Cyanide and Cyanide Complexes in the Gold
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Significance of Mineralogy in the Development of Flowsheets for Processing Uranium Ores
JfipwK LEACHING TIME REAGENTS TEMPERATURE FLOCCULANT CLARITY AREA COUNTER CURRENT DECANTATION It 21 21 J^^LJt TECHNICAL REPORTS SERIES No.19 6 Significance of Mineralogy in the Development of Flowsheets for Processing Uranium Ores \W# INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 1980 SIGNIFICANCE OF MINERALOGY IN THE DEVELOPMENT OF FLOWSHEETS FOR PROCESSING URANIUM ORES The following States are Members of the International Atomic Energy Agency: AFGHANISTAN HOLY SEE PHILIPPINES ALBANIA HUNGARY POLAND ALGERIA ICELAND PORTUGAL ARGENTINA INDIA QATAR AUSTRALIA INDONESIA ROMANIA AUSTRIA IRAN SAUDI ARABIA BANGLADESH IRAQ SENEGAL BELGIUM IRELAND SIERRA LEONE BOLIVIA ISRAEL SINGAPORE BRAZIL ITALY SOUTH AFRICA BULGARIA IVORY COAST SPAIN BURMA JAMAICA SRI LANKA BYELORUSSIAN SOVIET JAPAN SUDAN SOCIALIST REPUBLIC JORDAN SWEDEN CANADA KENYA SWITZERLAND CHILE KOREA, REPUBLIC OF SYRIAN ARAB REPUBLIC COLOMBIA KUWAIT THAILAND COSTA RICA LEBANON TUNISIA CUBA LIBERIA TURKEY CYPRUS LIBYAN ARAB JAMAHIRIYA UGANDA CZECHOSLOVAKIA LIECHTENSTEIN UKRAINIAN SOVIET SOCIALIST DEMOCRATIC KAMPUCHEA LUXEMBOURG REPUBLIC DEMOCRATIC PEOPLE'S MADAGASCAR UNION OF SOVIET SOCIALIST REPUBLIC OF KOREA MALAYSIA REPUBLICS DENMARK MALI UNITED ARAB EMIRATES DOMINICAN REPUBLIC MAURITIUS UNITED KINGDOM OF GREAT ECUADOR MEXICO BRITAIN AND NORTHERN EGYPT MONACO IRELAND EL SALVADOR MONGOLIA UNITED REPUBLIC OF ETHIOPIA MOROCCO CAMEROON FINLAND NETHERLANDS UNITED REPUBLIC OF FRANCE NEW ZEALAND TANZANIA GABON NICARAGUA UNITED STATES OF AMERICA GERMAN DEMOCRATIC REPUBLIC NIGER URUGUAY GERMANY, FEDERAL REPUBLIC OF NIGERIA VENEZUELA GHANA NORWAY VIET NAM GREECE PAKISTAN YUGOSLAVIA GUATEMALA PANAMA ZAIRE HAITI PARAGUAY ZAMBIA PERU The Agency's Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. -
Curbing Illicit Mercury and Gold Flows in West Africa: Options for a Regional Approach
Curbing Illicit Mercury and Gold Flows in West Africa: Options for a Regional Approach i INCLUSIVE AND SUSTAINABLE INDUSTRIAL DEVELOPMENT ii Curbing Illicit Mercury and Gold Flows in West Africa: Options for a Regional Approach iii November 2018 iv © UNIDO 2018. All rights reserved. This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as ‘developed’, ‘industrialized’ or ‘developing’ are intended for statistical convenience and do not necessarily express a judgement about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO. Unless otherwise men- tioned, all references to sums of money are given in United States dollars. References to ‘tons’ are to metric tons, unless otherwise stated. All photos © UNIDO unless otherwise stated. Cover photo by Sadibou Sylla Acknowledgements This report was authored by Marcena Hunter of the Global Initiative Against Transnational Organized Crime. The report is part of the United Nations Industrial Development Organization (UNIDO) project, funded by the Government of Switzerland, to assist the Economic Community of West African States (ECOWAS) in its early implementation of the Minamata Convention. More information about the Minamata Convention and UNIDO’s work can be found on UNIDO’s website <https://www.unido.org/mercury> or by emailing Gabriela Eigenmann at [email protected]. -
Transport of Dangerous Goods
ST/SG/AC.10/1/Rev.16 (Vol.I) Recommendations on the TRANSPORT OF DANGEROUS GOODS Model Regulations Volume I Sixteenth revised edition UNITED NATIONS New York and Geneva, 2009 NOTE The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. ST/SG/AC.10/1/Rev.16 (Vol.I) Copyright © United Nations, 2009 All rights reserved. No part of this publication may, for sales purposes, be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying or otherwise, without prior permission in writing from the United Nations. UNITED NATIONS Sales No. E.09.VIII.2 ISBN 978-92-1-139136-7 (complete set of two volumes) ISSN 1014-5753 Volumes I and II not to be sold separately FOREWORD The Recommendations on the Transport of Dangerous Goods are addressed to governments and to the international organizations concerned with safety in the transport of dangerous goods. The first version, prepared by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods, was published in 1956 (ST/ECA/43-E/CN.2/170). In response to developments in technology and the changing needs of users, they have been regularly amended and updated at succeeding sessions of the Committee of Experts pursuant to Resolution 645 G (XXIII) of 26 April 1957 of the Economic and Social Council and subsequent resolutions. -
