United States Patent (19) 11) 4,208,378 Heinen Et Al

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent (19) 11) 4,208,378 Heinen Et Al United States Patent (19) 11) 4,208,378 Heinen et al. 45) Jun. 17, 1980 54 DESORPTION OF GOLD FROMACTIVATED 58 Field of Search ....................... 423/23, 27, 25, 24; CARBON 75/118; 210/30 R, 37 B, 40; 252/414 75 Inventors: Harold J. Heinen; David G. Peterson; 56) References Cited Roald E. Lindstrom, all of Reno, U.S. PATENT DOCUMENTS Nebr. 3,920,403 11/1975 Ross ....................................... 75/118 (73) Assignee: The United States of America as 3,935,006 1/1976 Fischer ................................... 75/118 represented by the Secretary of the 3,970,737 7/1976 Davidson ............................... 423/27 Interior, Washington, D.C. Primary Examiner-Brian E. Hearn Attorney, Agent, or Firm-William S. Brown; Donald A. 21 Appl. No.: 786,739 Gardiner 22 Filed: Apr. 11, 1977 57 ABSTRACT Gold is desorbed from activated carbon by contacting, Related U.S. Application Data at a temperature of about 70 to 160" C., with a solution 63 Continuation-in-part of Ser. No. 660,942, Feb. 24, 1976, comprising about 20 to 30 percent by volume of a water abandoned. soluble alcohol and about 80 to 70 percent by volume of an aqueous solution of a strong base. 51) Int. Cl’................................................ CO1G 3/00 52 U.S. Cl. ......................................... 423/27; 423/25 5 Claims, 3 Drawing Figures d 2 O al a. O (f) U s C O O 2O ETHANOL CONCENTRATION, pct/vol. U.S. Patent Jun. 17, 1980 Sheet 1 of 3 4,208,378 OO 9 O 8 O 7 o O IO 20 3O 4-O 5O w ETHANOL CONCENTRATION, pct/vol. A/G. /. U.S. Patent Jun. 17, 1980 Sheet 2 of 3 4,208,378 OO r 90 8O 7O d Cl 60 2. h 50 O 40 s C O O - 3O 4O 5O 6O 7O 8O 90 OO TEMPERATURE, C A/6. 2. U.S. Patent Jun. 17, 1980 Sheet 3 of 3 4,208,378 6o NUMBER OF BED VOLUMES OF ELUENT 4,208,378 1. 2 base at a temperature of about 70 to 160 C, preferably DESORPTION OF GOLD FROM ACTIVATED about 80' to 90' C. CARBON BRIEF DESCRIPTION OF THE DRAWINGS This application is a continuation-in-part of applica- 5 FIG. 1 is an illustration of percentage of gold desorp tion Ser. No. 660,942, filed Feb. 24, 1976 and now aban tion vs. ethanol concentration as in Example 1. doned, FIG. 2 is an illustration of percentage of gold desorp Cyanidation is commonly employed for extraction of tion vs. temperature as in Example 2. gold from its ores. In this process, the crushed ore is FIG. 3 is an illustration of percentage of gold de dissolved in a dilute solution of sodium cyanide, or 10 sorbed vs. bed volumes of eluent. calcium cyanide, and a small amount of lime, in the As illustrated in the examples below, the use of the presence of oxygen, the gold dissolving in the form of elevated temperature results in a dramatic improvement the complex Au(CN)2. Recovery of the gold has con in efficiency of desorption of the gold. An even more ventionally been accomplished by treatment of the re unexpected result, however, is that the desorption effi sulting cyanide solution with zinc dust. More recently, 15 ciency at the elevated temperature is substantially as activated carbon has been found to be an efficient adsor good with the low alcohol concentration of the inven bent of the gold cyanide complex, and a variety of pro tion, i.e., 20 to 30 percent, as with the much higher cesses based on this reaction have been developed. Ef alcohol concentration of the prior art, whereby the fectiveness of these processes is, however, dependent economy of the process is greatly improved. Recovery on development of efficient means for desorbing the 20 of the gold from the stripping solution is readily accom gold from the loaded carbon. Stripping with hot caustic plished by conventional means such as electrolysis. sodium cyanide solution at atmospheric pressure to Activated carbon, suitable for use in the invention is desorb the gold, followed by electrolysis to win the a widely available material that is conventionally used metal values, has been employed. However, this in adsorption process, including gold adsorption. Typi method has the disadvantage that simultaneous strip 25 cally, it will have a particle size of about 0.15 to 2 mm ping and electrolysis is slow. Elevated pressure has also and a total surface area of about 600-900 M2/g. It may been employed, so that the temperature of the caustic be derived from any of a variety of sources such as coal, cyanide solution can be raised to about 250 F. without petroleum chars, coconut shell, or pulp mill black ash, boiling, thereby accelerating the desorption rate. This and is activated by conventional means such as heating 