Biochemical and Cellular Studies of Vertebrate Globins
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 5 High-Pressure Stopped-Flow Kinetic Studies of Nnos
Probing the dynamics and conformational landscape of neuronal nitric oxide synthase A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Life Sciences 2013 Anna Sobolewska-Stawiarz Contents Contents ...................................................................................................................... 2 List of Figures ............................................................................................................. 6 List of Tables ............................................................................................................ 10 Abstract ..................................................................................................................... 12 Declaration ................................................................................................................ 13 Copyright Statement ................................................................................................ 13 Acknowledgements ................................................................................................... 14 List of Abbreviations ............................................................................................... 15 List of Amino Acids Abbreviations ........................................................................ 17 CHAPTER 1. INTRODUCTION ........................................................................... 18 1.1 Nitric oxide synthase ......................................................................................... -
Protein S-Nitrosylation: Methods of Detection and Cellular Regulation
Protein S-Nitrosylation: Methods of Detection and Cellular Regulation by Michael Tcheupdjian Forrester Department of Biochemistry Duke University Date:_______________________ Approved: ___________________________ Jonathan S. Stamler, MD (Supervisor) ___________________________ Irwin Fridovich, PhD ___________________________ K. V. Rajagopalan, PhD ___________________________ Dennis J. Thiele, PhD ___________________________ Eric J. Toone, PhD Dissertation submitted in partial fulfillment of the requirements for the degree of doctor of philosophy in the Department of Biochemistry in the Graduate School of Duke University 2009 i v ABSTRACT Protein S-Nitrosylation: Methods of Detection and Cellular Regulation by Michael Tcheupdjian Forrester Department of Biochemistry Duke University Date:_______________________ Approved: ___________________________ Jonathan S. Stamler, MD (Supervisor) ___________________________ Irwin Fridovich, PhD ___________________________ K. V. Rajagopalan, PhD ___________________________ Dennis J. Thiele, PhD ___________________________ Eric J. Toone, PhD An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of doctor of philosophy in the Department of Biochemistry in the Graduate School of Duke University 2009 i v Copyright by Michael T. Forrester 2009 Abstract Protein S-nitrosylation—the post-translational modification of cysteine thiols into S-nitrosothiols—is a principle mechanism of nitric oxide-based signaling. Studies have demonstrated myriad roles for S-nitrosylation in organisms from bacteria to humans, and recent efforts have begun to elucidate how this redox-based modification is regulated during physiological and pathophysiological conditions. This doctoral thesis is focused on the 1) analysis of existing methodologies for the detection of protein S-nitrosylation; 2) development of new methodologies for the detection of protein S-nitrosylation and 3) discovery of novel enzymatic mechanisms by which S-nitrosylation is regulated in vivo. -
KEGG Orthology-Based Annotation of the Predicted