S Ndlovu (PDF)
Extraction of Gold Then, Now and the Future Prof Sehliselo Ndlovu DST/NRF SARChI: Hydrometallurgy and Sustainable Development University of the Witwatersrand, Johannesburg Building a Robust Minerals Industry 3 – 4 July 2017, Cresta Lodge, Harare University of the Witwatersrand Johannesburg Founded Oct. 1896: School of Mines Approx. 37 000 Students 5 Faculties, 33 Schools, 3610 Courses >160 000 Degrees Conferred since 1922 55% Female Students 10 National Centres of Excellence Home to the Bidvest Football Club( Current PSL league Champions) Evolution in Gold Processing Past Technologies • Amalgamation • Panning Current Technologies • Cyanide leaching • Processing of Emerging and Future refractory ores Technologies • Bio-oxidation • Ionic liquids • Alternative leaching • Ultrasonic leaching reagents • Corn starch?? Past Technologies Used in Ancient Times History of gold extends back at least 6,000 years. Egypt and Mesopotamia around 4000 BC. Gravity Separation: Gold Panning Gold concentrated by washing lighter river sands with water Leaves dense gold particles Alternative- wash gold-bearing sand and gravel over a woollen fleece Traps heavier gold dust that would sink into the wool fibres. Advantages • Simplicity Disadvantages • Labour intensive Gravity Separation: Sluicing • Water is channelled to flow through a sluice-box. • Sluice-box is essentially a man-made channel with riffles (barriers) at the bottom. • Riffles create dead-zones in the water current which allows gold to drop out of suspension. Sluicing and panning results in the direct recovery of small gold nuggets and flakes. Gold Parting: Salt Cementation Process • Invented to remove Ag from Au-Ag mixtures around 6th century BC. Mix: argentiferous gold foil, common salt, brick dust or burnt clay and urine in a sealed container. -
Recovery of Gold and Iron from Cyanide Tailings with a Combined Direct Reduction Roasting and Leaching Process
metals Article Recovery of Gold and Iron from Cyanide Tailings with a Combined Direct Reduction Roasting and Leaching Process Pingfeng Fu 1,2,* ID , Zhenyu Li 1, Jie Feng 1 and Zhenzhong Bian 1 1 School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China; [email protected] (Z.L.); [email protected] (J.F.); [email protected] (Z.B.) 2 Key Laboratory of High-Efficient Mining and Safety of Metal Mines, Ministry of Education, Beijing 100083, China * Correspondence: [email protected]; Tel.: +86-10-6233-2902 Received: 25 June 2018; Accepted: 19 July 2018; Published: 21 July 2018 Abstract: Cyanide tailings are the hazardous waste discharged after gold cyanidation leaching. The recovery of gold and iron from cyanide tailings was investigated with a combined direct reduction roasting and leaching process. The effects of reduction temperature, coal dosage and CaO dosage on gold enrichment into Au-Fe alloy (FexAu1−x) were studied in direct reduction roasting. Gold containing iron powders, i.e., Au-Fe alloy, had the gold grade of 8.23 g/t with a recovery of 97.46%. After separating gold and iron in iron powders with sulfuric acid leaching, ferrous sulfate in the leachate was crystallized to prepare FeSO4·7H2O with a yield of 222.42% to cyanide tailings. Gold enriched in acid-leaching residue with gold grade of 216.58 g/t was extracted into pregnant solution. The total gold recovery of the whole process reached as high as 94.23%. The tailings generated in the magnetic separation of roasted products, with a yield of 51.33% to cyanide tailings, had no toxic cyanide any more. -