30 in a steam-air mixture at a temperature of about 850 C. technique, however, requires the use of a boiler-pres The activated carbon adsorbent is initially loaded by sure reactor, which makes the process more compli conventional means, i.e., by contacting a gold-cyanide cated. solution e.g., a cyanide plant effluent, with the activated A recent innovation, described in U.S. Pat. No. carbon for a time sufficient to permit adsorption of a 3,935,006, issued Jan. 27, 1976, employs caustic-alcohol 35 major amount of the gold-cyanide complex. This may water mixtures, containing over 75 percent alcohol by be accomplished by any conventional means for con volume, at ambient temperature and pressure for de tacting liquids with solid adsorbents, e.g., bypassing the sorbing gold from activated carbon. This method is gold-cyanide solution through a columnar unit contain very effective for desorption of gold from activated ing a fixed bed of the activated carbon. carbon loaded by treatment with synthetic NaAu(CN)2 The gold is then desorbed from the loaded carbon, solutions. However, as illustrated in the examples be according to the process of the invention, by treatment low, it has not been found to be effective for desorption with a solution comprising a water soluble alcohol and of gold from activated carbon loaded by treatment with an aqueous solution of a strong base, at a temperature of cyanide plant effluents, particularly when the effluents about 70 to 160° C., preferably about 80 to 90° C. As contain the gold in the form of CaAu(CN)2, i.e., when 45 discussed above, this temperature range has been found the effluent is formed by treatment of ores with calcium to be essential to achievement of efficient desorption of or sodium cyanide and lime. Investigations have shown the gold, particularly where the gold-cyanide solution is that there is a significant difference in the behavior of a cyanide plant effluent formed by treatment of ores sodium and calcium ions regarding carbon adsorption with calcium or sodium cyanide and lime. of gold, the aurocyanide complex being much more 50 The water soluble alcohol is preferably a lower ali strongly adsorbed when calcium is employed as the phatic alcohol such as methanol, ethanol, propanol, or cation. Since lime is generally employed to provide isopropanol. As mentioned above, the use of an elevated protective alkalinity in conventional cyanidation pro temperature permits the use of a relatively small pro cesses, an efficient process for desorption of the portion of alcohol, preferably about 20 to 30 percent by aurocyanide complex in the presence of calcium ion is 55 volume of the stripping solution. essential for economical recovery of gold by means of The balance of the stripping solution consists essen activated carbon adsorption. In addition, soluble extra tially of a water solution of a strong base. Sodium hy neous matter, such as organics, silicates, and ferrous droxide is the preferred base, but potassium hydroxide iron salts, in the pregnant cyanide effluents may play a may also be used. The base is employed in an amount of significant role in the desorption process. 60 about 1 to 2 percent by weight of the water solution, or It has now been found, according to the process of an amount sufficient to provide the stripping solution the invention, that gold in the form of the aurocyanide with a pH of about 11 to 14, preferably about 13 to 14. complex, and particularly the calcium aurocyanide Use of a high pH is essential since the activated carbon complex, is very efficiently desorbed from activated has a substantially decreased capacity for adsorption of carbon by treatment of the loaded carbon with a strip- 65 the gold-cyanide complex at higher values of pH. ping solution comprising about 20 to 30 percent by The stripping solution may also contain a small volume of a water soluble alcohol and about 80 to 70 amount of sodium cyanide, e.g., about 0.02 to 0.1 per percent by volume of an aqueous solution of a strong cent by weight of the water solution, particularly where 4,208,378 3 4. the stripping solution is recycled after removal of the operating temperatures were employed. Results are desorbed gold. Such recycled solutions often contain shown graphically in FIG. 2. It will be seen that the small amounts of sodium cyanide as a contaminant from gold desorption is highly temperature dependent and the stripping operation. Alternatively, the sodium cya that a temperature of about 80 C. or above is essential nide may be added to the stripping solution and may 5 for efficient desorption. Temperatures above about 90 result in somewhat increaseed efficiency in some cases.
Recommended publications
  • Transport of Dangerous Goods
    ST/SG/AC.10/1/Rev.16 (Vol.I) Recommendations on the TRANSPORT OF DANGEROUS GOODS Model Regulations Volume I Sixteenth revised edition UNITED NATIONS New York and Geneva, 2009 NOTE The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. ST/SG/AC.10/1/Rev.16 (Vol.I) Copyright © United Nations, 2009 All rights reserved. No part of this publication may, for sales purposes, be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying or otherwise, without prior permission in writing from the United Nations. UNITED NATIONS Sales No. E.09.VIII.2 ISBN 978-92-1-139136-7 (complete set of two volumes) ISSN 1014-5753 Volumes I and II not to be sold separately FOREWORD The Recommendations on the Transport of Dangerous Goods are addressed to governments and to the international organizations concerned with safety in the transport of dangerous goods. The first version, prepared by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods, was published in 1956 (ST/ECA/43-E/CN.2/170). In response to developments in technology and the changing needs of users, they have been regularly amended and updated at succeeding sessions of the Committee of Experts pursuant to Resolution 645 G (XXIII) of 26 April 1957 of the Economic and Social Council and subsequent resolutions.
    [Show full text]
  • Chemical Name Federal P Code CAS Registry Number Acutely
    Acutely / Extremely Hazardous Waste List Federal P CAS Registry Acutely / Extremely Chemical Name Code Number Hazardous 4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro- P059 76-44-8 Acutely Hazardous 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide P050 115-29-7 Acutely Hazardous Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- P197 17702-57-7 Acutely Hazardous 1-(o-Chlorophenyl)thiourea P026 5344-82-1 Acutely Hazardous 1-(o-Chlorophenyl)thiourea 5344-82-1 Extremely Hazardous 1,1,1-Trichloro-2, -bis(p-methoxyphenyl)ethane Extremely Hazardous 1,1a,2,2,3,3a,4,5,5,5a,5b,6-Dodecachlorooctahydro-1,3,4-metheno-1H-cyclobuta (cd) pentalene, Dechlorane Extremely Hazardous 1,1a,3,3a,4,5,5,5a,5b,6-Decachloro--octahydro-1,2,4-metheno-2H-cyclobuta (cd) pentalen-2- one, chlorecone Extremely Hazardous 1,1-Dimethylhydrazine 57-14-7 Extremely Hazardous 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4,4a,5,6,7,8,8a-octahydro-1,4-endo-endo-5,8- dimethanonaph-thalene Extremely Hazardous 1,2,3-Propanetriol, trinitrate P081 55-63-0 Acutely Hazardous 1,2,3-Propanetriol, trinitrate 55-63-0 Extremely Hazardous 1,2,4,5,6,7,8,8-Octachloro-4,7-methano-3a,4,7,7a-tetra- hydro- indane Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]- 51-43-4 Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, P042 51-43-4 Acutely Hazardous 1,2-Dibromo-3-chloropropane 96-12-8 Extremely Hazardous 1,2-Propylenimine P067 75-55-8 Acutely Hazardous 1,2-Propylenimine 75-55-8 Extremely Hazardous 1,3,4,5,6,7,8,8-Octachloro-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime 26419-73-8 Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime.
    [Show full text]
  • Toxicological Profile for Cyanide
    CYANIDE 141 5. PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL 5.1 PRODUCTION The demand for hydrogen cyanide in the United States during 2000 was 1.615 billion pounds, up slightly from 1.605 billion pounds in 1999 (CMR 2001). Production of hydrogen cyanide in 2003 was 2.019 billion pounds in the United States (FAS 2005). The demand for hydrogen cyanide was projected to be 1.838 billion pounds in 2004 (CMR 2001; NYSDOH 2005). Major producers of hydrogen cyanide are Adisseo USA, Inc. (Institute, West Virginia); Cyanco Co. (Winnemucca, Nevada); Cytec Industries (Waggoman, Louisiana); Degussa Corp. (Theodora, Alabama); The Dow Chemical Company (Freeport, Texas); E.I. du Pont de Neumours and Company (Memphis, Tennessee; Beaumont, Texas); Innovene (Green Lake, Texas and Lima, Ohio); Invista, Inc. (Orange, Texas and Victoria, Texas); Rhom and Haas Texas Inc. (Deer Park, Texas); Solutia, Inc. (Alvin, Texas); Sterling Chemicals, Inc. (Texas City, Texas); and Syngenta Crop Protection (St. Garbiel, Louisiana) (SRI 2005). The combined annual production capacity of these plants is approximately 2.036 billion pounds (SRI 2005). As of February 2005, the following companies produced other cyanide compounds in the United States (SRI 2005): ammonium Crompton, Taft, Louisiana; and Mallinckrodt, Inc., St. Louis, Missouri thiocyanate: cyanogen: Matheson Gas Products, Inc., Gloucester, Massachusetts potassium cyanide: DuPont Chemical Company, Memphis, Tennessee; and The Dow Chemical Company, Nashua, New Hampshire potassium silver Engelhard Corporation, Union, New Jersey; and Metalor Technologies USA, North cyanide: Attleboro, Massachusetts Facilities in the United States producing sodium cyanide and their annual capacity (in millions of pounds) in 2005 include: Cyanco Co., Winnemucca, Nevada (86); and E.I.
    [Show full text]
  • Acutely / Extremely Hazardous Waste List
    Acutely / Extremely Hazardous Waste List Federal P CAS Registry Acutely / Extremely Chemical Name Code Number Hazardous 4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro- P059 76-44-8 Acutely Hazardous 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide P050 115-29-7 Acutely Hazardous Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- P197 17702-57-7 Acutely Hazardous 1-(o-Chlorophenyl)thiourea P026 5344-82-1 Acutely Hazardous 1-(o-Chlorophenyl)thiourea 5344-82-1 Extemely Hazardous 1,1,1-Trichloro-2, -bis(p-methoxyphenyl)ethane Extemely Hazardous 1,1a,2,2,3,3a,4,5,5,5a,5b,6-Dodecachlorooctahydro-1,3,4-metheno-1H-cyclobuta (cd) pentalene, Dechlorane Extemely Hazardous 1,1a,3,3a,4,5,5,5a,5b,6-Decachloro--octahydro-1,2,4-metheno-2H-cyclobuta (cd) pentalen-2- one, chlorecone Extemely Hazardous 1,1-Dimethylhydrazine 57-14-7 Extemely Hazardous 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4,4a,5,6,7,8,8a-octahydro-1,4-endo-endo-5,8- dimethanonaph-thalene Extemely Hazardous 1,2,3-Propanetriol, trinitrate P081 55-63-0 Acutely Hazardous 1,2,3-Propanetriol, trinitrate 55-63-0 Extemely Hazardous 1,2,4,5,6,7,8,8-Octachloro-4,7-methano-3a,4,7,7a-tetra- hydro- indane Extemely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]- 51-43-4 Extemely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, P042 51-43-4 Acutely Hazardous 1,2-Dibromo-3-chloropropane 96-12-8 Extemely Hazardous 1,2-Propylenimine P067 75-55-8 Acutely Hazardous 1,2-Propylenimine 75-55-8 Extemely Hazardous 1,3,4,5,6,7,8,8-Octachloro-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran Extemely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime 26419-73-8 Extemely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime.