Dunlap et al. BMC Genomics 2013, 14:509 http://www.biomedcentral.com/1471-2164/14/509 DATABASE Open Access KEGG orthology-based annotation of the predicted proteome of Acropora digitifera: ZoophyteBase - an open access and searchable database of a coral genome Walter C Dunlap1,2, Antonio Starcevic4, Damir Baranasic4, Janko Diminic4, Jurica Zucko4, Ranko Gacesa4, Madeleine JH van Oppen1, Daslav Hranueli4, John Cullum5 and Paul F Long2,3* Abstract Background: Contemporary coral reef research has firmly established that a genomic approach is urgently needed to better understand the effects of anthropogenic environmental stress and global climate change on coral holobiont interactions. Here we present KEGG orthology-based annotation of the complete genome sequence of the scleractinian coral Acropora digitifera and provide the first comprehensive view of the genome of a reef-building coral by applying advanced bioinformatics. Description: Sequences from the KEGG database of protein function were used to construct hidden Markov models. These models were used to search the predicted proteome of A. digitifera to establish complete genomic annotation. The annotated dataset is published in ZoophyteBase, an open access format with different options for searching the data. A particularly useful feature is the ability to use a Google-like search engine that links query words to protein attributes. We present features of the annotation that underpin the molecular structure of key processes of coral physiology that include (1) regulatory proteins of -
Nitric Oxide Dioxygenase: an Enzymic Function for Flavohemoglobin
Proc. Natl. Acad. Sci. USA Vol. 95, pp. 10378–10383, September 1998 Biochemistry Nitric oxide dioxygenase: An enzymic function for flavohemoglobin PAUL R. GARDNER*, ANNE M. GARDNER,LORI A. MARTIN, AND ANDREW L. SALZMAN Division of Critical Care Medicine, Children’s Hospital Medical Center, and Department of Pediatrics, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229 Communicated by Irwin Fridovich, Duke University Medical Center, Durham, NC, July 7, 1998 (received for review June 9, 1998) ABSTRACT Nitric oxide (NO•) is a toxin, and various life Moreover, this aerobic cyanide-sensitive NO• consumption forms appear to have evolved strategies for its detoxification. activity appeared to constitute part of an adaptive defense NO•-resistant mutants of Escherichia coli were isolated that against NO• toxicity. Thus, we supposed that E. coli mutants rapidly consumed NO•.AnNO•-converting activity was re- containing elevated activity might be selected for resistance to • constituted in extracts that required NADPH, FAD, and O2, 2 NO -mediated killing, and furthermore, that they could be was cyanide-sensitive, and produced NO3 . This nitric oxide used to facilitate the biochemical and genetic characterization dioxygenase (NOD) contained 19 of 20 N-terminal amino of the NO• scavenging activity. acids identical to those of the E. coli flavohemoglobin. Fur- Here, we describe the isolation and characterization of an thermore, NOD activity was produced by the flavohemoglobin O2-dependent and cyanide-sensitive nitric oxide dioxygenase gene and was inducible by NO•. FlavohemoglobinyNOD- (NOD) from NO•-resistant E. coli, which is a flavohemoglo- deficient mutants were also sensitive to growth inhibition by bin. The identification of NOD with flavohemoglobin is sig- gaseous NO•. -
Supporting Information
Supporting Information Biagioli et al. 10.1073/pnas.0813216106 SI Text and the procedure was repeated twice. Single cells were then RNA Isolation, Reverse Transcription, qPCR, Cloning, and Sequencing. resuspended in panning buffer and incubated on lectin-coated RNA was extracted from cell lines and blood by using TRIzol panning plates for 15 min at room temperature. Nonadherent reagent (Invitrogen) and following vendor instructions. cells were transferred to the next panning plate (four pannings, RNA was extracted from LCM- or FACS-purified cells with an 15 min each). Then, nonadherent cells were collected, centri- Absolutely RNA Nanoprep Kit (Stratagene). Single-strand fuged, and resuspended in serum-free neuronal medium or PBS. cDNA was obtained from purified RNA by using the iSCRIPT A similar procedure was also followed for the dissociation of cDNA Synhesis Kit (Bio-Rad) according to the manufacturer’s cortical and hippocampal astrocytes and oligodendrocytes. instructions. Quantitative RT-PCR was performed by using A cell strainer with 70-m nylon mesh was used to obtain a SYBER-Green PCR Master Mix and an iQ5 Real-Time PCR single-cell suspension (BD Falcon) before sorting. 7-AAD Detection System (Bio-Rad). (Beckman–Coulter) was added to the cell suspension to exclude Quantitative RT-PCR was performed with an iCycler IQ dead cells. A high-speed cell sorter (MoFlo) was used to sort (Bio-Rad); -actin was used as an endogenous control to nor- subpopulation of cells expressing GFP. Sorting parameters used malize the expression level of target genes. Primers were chosen for the three different populations are visualized in Fig. -
Adult, Embryonic and Fetal Hemoglobin Are Expressed in Human Glioblastoma Cells
514 INTERNATIONAL JOURNAL OF ONCOLOGY 44: 514-520, 2014 Adult, embryonic and fetal hemoglobin are expressed in human glioblastoma cells MARWAN EMARA1,2, A. ROBERT TURNER1 and JOAN ALLALUNIS-TURNER1 1Department of Oncology, University of Alberta and Alberta Health Services, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada; 2Center for Aging and Associated Diseases, Zewail City of Science and Technology, Cairo, Egypt Received September 7, 2013; Accepted October 7, 2013 DOI: 10.3892/ijo.2013.2186 Abstract. Hemoglobin is a hemoprotein, produced mainly in Introduction erythrocytes circulating in the blood. However, non-erythroid hemoglobins have been previously reported in other cell Globins are hemo-containing proteins, have the ability to types including human and rodent neurons of embryonic bind gaseous ligands [oxygen (O2), nitric oxide (NO) and and adult brain, but not astrocytes and oligodendrocytes. carbon monoxide (CO)] reversibly. They have been described Human glioblastoma multiforme (GBM) is the most aggres- in prokaryotes, fungi, plants and animals with an enormous sive tumor among gliomas. However, despite extensive basic diversity of structure and function (1). To date, hemoglobin, and clinical research studies on GBM cells, little is known myoglobin, neuroglobin (Ngb) and cytoglobin (Cygb) repre- about glial defence mechanisms that allow these cells to sent the vertebrate globin family with distinct function and survive and resist various types of treatment. We have tissue distributions (2). During ontogeny, developing erythro- shown previously that the newest members of vertebrate blasts sequentially express embryonic {[Gower 1 (ζ2ε2), globin family, neuroglobin (Ngb) and cytoglobin (Cygb), are Gower 2 (α2ε2), and Portland 1 (ζ2γ2)] to fetal [Hb F(α2γ2)] expressed in human GBM cells. -
Current Advances of Nitric Oxide in Cancer and Anticancer Therapeutics
Review Current Advances of Nitric Oxide in Cancer and Anticancer Therapeutics Joel Mintz 1,†, Anastasia Vedenko 2,†, Omar Rosete 3 , Khushi Shah 4, Gabriella Goldstein 5 , Joshua M. Hare 2,6,7 , Ranjith Ramasamy 3,6,* and Himanshu Arora 2,3,6,* 1 Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, FL 33328, USA; [email protected] 2 John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; [email protected] (A.V.); [email protected] (J.M.H.) 3 Department of Urology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; [email protected] 4 College of Arts and Sciences, University of Miami, Miami, FL 33146, USA; [email protected] 5 College of Health Professions and Sciences, University of Central Florida, Orlando, FL 32816, USA; [email protected] 6 The Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA 7 Department of Medicine, Cardiology Division, Miller School of Medicine, University of Miami, Miami, FL 33136, USA * Correspondence: [email protected] (R.R.); [email protected] (H.A.) † These authors contributed equally to this work. Abstract: Nitric oxide (NO) is a short-lived, ubiquitous signaling molecule that affects numerous critical functions in the body. There are markedly conflicting findings in the literature regarding the bimodal effects of NO in carcinogenesis and tumor progression, which has important consequences for treatment. Several preclinical and clinical studies have suggested that both pro- and antitumori- Citation: Mintz, J.; Vedenko, A.; genic effects of NO depend on multiple aspects, including, but not limited to, tissue of generation, the Rosete, O.; Shah, K.; Goldstein, G.; level of production, the oxidative/reductive (redox) environment in which this radical is generated, Hare, J.M; Ramasamy, R.; Arora, H. -