Chemical Name Federal P Code CAS Registry Number Acutely
Acutely / Extremely Hazardous Waste List Federal P CAS Registry Acutely / Extremely Chemical Name Code Number Hazardous 4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro- P059 76-44-8 Acutely Hazardous 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide P050 115-29-7 Acutely Hazardous Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- P197 17702-57-7 Acutely Hazardous 1-(o-Chlorophenyl)thiourea P026 5344-82-1 Acutely Hazardous 1-(o-Chlorophenyl)thiourea 5344-82-1 Extremely Hazardous 1,1,1-Trichloro-2, -bis(p-methoxyphenyl)ethane Extremely Hazardous 1,1a,2,2,3,3a,4,5,5,5a,5b,6-Dodecachlorooctahydro-1,3,4-metheno-1H-cyclobuta (cd) pentalene, Dechlorane Extremely Hazardous 1,1a,3,3a,4,5,5,5a,5b,6-Decachloro--octahydro-1,2,4-metheno-2H-cyclobuta (cd) pentalen-2- one, chlorecone Extremely Hazardous 1,1-Dimethylhydrazine 57-14-7 Extremely Hazardous 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4,4a,5,6,7,8,8a-octahydro-1,4-endo-endo-5,8- dimethanonaph-thalene Extremely Hazardous 1,2,3-Propanetriol, trinitrate P081 55-63-0 Acutely Hazardous 1,2,3-Propanetriol, trinitrate 55-63-0 Extremely Hazardous 1,2,4,5,6,7,8,8-Octachloro-4,7-methano-3a,4,7,7a-tetra- hydro- indane Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]- 51-43-4 Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, P042 51-43-4 Acutely Hazardous 1,2-Dibromo-3-chloropropane 96-12-8 Extremely Hazardous 1,2-Propylenimine P067 75-55-8 Acutely Hazardous 1,2-Propylenimine 75-55-8 Extremely Hazardous 1,3,4,5,6,7,8,8-Octachloro-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime 26419-73-8 Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime. -
Simulation Study of the Optimal Distribution of Cyanide in a Gold Leaching Circuit
Minerals Engineering 19 (2006) 1319–1327 This article is also available online at: www.elsevier.com/locate/mineng Simulation study of the optimal distribution of cyanide in a gold leaching circuit L.R.P. de Andrade Lima a,b,*, D. Hodouin a a Department of Mining, Metallurgical, and Materials Engineering, Laval University, Quebec City, Canada G1K 7P4 b Department of Materials Science and Technology, Federal University of Bahia, C.P. 6974, Salvador, BA 40810-971, Brazil Received 25 September 2005; accepted 1 December 2005 Available online 19 January 2006 Abstract The mineral industry has been using cyanidation to recover gold from ores for more than a century; however, a systematic study of the best reactant addition strategy in a cascade of agitated leaching tanks is not available in the open literature. A phenomenological math- ematical model of the gold cyanidation process, calibrated with a set of industrial data from an Australian plant, together with an eco- nomic performance index is used to analyze this problem. The simulated results show that the best compromise between the two antagonistic effects, cyanide consumption and gold recovery, which are both function of cyanide concentrations, leads to a reagent dis- tribution that depends on the leaching and cyanide consumption kinetics, pulp feed characteristics, and economic factors such as the gold market value. For the specific studied plant, in the operating range of low cyanide consumption and fast gold dissolution, all the cyanide must be added in the first tank; however, in the operating conditions of high cyanide consumption, cyanide has to be distributed in the first, second and third tanks. -
Tungsten and Gold Recovery from Alaskan Scheelite-Bearing Ores
