Approved: ___________________________ Jonathan S. Stamler, MD (Supervisor) ___________________________ Irwin Fridovich, PhD ___________________________ K. V. Rajagopalan, PhD ___________________________ Dennis J. Thiele, PhD ___________________________ Eric J. Toone, PhD Dissertation submitted in partial fulfillment of the requirements for the degree of doctor of philosophy in the Department of Biochemistry in the Graduate School of Duke University 2009 i v ABSTRACT Protein S-Nitrosylation: Methods of Detection and Cellular Regulation by Michael Tcheupdjian Forrester Department of Biochemistry Duke University Date:_______________________ Approved: ___________________________ Jonathan S. Stamler, MD (Supervisor) ___________________________ Irwin Fridovich, PhD ___________________________ K. V. Rajagopalan, PhD ___________________________ Dennis J. Thiele, PhD ___________________________ Eric J. Toone, PhD An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of doctor of philosophy in the Department of Biochemistry in the Graduate School of Duke University 2009 i v Copyright by Michael T. Forrester 2009 Abstract Protein S-nitrosylation—the post-translational modification of cysteine thiols into S-nitrosothiols—is a principle mechanism of nitric oxide-based signaling. Studies have demonstrated myriad roles for S-nitrosylation in organisms from bacteria to humans, and recent efforts have begun to elucidate how this redox-based modification is regulated during physiological and pathophysiological conditions. This doctoral thesis is focused on the 1) analysis of existing methodologies for the detection of protein S-nitrosylation; 2) development of new methodologies for the detection of protein S-nitrosylation and 3) discovery of novel enzymatic mechanisms by which S-nitrosylation is regulated in vivo.
    [Show full text]
  • KEGG Orthology-Based Annotation of the Predicted
    Dunlap et al. BMC Genomics 2013, 14:509 http://www.biomedcentral.com/1471-2164/14/509 DATABASE Open Access KEGG orthology-based annotation of the predicted proteome of Acropora digitifera: ZoophyteBase - an open access and searchable database of a coral genome Walter C Dunlap1,2, Antonio Starcevic4, Damir Baranasic4, Janko Diminic4, Jurica Zucko4, Ranko Gacesa4, Madeleine JH van Oppen1, Daslav Hranueli4, John Cullum5 and Paul F Long2,3* Abstract Background: Contemporary coral reef research has firmly established that a genomic approach is urgently needed to better understand the effects of anthropogenic environmental stress and global climate change on coral holobiont interactions. Here we present KEGG orthology-based annotation of the complete genome sequence of the scleractinian coral Acropora digitifera and provide the first comprehensive view of the genome of a reef-building coral by applying advanced bioinformatics. Description: Sequences from the KEGG database of protein function were used to construct hidden Markov models. These models were used to search the predicted proteome of A. digitifera to establish complete genomic annotation. The annotated dataset is published in ZoophyteBase, an open access format with different options for searching the data. A particularly useful feature is the ability to use a Google-like search engine that links query words to protein attributes. We present features of the annotation that underpin the molecular structure of key processes of coral physiology that include (1) regulatory proteins of
    [Show full text]
  • Biochemical and Cellular Studies of Vertebrate Globins
    Biochemical and Cellular Studies of Vertebrate Globins By Shun Wilford Tse Thesis submitted for the degree of Doctor of Philosophy School of Biological Sciences University of East Anglia September 2015 © This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that no quotations from the thesis, nor any information derived there-from may be published without the author's prior, written consent. Abstract Human cytoglobin is a small heme-containing protein in the globin superfamily with a wide range of tissue and organ distribution. Although several cellular functions have been proposed for cytoglobin, the exact physiological function is still not fully defined. Recently, cytoglobin has been implicated to have a regulatory role in cancer cells to control cell proliferation and migration depending on cellular oxygen level. In order to gain a better understanding of a structure-to-function relationship of cytoglobin as a heme-protein and to evaluate its possible physiological function(s) in cancer cells, a combination of techniques, including protein engineering and advanced spectroscopies, was deployed. In this study, recombinant human cytoglobin purified from E.coli was purified as a monomeric protein, but displayed a dimeric property in solution. An intra-molecular disulphide bond is formed within the protein which has a redox potential at ca -280 mV. Advanced spectroscopic studies confirmed a low-spin bis-histidyl heme in cytoglobin in both ferric and ferrous state regardless of the state of the disulphide bond. Furthermore, nitrite reductase activitiy in globins was investigated in detail using myoglobin as a model to explore the biochemical basis of the distal histidine residue in determining activity.