Relating Metatranscriptomic Profiles to the Micropollutant
1 Relating Metatranscriptomic Profiles to the 2 Micropollutant Biotransformation Potential of 3 Complex Microbial Communities 4 5 Supporting Information 6 7 Stefan Achermann,1,2 Cresten B. Mansfeldt,1 Marcel Müller,1,3 David R. Johnson,1 Kathrin 8 Fenner*,1,2,4 9 1Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, 10 Switzerland. 2Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 11 Zürich, Switzerland. 3Institute of Atmospheric and Climate Science, ETH Zürich, 8092 12 Zürich, Switzerland. 4Department of Chemistry, University of Zürich, 8057 Zürich, 13 Switzerland. 14 *Corresponding author (email: [email protected] ) 15 S.A and C.B.M contributed equally to this work. 16 17 18 19 20 21 This supporting information (SI) is organized in 4 sections (S1-S4) with a total of 10 pages and 22 comprises 7 figures (Figure S1-S7) and 4 tables (Table S1-S4). 23 24 25 S1 26 S1 Data normalization 27 28 29 30 Figure S1. Relative fractions of gene transcripts originating from eukaryotes and bacteria. 31 32 33 Table S1. Relative standard deviation (RSD) for commonly used reference genes across all 34 samples (n=12). EC number mean fraction bacteria (%) RSD (%) RSD bacteria (%) RSD eukaryotes (%) 2.7.7.6 (RNAP) 80 16 6 nda 5.99.1.2 (DNA topoisomerase) 90 11 9 nda 5.99.1.3 (DNA gyrase) 92 16 10 nda 1.2.1.12 (GAPDH) 37 39 6 32 35 and indicates not determined. 36 37 38 39 S2 40 S2 Nitrile hydration 41 42 43 44 Figure S2: Pearson correlation coefficients r for rate constants of bromoxynil and acetamiprid with 45 gene transcripts of ECs describing nucleophilic reactions of water with nitriles. -
Neuroglobin and Cytoglobin Fresh Blood for the Vertebrate Globin Family
EMBO reports Neuroglobin and cytoglobin Fresh blood for the vertebrate globin family Alessandra Pesce, Martino Bolognesi+, Alessio Bocedi1, Paolo Ascenzi1, Sylvia Dewilde2, Luc Moens2, Thomas Hankeln3 & Thorsten Burmester4 Department of Physics–INFM and Center for Excellence in Biomedical Research, University of Genova, Via Dodecaneso 33, I-16146 Genova, 1Department of Biology, University ‘Roma Tre’, Viale Guglielmo Marconi 446, I-00146 Roma, Italy, 2Department of Biochemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium, 3Institute of Molecular Genetics, Johannes Gutenberg University of Mainz, Becherweg 32, D-55099 Mainz and 4Institute of Zoology, Johannes Gutenberg University of Mainz, Müllerweg 6, D-55099 Mainz, Germany Received August 7, 2002; revised October 8, 2002; accepted October 18, 2002 Neuroglobin and cytoglobin are two recently discovered (Wittenberg, 1970, 1992; Antonini and Brunori, 1971; Perutz, members of the vertebrate globin family. Both are intracellular 1979, 1990; Dickerson and Geis, 1983; Bunn and Forget, 1986; proteins endowed with hexacoordinated heme-Fe atoms, in Brunori, 1999; Weber and Vinogradov, 2001; Merx et al., 2002), their ferrous and ferric forms, and display O2 affinities comparable although they can also carry out enzymatic functions (Minning with that of myoglobin. Neuroglobin, which is predominantly et al., 1999; Ascenzi et al., 2001). expressed in nerve cells, is thought to protect neurons from Four types of globin, differing in structure, tissue distribution hypoxic–ischemic injury. It is of ancient evolutionary origin, and likely in function, have been discovered in man and other and is homologous to nerve globins of invertebrates. vertebrates: hemoglobin, myoglobin, neuroglobin and cyto- Cytoglobin is expressed in many different tissues, although at globin. -
The Role of Nitrite and Nitric Oxide Under Low Oxygen Conditions in Plants Gupta, Kapuganti Jagadis; Mur, Luis A
Aberystwyth University The role of nitrite and nitric oxide under low oxygen conditions in plants Gupta, Kapuganti Jagadis; Mur, Luis A. J.; Wany, Aakanksha; Kumari, Aprajita; Fernie, Alisdair R.; Ratcliffe, R. George Published in: New Phytologist DOI: 10.1111/nph.15969 Publication date: 2019 Citation for published version (APA): Gupta, K. J., Mur, L. A. J., Wany, A., Kumari, A., Fernie, A. R., & Ratcliffe, R. G. (2019). The role of nitrite and nitric oxide under low oxygen conditions in plants. New Phytologist. https://doi.org/10.1111/nph.15969 General rights Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. tel: +44 1970 62 2400 email: [email protected] Download date: 23. Sep. 2021 DR JAGADIS GUPTA KAPUGANTI (Orcid ID : 0000-0002-7090-5097) DR LUIS ALEJANDRO MUR (Orcid ID : 0000-0002-0961-9817) DR ALISDAIR FERNIE (Orcid ID : 0000-0001-9000-335X) Article type : Research Review The role of nitrite and nitric oxide under low oxygen conditions in plants Kapuganti Jagadis Gupta1*, Luis A.J. -
Curriculum Vitae
Curriculum Vitae JONATHAN S. STAMLER Dr Stamler is an internationally acclaimed physician scientist known for the discovery of protein S- nitrosylation, a global post-translational modification of proteins that is widely involved in both physiology and disease, and for a track record of innovation and entrepreneurship as a founder of institutes, biotechnology companies, medical societies, innovation platforms and impact investment funds. He has co-authored over 300 original manuscripts and 125 patents/patent applications. His work has been covered in numerous lay publications, including the front page and science sections of the New York Times, as well as Time Magazine and The Economist, in books on the history of science and luck, and in works on outlier innovators. Current Address: Office: Case Western Reserve University Home: 19401 South Park Boulevard 2103 Cornell Road, WRB 4129 Shaker Heights, OH 44122 Cleveland, Ohio 44106-7294 cell: (919) 971-0328 phone: (216) 368-5724 fax: (216) 368-2968 e-mail: [email protected] e-mail: [email protected] Birthdate: June 23, 1959 (Wallingford, England) Citizenship: United States Education: 1981 B.A. Brandeis University, Boston, MA 1985 M.D. Mount Sinai School of Medicine, New York, NY Postdoctoral Training: Internship and Residency 1985-1986 Internship, Medicine, Brigham and Women's Hospital, Harvard Medical School. Boston, MA 1986-1987 Resident, Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 1987-1988 Resident, Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA Fellowships 1985-1989 Clinical Fellow in Medicine, Harvard Medical School, Boston, MA 1988-1989 Clinical Fellow in Medicine (Pulmonary Medicine), Brigham and Women's Hospital 1989-1993 Research Fellow in Medicine, Harvard Medical School 1989-1993 Clinical/Research Fellow in Medicine (Cardiovascular Medicine), Brigham and Women's Hospital, Boston, MA and West Roxbury V.A. -
A Gene-Environment Study of Cytoglobin in the Human and Rat Hippocampus
A Gene-Environment Study of Cytoglobin in the Human and Rat Hippocampus Christian Ansgar Hundahl1,3, Betina Elfving2, Heidi Kaastrup Mu¨ ller2, Anders Hay-Schmidt3, Gregers Wegener2,4* 1 Centre of Excellence for Translational Medicine, University of Tartu, Tartu, Estonia, 2 Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark, 3 Department of Neuroscience and Pharmacology, The Panum Institute, University of Copenhagen, Copenhagen, Denmark, 4 Unit for Drug Research and Development, School of Pharmacy (Pharmacology), North-West University, Potchefstroom, South Africa Abstract Background: Cytoglobin (Cygb) was discovered a decade ago as the fourth vertebrate heme-globin. The function of Cygb is still unknown, but accumulating evidence from in vitro studies point to a putative role in scavenging of reactive oxygen species and nitric oxide metabolism and in vivo studies have shown Cygb to be up regulated by hypoxic stress. This study addresses three main questions related to Cygb expression in the hippocampus: 1) Is the rat hippocampus a valid neuroanatomical model for the human hippocampus; 2) What is the degree of co-expression of Cygb and neuronal nitric oxide synthase (nNOS) in the rat hippocampus; 3) The effect of chronic restraint stress (CRS) on Cygb and nNOS expression. Methods: Immunohistochemistry was used to compare Cygb expression in the human and rat hippocampi as well as Cygb and nNOS co-expression in the rat hippocampus. Transcription and translation of Cygb and nNOS were investigated using quantitative real-time polymerase chain reaction (real-time qPCR) and Western blotting on hippocampi from Flinders (FSL/ FRL) rats exposed to CRS. Principal Findings: Cygb expression pattern in the human and rat hippocampus was found to be similar.