¿I ri 9251 REPORT OF INVESTIGATIONS/1989 LIBRARY SPOKANE RESEARCH CENTER RECEIVED SEP5 1983 U.S. BUREAU OF MINES E 315 MONTGOMERY AVE SPOKANE, W A 99207 Tungsten and Gold Recovery From Alaskan Scheelite-Bearing Ores By J. N. Greaves, W. R. McDonald, and J. H. Maysilles M ission: As the Nation's principal conservation agency, the Department of the Interior has respon sibility for most of our nationally-owned public lands and natural and cultural resources. This includes fostering wise use of our land and water resources, protecting our fish and wildlife, pre serving the environmental and cultural values of our national parks and historical places, and pro viding for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to assure that their development is in the best interests of all our people. The Department also promotes the goals of the Take Pride in America campaign by encouraging stewardship and citizen responsibil- ityforthe public lands and promoting citizen par ticipation in their care. The Department also has a major responsibility for American Indian reser vation communities and for people who live in Island Territories under U.S. Administration. Report of Investigations 9251 Tungsten and Gold Recovery From Alaskan Scheelite-Bearing Ores By J. N. Greaves, W. R. McDonald, and J. H. Maysilles UNITED STATES DEPARTMENT OF THE INTERIOR Manuel Lujan, Jr., Secretary BUREAU OF MINES T S Ary, Director Library of Congress Cataloging in Publication Data: Greaves, J. N. Tungsten and gold recovery from Alaskan scheelite-bearing ores. (Report of investigations / United States Department of the Interior, Bureau of Mines; 9251) Bibliography: p. -
Toxicological Profile for Cyanide
CYANIDE 141 5. PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL 5.1 PRODUCTION The demand for hydrogen cyanide in the United States during 2000 was 1.615 billion pounds, up slightly from 1.605 billion pounds in 1999 (CMR 2001). Production of hydrogen cyanide in 2003 was 2.019 billion pounds in the United States (FAS 2005). The demand for hydrogen cyanide was projected to be 1.838 billion pounds in 2004 (CMR 2001; NYSDOH 2005). Major producers of hydrogen cyanide are Adisseo USA, Inc. (Institute, West Virginia); Cyanco Co. (Winnemucca, Nevada); Cytec Industries (Waggoman, Louisiana); Degussa Corp. (Theodora, Alabama); The Dow Chemical Company (Freeport, Texas); E.I. du Pont de Neumours and Company (Memphis, Tennessee; Beaumont, Texas); Innovene (Green Lake, Texas and Lima, Ohio); Invista, Inc. (Orange, Texas and Victoria, Texas); Rhom and Haas Texas Inc. (Deer Park, Texas); Solutia, Inc. (Alvin, Texas); Sterling Chemicals, Inc. (Texas City, Texas); and Syngenta Crop Protection (St. Garbiel, Louisiana) (SRI 2005). The combined annual production capacity of these plants is approximately 2.036 billion pounds (SRI 2005). As of February 2005, the following companies produced other cyanide compounds in the United States (SRI 2005): ammonium Crompton, Taft, Louisiana; and Mallinckrodt, Inc., St. Louis, Missouri thiocyanate: cyanogen: Matheson Gas Products, Inc., Gloucester, Massachusetts potassium cyanide: DuPont Chemical Company, Memphis, Tennessee; and The Dow Chemical Company, Nashua, New Hampshire potassium silver Engelhard Corporation, Union, New Jersey; and Metalor Technologies USA, North cyanide: Attleboro, Massachusetts Facilities in the United States producing sodium cyanide and their annual capacity (in millions of pounds) in 2005 include: Cyanco Co., Winnemucca, Nevada (86); and E.I. -
Myths and Realities in Artisanal Gold Mining Mercury Contamination
MYTHS AND REALITIES IN ARTISANAL GOLD MINING MERCURY CONTAMINATION by GUSTAVO ANGELOCI SANTOS A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE in THE FACULTY OF GRADUATE STUDIES (Mining Engineering) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) April 2013 © Gustavo Angeloci Santos 2013 ABSTRACT The world faces a major gold rush currently. Worldwide 15 million people work directly in artisanal gold mining in more than 55 countries. The usual method of extraction is amalgamation and cyanidation, or very commonly a combination of both. Significant amounts of contaminants are released to rivers and soil, generating environmental and health concerns. The majority of artisanal miners are involved in micro-mining, but it is believed that the majority of contamination comes from small to large artisanal operations. Larger operations involve less people, but process much more material, re- leasing much more contaminants as well. The present work explains how contamination is