    [Show full text]
  • Nitric Oxide Dioxygenase: an Enzymic Function for Flavohemoglobin
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 10378–10383, September 1998 Biochemistry Nitric oxide dioxygenase: An enzymic function for flavohemoglobin PAUL R. GARDNER*, ANNE M. GARDNER,LORI A. MARTIN, AND ANDREW L. SALZMAN Division of Critical Care Medicine, Children’s Hospital Medical Center, and Department of Pediatrics, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229 Communicated by Irwin Fridovich, Duke University Medical Center, Durham, NC, July 7, 1998 (received for review June 9, 1998) ABSTRACT Nitric oxide (NO•) is a toxin, and various life Moreover, this aerobic cyanide-sensitive NO• consumption forms appear to have evolved strategies for its detoxification. activity appeared to constitute part of an adaptive defense NO•-resistant mutants of Escherichia coli were isolated that against NO• toxicity. Thus, we supposed that E. coli mutants rapidly consumed NO•.AnNO•-converting activity was re- containing elevated activity might be selected for resistance to • constituted in extracts that required NADPH, FAD, and O2, 2 NO -mediated killing, and furthermore, that they could be was cyanide-sensitive, and produced NO3 . This nitric oxide used to facilitate the biochemical and genetic characterization dioxygenase (NOD) contained 19 of 20 N-terminal amino of the NO• scavenging activity. acids identical to those of the E. coli flavohemoglobin. Fur- Here, we describe the isolation and characterization of an thermore, NOD activity was produced by the flavohemoglobin O2-dependent and cyanide-sensitive nitric oxide dioxygenase gene and was inducible by NO•. FlavohemoglobinyNOD- (NOD) from NO•-resistant E. coli, which is a flavohemoglo- deficient mutants were also sensitive to growth inhibition by bin. The identification of NOD with flavohemoglobin is sig- gaseous NO•.
    [Show full text]
  • Current Advances of Nitric Oxide in Cancer and Anticancer Therapeutics
    Review Current Advances of Nitric Oxide in Cancer and Anticancer Therapeutics Joel Mintz 1,†, Anastasia Vedenko 2,†, Omar Rosete 3 , Khushi Shah 4, Gabriella Goldstein 5 , Joshua M. Hare 2,6,7 , Ranjith Ramasamy 3,6,* and Himanshu Arora 2,3,6,* 1 Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, FL 33328, USA; [email protected] 2 John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; [email protected] (A.V.); [email protected] (J.M.H.) 3 Department of Urology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; [email protected] 4 College of Arts and Sciences, University of Miami, Miami, FL 33146, USA; [email protected] 5 College of Health Professions and Sciences, University of Central Florida, Orlando, FL 32816, USA; [email protected] 6 The Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA 7 Department of Medicine, Cardiology Division, Miller School of Medicine, University of Miami, Miami, FL 33136, USA * Correspondence: [email protected] (R.R.); [email protected] (H.A.) † These authors contributed equally to this work. Abstract: Nitric oxide (NO) is a short-lived, ubiquitous signaling molecule that affects numerous critical functions in the body. There are markedly conflicting findings in the literature regarding the bimodal effects of NO in carcinogenesis and tumor progression, which has important consequences for treatment. Several preclinical and clinical studies have suggested that both pro- and antitumori- Citation: Mintz, J.; Vedenko, A.; genic effects of NO depend on multiple aspects, including, but not limited to, tissue of generation, the Rosete, O.; Shah, K.; Goldstein, G.; level of production, the oxidative/reductive (redox) environment in which this radical is generated, Hare, J.M; Ramasamy, R.; Arora, H.
    [Show full text]
  • Relating Metatranscriptomic Profiles to the Micropollutant
    1 Relating Metatranscriptomic Profiles to the 2 Micropollutant Biotransformation Potential of 3 Complex Microbial Communities 4 5 Supporting Information 6 7 Stefan Achermann,1,2 Cresten B. Mansfeldt,1 Marcel Müller,1,3 David R. Johnson,1 Kathrin 8 Fenner*,1,2,4 9 1Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, 10 Switzerland. 2Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 11 Zürich, Switzerland. 3Institute of Atmospheric and Climate Science, ETH Zürich, 8092 12 Zürich, Switzerland. 4Department of Chemistry, University of Zürich, 8057 Zürich, 13 Switzerland. 14 *Corresponding author (email: [email protected] ) 15 S.A and C.B.M contributed equally to this work. 16 17 18 19 20 21 This supporting information (SI) is organized in 4 sections (S1-S4) with a total of 10 pages and 22 comprises 7 figures (Figure S1-S7) and 4 tables (Table S1-S4). 23 24 25 S1 26 S1 Data normalization 27 28 29 30 Figure S1. Relative fractions of gene transcripts originating from eukaryotes and bacteria. 31 32 33 Table S1. Relative standard deviation (RSD) for commonly used reference genes across all 34 samples (n=12). EC number mean fraction bacteria (%) RSD (%) RSD bacteria (%) RSD eukaryotes (%) 2.7.7.6 (RNAP) 80 16 6 nda 5.99.1.2 (DNA topoisomerase) 90 11 9 nda 5.99.1.3 (DNA gyrase) 92 16 10 nda 1.2.1.12 (GAPDH) 37 39 6 32 35 and indicates not determined. 36 37 38 39 S2 40 S2 Nitrile hydration 41 42 43 44 Figure S2: Pearson correlation coefficients r for rate constants of bromoxynil and acetamiprid with 45 gene transcripts of ECs describing nucleophilic reactions of water with nitriles.
    [Show full text]
  • The Role of Nitrite and Nitric Oxide Under Low Oxygen Conditions in Plants Gupta, Kapuganti Jagadis; Mur, Luis A
    Aberystwyth University The role of nitrite and nitric oxide under low oxygen conditions in plants Gupta, Kapuganti Jagadis; Mur, Luis A. J.; Wany, Aakanksha; Kumari, Aprajita; Fernie, Alisdair R.; Ratcliffe, R. George Published in: New Phytologist DOI: 10.1111/nph.15969 Publication date: 2019 Citation for published version (APA): Gupta, K. J., Mur, L. A. J., Wany, A., Kumari, A., Fernie, A. R., & Ratcliffe, R. G. (2019). The role of nitrite and nitric oxide under low oxygen conditions in plants. New Phytologist. https://doi.org/10.1111/nph.15969 General rights Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. tel: +44 1970 62 2400 email: [email protected] Download date: 23. Sep. 2021 DR JAGADIS GUPTA KAPUGANTI (Orcid ID : 0000-0002-7090-5097) DR LUIS ALEJANDRO MUR (Orcid ID : 0000-0002-0961-9817) DR ALISDAIR FERNIE (Orcid ID : 0000-0001-9000-335X) Article type : Research Review The role of nitrite and nitric oxide under low oxygen conditions in plants Kapuganti Jagadis Gupta1*, Luis A.J.
    [Show full text]
  • Curriculum Vitae
    Curriculum Vitae JONATHAN S. STAMLER Dr Stamler is an internationally acclaimed physician scientist known for the discovery of protein S- nitrosylation, a global post-translational modification of proteins that is widely involved in both physiology and disease, and for a track record of innovation and entrepreneurship as a founder of institutes, biotechnology companies, medical societies, innovation platforms and impact investment funds. He has co-authored over 300 original manuscripts and 125 patents/patent applications. His work has been covered in numerous lay publications, including the front page and science sections of the New York Times, as well as Time Magazine and The Economist, in books on the history of science and luck, and in works on outlier innovators. Current Address: Office: Case Western Reserve University Home: 19401 South Park Boulevard 2103 Cornell Road, WRB 4129 Shaker Heights, OH 44122 Cleveland, Ohio 44106-7294 cell: (919) 971-0328 phone: (216) 368-5724 fax: (216) 368-2968 e-mail: [email protected] e-mail: [email protected] Birthdate: June 23, 1959 (Wallingford, England) Citizenship: United States Education: 1981 B.A. Brandeis University, Boston, MA 1985 M.D. Mount Sinai School of Medicine, New York, NY Postdoctoral Training: Internship and Residency 1985-1986 Internship, Medicine, Brigham and Women's Hospital, Harvard Medical School. Boston, MA 1986-1987 Resident, Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 1987-1988 Resident, Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA Fellowships 1985-1989 Clinical Fellow in Medicine, Harvard Medical School, Boston, MA 1988-1989 Clinical Fellow in Medicine (Pulmonary Medicine), Brigham and Women's Hospital 1989-1993 Research Fellow in Medicine, Harvard Medical School 1989-1993 Clinical/Research Fellow in Medicine (Cardiovascular Medicine), Brigham and Women's Hospital, Boston, MA and West Roxbury V.A.
    [Show full text]
  • Regulation of Hepatic Stellate Cell Phenotype and Cytoglobin Expression by Extracellular Matrix Proteins
    Regulation of hepatic stellate cell phenotype and cytoglobin expression by extracellular matrix proteins By Louise Catherine Stone A thesis submitted to The University of Birmingham for the degree of DOCTOR OF PHILOSOPHY School of Biosciences The University of Birmingham October 2014 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract All chronic liver diseases can induce fibrosis and lead to liver cirrhosis. Within liver disease, hepatic stellate cells (HSC) are accepted as the major effectors of fibrogenesis and changes in the extracellular matrix (ECM). Cytoglobin (CYGB), a hexacoordinated globin, is upregulated in liver disease, and expression has been reported to be specific to HSCs in the liver, though this is disputed. Data presented in Chapter 3 of this thesis confirm upregulation of Cygb in murine models of liver disease and diseased human liver tissue. Chapter 4 shows how ECM can effect HSC morphology, behaviour and phenotype with collagen I, an important component of the hepatic scar conferring an activated HSC phenotype, and laminin, a basal protein in a normal liver, inducing a more quiescent phenotype in HSC cell lines HSC-T6 and LX-2.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,399,762 B2 Far Well Et Al
    US0093.99762B2 (12) United States Patent (10) Patent No.: US 9,399,762 B2 Far Well et al. (45) Date of Patent: Jul. 26, 2016 (54) METHODS AND SYSTEMS FOR 540,145 SULFMIDATION OR SULFOXMIDATION 2011 0196086 A1 8/2011 Matsushita et al. 2012/0237591 A1 9/2012 Cullis et al. OF ORGANIC MOLECULES FOREIGN PATENT DOCUMENTS (71) Applicant: The California Institute of Technology, Pasadena, CA (US) EP O 200 638 B1 4f1986 WO 2007 144599 A2 12/2007 (72) Inventors: Christopher C. Farwell, Thousand WO 2011, 1595.50 A3 12/2011 Oaks, CA (US); John A. McIntosh, OTHER PUBLICATIONS Pasadena, CA (US); Frances H. Arnold, Wang et al. Angewandte Chemie. Int. Ed., 2013, 52(33), 8661-65.* La Canada, CA (US) Mancheno et al. Organic Letters, 2006, 8(11).2349-52.* Adams, PD. et al., “PHENIX: a comprehensive Python-based system for macromolecular structure solution.” Acta Crystallogr., Sect. D, (73) Assignee: California Institute of Technology, Biol. Crystallogr., 2010, D66(2):213-221. Pasadena, CA (US) Ajikumar, P.K. et al., “Isoprenoid pathway recursor overproduction in Escherichia coli, Science, 2010, 330:70-74. (*) Notice: Subject to any disclaimer, the term of this Atschul, S.F. et al., “Basic local alignment search tool.” J. Mol. Biol. patent is extended or adjusted under 35 1990, 215(3): 403-10. U.S.C. 154(b) by 0 days. Bergman, R.G., “Organometallic chemistry: C-H activiation.” Nature, 2007, 446(7134):391-393. Bloom, J.D. et al., “Protein stability promotes evolvability.” Proc. (21) Appl. No.: 14/625,514 Natl. Acad. Sci. USA, 2006, 103(15):5869-5874.
    [Show full text]
  • Bacterial Metabolites of Human Gut Microbiota Correlating with Depression
    International Journal of Molecular Sciences Review Bacterial Metabolites of Human Gut Microbiota Correlating with Depression Olga V. Averina 1,*, Yana A. Zorkina 1,2,3 , Roman A. Yunes 1,* , Alexey S. Kovtun 1, Valeriya M. Ushakova 2,4, Anna Y. Morozova 2,3, George P. Kostyuk 3, Valery N. Danilenko 1,5 and Vladimir P. Chekhonin 2,6 1 Vavilov Institute of General Genetics, Russion Academy of Sciences, 119991 Moscow, Russia; [email protected] (Y.A.Z.); [email protected] (A.S.K.); [email protected] (V.N.D.) 2 Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; [email protected] (V.M.U.); [email protected] (A.Y.M.); [email protected] (V.P.C.) 3 Mental-Health Clinic No. 1 Named after N.A. Alexeev of Moscow Healthcare Department, 117152 Moscow, Russia; [email protected] 4 Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia 5 Faculty of Ecology, International Institute for Strategic Development of Sectoral Economics, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia 6 Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia * Correspondence: [email protected] (O.V.A.); [email protected] (R.A.Y.) Received: 4 November 2020; Accepted: 2 December 2020; Published: 3 December 2020 Abstract: Depression is a global threat to mental health that affects around 264 million people worldwide. Despite the considerable evolution in our understanding of the pathophysiology of depression, no reliable biomarkers that have contributed to objective diagnoses and clinical therapy currently exist.
    [Show full text]