    [Show full text]
  • Cyanide and Cyanide Complexes in the Gold
    CYANIDE AND CYANIDE COMPLEXES IN THE GOLD- MINE POLLUTED LAND IN THE EAST AND CENTRAL RAND GOLDFIELDS, SOUTH AFRICA. Elysee Bakatula Nsimba (0700692R) A dissertation submitted to the faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science. Johannesburg, 2009 CHAPTER ONE ─ INTRODUCTION 1.1 The history of mining on the Witwatersrand Basin The metropolis of Johannesburg, South Africa’s largest city and financial centre, owes its origin to the gold-bearing rocks of the Witwatersrand Basin (Figure 1.1). The basin-roughly oval in shape, approximately 350 km north east to south west direction and stretching over 150 km across-host seven major goldfields. Figure 1.1 The Witwatersrand basin (Viljoen and Reimold, 1999) 1 The gold-bearing conglomerate mined in the Witwatersrand Basin has a typical mineralogical composition of (Feather and Koen, 1975): • Quartz (70-90%); • Phyllosilicates (10-30%), consisting mainly of sericite, KAl 2(AlSi 3O10 )(OH) 2; • Accessory and minor minerals (1-5%). Some 70 different ore minerals have been identified in the conglomerates, the most abundant of which, after pyrite, are uranite (UO 2), brannerite (UTi 2O6), arsenopyrite (FeAsS), cobaltite (CoAsS), galena (PbS), pyrrhotite (FeS), gerdofite (NiAsS) and chromite (FeCr 2O4). Amalgamation Amalgamation was the principal gold recovery method used in South African gold mines at the start of mining in 1886. Crude amalgamation is still practiced by some artisanal gold miners in South Africa, mainly in the Mpumalanga Province. Unfortunately the method is in widespread use in some African countries (Sudan, Tanzania, D.R.
    [Show full text]
  • List of Lists
    United States Office of Solid Waste EPA 550-B-10-001 Environmental Protection and Emergency Response May 2010 Agency www.epa.gov/emergencies LIST OF LISTS Consolidated List of Chemicals Subject to the Emergency Planning and Community Right- To-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act • EPCRA Section 302 Extremely Hazardous Substances • CERCLA Hazardous Substances • EPCRA Section 313 Toxic Chemicals • CAA 112(r) Regulated Chemicals For Accidental Release Prevention Office of Emergency Management This page intentionally left blank. TABLE OF CONTENTS Page Introduction................................................................................................................................................ i List of Lists – Conslidated List of Chemicals (by CAS #) Subject to the Emergency Planning and Community Right-to-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act ................................................. 1 Appendix A: Alphabetical Listing of Consolidated List ..................................................................... A-1 Appendix B: Radionuclides Listed Under CERCLA .......................................................................... B-1 Appendix C: RCRA Waste Streams and Unlisted Hazardous Wastes................................................ C-1 This page intentionally left blank. LIST OF LISTS Consolidated List of Chemicals
    [Show full text]
  • Hazardous Waste Management Document - EC-001 |9
    Hazardous Waste Management Document - EC-001 |9 Appendix B: List of Acutely Hazardous Chemicals and Waste Codes Chemical Name Federal CAS Registry P Code Number Acetaldehyde, chloro- P023 107-20-0 Acetamide, N-(aminothioxomethyl)- P002 591-08-2 Acetamide, 2-fluoro- P057 640-19-7 Acetic acid, fluoro-, sodium salt P058 62-74-8 1-Acetyl-2-thiourea P002 591-08-2 Acrolein P003 107-02-8 Aldicarb P070 116-06-3 Aldicarb sulfone P203 1646-88-4 Aldrin P004 309-00-2 Allyl alcohol P005 107-18-6 Aluminum phosphide P006 20859-73-8 5-(Aminomethyl)-3-isoxazolol P007 2763-96-4 4-Aminopyridine P008 504-24-5 Ammonium picrate P009 131-74-8 Ammonium vanadate P119 7803-55-6 Argentate(1-), bis(cyano-C)-,potassium P099 506-61-6 Arsenic acid P010 7778-39-4 Arsenic oxide P012 1327-53-3 Arsenic oxide P011 1303-28-2 Arsenic pentoxide P011 1303-28-2 Arsenic trioxide P012 1327-53-3 Arsine, diethyl P038 692-42-2 ehs.utk.edu | 974-5084 Hazardous Waste Management Document - EC-001 |10 Chemical Name Federal CAS Registry P Code Number Arsonous dichloride, phenyl- P036 696-28-6 Aziridine P054 151-56-4 Aziridine, 2-methyl- P067 75-55-8 Barium cyanide P013 542-62-1 Benzenamine, 4-chloro- P024 106-47-8 Benzenamine, 4-nitro- P077 100-01-6 Benzene, (chloromethyl)- P028 100-44-7 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, P042 51-43-4 Benzeneethanamine, alpha,alpha- dimethyl- P046 122-09-8 Benzenethiol P014 108-98-5 7-Benzofuranol, 2,3-dihydro-2,2-dimethyl-, methylcarbamate.
    [Show full text]
  • Calcium Cyanamide
    Calcium cyanamide 156-62-7 Hazard Summary Calcium cyanamide is used as a fertilizer, pesticide, and in the manufacture of other chemicals. It is irritating to the eyes, skin, and respiratory tract in humans. Acute (short-term) inhalation exposure may cause gastritis,rhinitis, pharyngitis, laryngitis, and tracheobronchitis. Acute oral exposure may cause a vasomotor reaction, resulting in intense flushing of the face, upper body, and arms. Tachycardia and hypotension have also been observed in humans following acute oral exposure. Chronic (long-term) occupational exposure has been reported to cause chronic rhinitis with perforation of the nasal septum in workers. EPA has not classified calcium cyanamide with respect to potential carcinogenicity. Please Note: The main sources of information for this fact sheet are the Hazardous Substances Data Bank (HSDB) (2), a database of summaries of peer-reviewed literature, and the Registry of Toxic Effects of Chemical Substances (RTECS) (3), a database of toxic effects that are not peer reviewed. Uses Calcium cyanamide is used as a fertilizer, defoliant, herbicide, fungicide, and pesticide; in the manufacture and refining of iron; and in the manufacture of calcium cyanide, melamine, and dicyandiamide. (1,2,5) Sources and Potential Exposure Occupational exposure to calcium cyanamide may occur during its manufacture and use. (1) Assessing Personal Exposure No information was located regarding the measurement of personal exposure to calcium cyanamide. Health Hazard Information Acute Effects: Calcium cyanamide is irritating to the eyes, skin, and respiratory tract in humans. Acute inhalation exposure may cause gastritis, rhinitis, pharyngitis, laryngitis, and tracheobronchitis. (1,2) Acute oral exposure of humans may cause a vasomotor reaction, resulting in intense localized erythematous flushing of the face, upper body, and arms, with headache, dizziness, fatigue, vertigo, congestion of the mucosa, nausea, and vomiting also reported.
    [Show full text]
  • EPA's Hazardous Waste Listing
    Hazardous Waste Listings A User-Friendly Reference Document September 2012 Table of Contents Introduction ..................................................................................................................................... 3 Overview of the Hazardous Waste Identification Process .............................................................. 5 Lists of Hazardous Wastes .............................................................................................................. 5 Summary Chart ............................................................................................................................... 8 General Hazardous Waste Listing Resources ................................................................................. 9 § 261.11 Criteria for listing hazardous waste. .............................................................................. 11 Subpart D-List of Hazardous Wastes ............................................................................................ 12 § 261.31 Hazardous wastes from non-specific sources. ............................................................... 13 Spent solvent wastes (F001 – F005) ......................................................................................... 13 Wastes from electroplating and other metal finishing operations (F006 - F012, and F019) ... 18 Dioxin bearing wastes (F020 - F023, and F026 – F028) .......................................................... 22 Wastes from production of certain chlorinated aliphatic hydrocarbons (F024
    [Show full text]
  • NIH Chemical Waste Tag Guidance Tool Questions, Please Contact ORF/DEP at 301-496-7990
    NIH Chemical Waste Tag Guidance Tool Questions, Please Contact ORF/DEP at 301-496-7990 The Office of Research Facilities, Division of Environmental Protection has created a new chemical waste tag for the NIH Maryland Facilities to comply with the new EPA hazardous waste generator regulations. Instructions for filling out the new chemical waste tag can be found on the back of the tag: Step 1: Review Instructions on Back of Waste Tag (see image below): Step 2: Fill out Chemical Waste Identification Check Boxes on Front of Tag (image below): Choose the applicable chemical hazard labels on the tag (see the front of tag: checkboxes image below). Below is advice to help determine the hazards of the chemical wastes you generate. The new regulations require that you can show to a Maryland Department of the Environment (MDE) or Federal (EPA) inspector how you chose the hazard(s) you checked on the tag. The resources available to identify your waste’s hazards are: - The sds (safety data sheet) of each hazardous chemical that is in the waste container (Priority Reference) - The hazard labels and warnings on the bottles that you used in generating the waste (Priority Reference) - NLM- PubChem https://pubchem.ncbi.nlm.nih.gov/ (Priority Reference) - Knowledge of the hazards from your research protocols and/or processes - Testing (pH paper is commonly used to determine whether the waste is corrosive – remember, pH paper only works if the waste contains some water) - Advice you receive from DEP In addition to these resources, below are examples of various chemical hazard classes and some examples of chemicals that have these hazards.
    [Show full text]
  • Fedex Ground Hazardous Materials Shipping Guide Is Intended to Simplify Title 49 CFR
    FedEx Ground Package Systems Inc. is committed to the safe transportation of hazardous materials. It is very important that each person engaged in the transportation of hazardous materials has the proper training and is thoroughly familiar with the Title 49CFR (Code of Federal Regulations) and/or USPS Publication 52. This guide is intended only to assist you in your preparation of hazardous materials shipped via FedEx Ground Package Systems Inc. It is the shipper’s responsibility to ensure each hazardous material package is in compliance with applicable Department of Transportation (D.O.T.) regulations and FedEx Ground Package Systems Inc. requirements. Failure to comply with these regulations and requirements may subject the shipper and carrier to fines and penalties. Improperly prepared hazmat packages or documentation may be subject to an additional charge(s) due to the unexpected hanlding associated with these shipments. Due to the changing nature of D.O.T. regulations and other information, it is impossible to guarantee absolute accuracy of the material contained in this guide. FedEx Ground Package Systems Inc., therefore, cannot assume any responsibility for omissions, errors, misprinting, or ambiguity contained within this guide and shall not be held liable in any degree for any loss or injury caused by such omission or error presented in this publication. Shippers should consult the most current version of the hazardous material regulations. Training is mandatory for those shipping hazardous materials, including limited quantity and other exceptions. The www.shipsafeshipsmart.com battery and hazmat training programs offer shippers an economical source of basic ground battery and/or hazardous materials shipping as well as addressing FedEx Ground specific issues.
    [Show full text]
  • Hydrogen Cyanide and Cyanides: Human Health Aspects
    This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the United Nations Environment Programme, the International Labour Organization, or the World Health Organization. Concise International Chemical Assessment Document 61 HYDROGEN CYANIDE AND CYANIDES: HUMAN HEALTH ASPECTS Please note that the layout and pagination of this pdf file are not identical to the version in press First draft prepared by Prof. Fina Petrova Simeonova, Consultant, National Center of Hygiene, Medical Ecology and Nutrition, Sofia, Bulgaria; and Dr Lawrence Fishbein, Fairfax, Virginia, USA Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organization, and the World Health Organization, and produced within the framework of the Inter-Organization Programme for the Sound Management of Chemicals. World Health Organization Geneva, 2004 The International Programme on Chemical Safety (IPCS), established in 1980, is a joint venture of the United Nations Environment Programme (UNEP), the International Labour Organization (ILO), and the World Health Organization (WHO). The overall objectives of the IPCS are to establish the scientific basis for assessment of the risk to human health and the environment from exposure to chemicals, through international peer review processes, as a prerequisite for the promotion of chemical safety, and to provide technical assistance in strengthening national capacities for the sound management
    [Show full text]