generated, through a com- prehensive analysis of the labor division in small-scale mining sites around the world, and also analyses aspects of different intervention approaches. Different approaches are taken by different groups working on the problem around the world. This work evaluates the most common kinds of interven- tion, with special attention to technical and legal aspects in trying to elimi- nate mercury use in gold extraction. The study is conducted by comparing different interventions strategies to evaluate the myths and realities from an engineering perspective. Special attention is paid to the evaluation of alterna- tives to amalgamation process for gold such as intensive cyanidation, borax direct smelting and chlorination. -
Mercury and Mercury Compounds
United States Office of Air Quality EPA-454/R-97-012 Environmental Protection Planning And Standards Agency Research Triangle Park, NC 27711 December 1997 AIR EPA LOCATING AND ESTIMATING AIR EMISSIONS FROM SOURCES OF MERCURY AND MERCURY COMPOUNDS L & E EPA-454/R-97-012 Locating And Estimating Air Emissions From Sources of Mercury and Mercury Compounds Office of Air Quality Planning and Standards Office of Air and Radiation U.S. Environmental Protection Agency Research Triangle Park, NC 27711 December 1997 This report has been reviewed by the Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, and has been approved for publication. Mention of trade names and commercial products does not constitute endorsement or recommendation for use. EPA-454/R-97-012 TABLE OF CONTENTS Section Page EXECUTIVE SUMMARY ................................................ xi 1.0 PURPOSE OF DOCUMENT .............................................. 1-1 2.0 OVERVIEW OF DOCUMENT CONTENTS ................................. 2-1 3.0 BACKGROUND ........................................................ 3-1 3.1 NATURE OF THE POLLUTANT ..................................... 3-1 3.2 OVERVIEW OF PRODUCTION, USE, AND EMISSIONS ................. 3-1 3.2.1 Production .................................................. 3-1 3.2.2 End-Use .................................................... 3-3 3.2.3 Emissions ................................................... 3-6 4.0 EMISSIONS FROM MERCURY PRODUCTION ............................. 4-1 4.1 PRIMARY MERCURY -
Acutely / Extremely Hazardous Waste List
Acutely / Extremely Hazardous Waste List Federal P CAS Registry Acutely / Extremely Chemical Name Code Number Hazardous 4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro- P059 76-44-8 Acutely Hazardous 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide P050 115-29-7 Acutely Hazardous Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- P197 17702-57-7 Acutely Hazardous 1-(o-Chlorophenyl)thiourea P026 5344-82-1 Acutely Hazardous 1-(o-Chlorophenyl)thiourea 5344-82-1 Extemely Hazardous 1,1,1-Trichloro-2, -bis(p-methoxyphenyl)ethane Extemely Hazardous 1,1a,2,2,3,3a,4,5,5,5a,5b,6-Dodecachlorooctahydro-1,3,4-metheno-1H-cyclobuta (cd) pentalene, Dechlorane Extemely Hazardous 1,1a,3,3a,4,5,5,5a,5b,6-Decachloro--octahydro-1,2,4-metheno-2H-cyclobuta (cd) pentalen-2- one, chlorecone Extemely Hazardous 1,1-Dimethylhydrazine 57-14-7 Extemely Hazardous 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4,4a,5,6,7,8,8a-octahydro-1,4-endo-endo-5,8- dimethanonaph-thalene Extemely Hazardous 1,2,3-Propanetriol, trinitrate P081 55-63-0 Acutely Hazardous 1,2,3-Propanetriol, trinitrate 55-63-0 Extemely Hazardous 1,2,4,5,6,7,8,8-Octachloro-4,7-methano-3a,4,7,7a-tetra- hydro- indane Extemely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]- 51-43-4 Extemely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, P042 51-43-4 Acutely Hazardous 1,2-Dibromo-3-chloropropane 96-12-8 Extemely Hazardous 1,2-Propylenimine P067 75-55-8 Acutely Hazardous 1,2-Propylenimine 75-55-8 Extemely Hazardous 1,3,4,5,6,7,8,8-Octachloro-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran Extemely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime 26419-73-8 Extemely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime.