Goldenrod Stem Galler Preference and Performance: Effects of Multiple Herbivores and Plant Genotypes

Total Page:16

File Type:pdf, Size:1020Kb

Goldenrod Stem Galler Preference and Performance: Effects of Multiple Herbivores and Plant Genotypes Oecologia (2001) 127:87–96 DOI 10.1007/s004420000561 James T. Cronin · Warren G. Abrahamson Goldenrod stem galler preference and performance: effects of multiple herbivores and plant genotypes Received: 28 December 1999 / Accepted: 18 August 2000 / Published online: 24 November 2000 © Springer-Verlag 2000 Abstract Few studies have examined how the prefer- constraint on the discriminatory ability of female stem ence-performance relationship of an herbivore for differ- gallers preventing them from selecting the best hosts ent genotypes of its host plant is affected by the presence among plants that differ in genotype and level of envi- and/or feeding activity of other members of the herbi- ronmental stress (e.g., presence of interspecific herbi- vore assemblage. In an outdoor garden, we manipulated vores). the abundance of three common herbivores, the meadow spittlebug, a leaf beetle, and an aphid, on replicate 1-m2 Keywords Eurosta solidaginis · Gall insect · plots of 16 different genotypes of tall goldenrod, Solida- Herbivore assemblage · Host choice · go altissima. Adults of the goldenrod stem galler, Eur- Preference-performance relationship osta solidaginis, were subsequently released into the gar- den to oviposit among the host plants. Oviposition pref- erence was strongly influenced by plant genotype and Introduction the presence of two of the herbivores, spittlebugs and leaf beetles. The effects of the herbivores were additive: A simple expectation from evolutionary theory is that the presence of leaf beetles reduced preference by 6%, natural selection should favor an herbivore that preferen- spittlebugs by 18%, and both herbivores combined by tially oviposits on plant genotypes that yield high perfor- 25%. Plant genotype-herbivore species interaction ef- mance for their offspring (Thompson 1988). Positive fects on stem-galler preference, which would indicate the preference-performance correlations have been found in a presence of genetic variation among goldenrod geno- number of herbivorous insects (e.g., Craig et al. 1989; types in their norms of reaction for their acceptability as Price et al. 1990; Rossi and Strong 1991), but exceptions a host to the stem galler, were absent in this study. The are common (e.g., Karban and Courtney 1987; Courtney performance of the stem galler was also significantly af- and Kibota 1990; Fox 1993; Larsson et al. 1995). Factors fected by goldenrod genotype, but in general was not af- promulgated to explain these inconsistent results have run fected by the presence of herbivores early in the season the gamut from differences in plant apparency (Feeny (the exception was a positive correlation between the 1976; Chew and Courtney 1991), novel associations be- proportion of ramets infested by all herbivores and gall tween host plant and herbivore (Thompson 1988, 1996; size). Overall, we could find no correlation between Joshi and Thompson 1995), phenological differences in preference and performance. This is in accord with re- herbivore oviposition (Straw 1989; Briese 1996), varia- sults from previous studies on this system that were per- tions in herbivore abundance (Wiklund 1982), environ- formed in the absence of herbivores, suggesting that the mental predictability (Futuyma 1976; Cates 1981; Chew presence of herbivores in this study did not qualitatively and Courtney 1991; Lalonde and Roitberg 1992), and alter the preference-performance relationship. We sug- limited discriminatory ability of herbivores (host confu- gest that the lack of a positive correlation between host- sion hypothesis of Fox and Lalonde 1993; Larsson and plant preference and larval performance may reflect a Ekbom 1995). Regardless of the form, the preference- performance relationship can greatly influence the distri- J.T. Cronin (✉) bution and abundance of herbivore populations (e.g., Department of Biology, P.O. Box 9019, University of North Dakota, Grand Forks, ND 58202-9019, USA Price 1991, 1994; Ohgushi 1995; Bigger and Fox 1997), e-mail: [email protected] as well as the evolution of host-plant specificity, diet W.G. Abrahamson breadth, host-race formation, and sympatric speciation Department of Biology, Bucknell University, Lewisburg, (e.g., Bush 1975; Futuyma and Meyer 1980; Mitter et al. PA 17837, USA 1991; Joshi and Thompson 1995; Thompson 1996). 88 The presence of extrinsic factors that affect host-plant among early-season herbivore species. The effect of the preference and performance differentially may also alter herbivore assemblage on the preference-performance re- the preference-performance relationship. Water or nutri- lationship was also examined. Finally, we discuss how ents (Maddox and Cappuccino 1986; Horner and these herbivores may affect the distribution of, and what Abrahamson 1992, 1999; Preszler and Price 1995; role they may have played in the evolution of host-plant Ruohomaki et al. 1996), wind exposure (Cipollini 1997), choice by, the stem galler. amount of shade (Ruohomaki et al. 1996; Horner and Abrahamson 1992), presence of parasites and predators (Lawton and McNeill 1979; Strong and Larsson 1994; Materials and methods Stiling and Rossi 1996), or the presence of other herbi- vores (Lewis 1984; Faeth 1986; McMillin and Wagner Natural history of herbivores 1997; Cronin and Abrahamson 1999) may change through time or affect preference and performance in The life history, ecology and evolution of the goldenrod stem gall- er are detailed in Uhler (1951) and Abrahamson and Weis (1997); qualitatively different ways. One common situation only a brief description is provided here. In Pennsylvania, adult might involve the presence of an herbivore assemblage stem gallers oviposit into the terminal buds of the goldenrod, S. al- that feeds on the plant prior to the occurrence of the tar- tissima, around mid- to late May. Stem tissue shows signs of get herbivore. This assemblage might induce chemical swelling within 3 weeks and by mid-July the gall, harboring a sin- gle larva, reaches full size and is spheroid in shape. Larvae over- changes in the plant (e.g., Faeth 1986; Harrison and winter within the galls of senescent goldenrod ramets, then pupate Karban 1986; Karban and Adler 1996), alter plant ap- and eclose the following spring. In the absence of any other herbi- parency (e.g., by stunting growth), or directly deter the vores, stem gallers show strong differences in preference and per- colonization of the plant by the target herbivore, and so formance among goldenrod genotypes, but no positive correlation alter host-plant preference. Unless offspring performance between the two traits has been found (Anderson et al. 1989; Horner and Abrahamson 1992, 1999; Craig et al. 1999). is similarly affected, the preference-performance rela- The suite of herbivores that feed on goldenrod is extremely di- tionship may be fundamentally altered. For example, in a verse. According to Root and Cappuccino (1992), 138 species of greenhouse study (Cronin and Abrahamson 1999), we insects are capable of completing their development on S. altiss- found that meadow spittlebugs (Philaenus spumarius L.; ima. In addition to E. solidaginis, two species of leaf beetle (T. virgata and T. borealis), two aphids (U. nigrotuberculatum and Homoptera: Cercopidae), which feed on goldenrods ear- U. caligatum), and the meadow spittlebug (P. spumarius) com- ly in the season, drastically reduced host-plant prefer- prise the vast majority of the total herbivore biomass (Cappuccino ence by the goldenrod stem galler (Eurosta solidaginis 1987; Root and Cappuccino 1992; Meyer 1993). The spittlebug Fitch; Diptera: Tephritidae). In contrast, stem-galler sur- tends to be the first herbivore to begin feeding on goldenrods in the spring and all of these herbivores are present on goldenrods vivorship (a measure of performance) tended to increase before stem-galler adults begin to emerge (J.T. Cronin personal on spittlebug-infested plants. As a consequence of these observation). opposing trends, the relationship between preference and Several studies suggest that these herbivores can significantly performance went from no, to a slightly negative, corre- affect the quality and fitness of goldenrods, and consequently lation in the absence and presence of spittlebugs, respec- stem-galler preference and performance. Goldenrods that were ex- posed to feeding by either spittlebugs, leaf beetles or aphids for a tively. We are aware of no other studies that have ad- 3-week period had biomasses, specific leaf areas, growth rates, dressed this issue, particularly with regard to assemblag- photosynthetic rates, and seed production that were lower than es of herbivores that may act in concert to affect the plants that were free of herbivores (Meyer and Whitlow 1992; preference-performance relationship of another member Meyer 1993; Meyer and Root 1993). However, the effects of each herbivore on goldenrod ramets were not the same. For example, of that assemblage. spittlebugs, but not the other two herbivores, reduced the produc- In this study, we examined whether the assemblage of tion of lateral stems; and spittlebugs and leaf beetles, but not herbivores that feed on tall goldenrod (Solidago altiss- aphids, delayed flowering. In general, the magnitude of effects on ima) early in the season has an effect on the preference- the host plant were greatest for the spittlebugs, followed by leaf beetles; and to a much lesser extent, aphids. It remains untested performance relationship of the stem galler (E. solid- how each of these main herbivores of goldenrod
Recommended publications
  • Proceedings of the United States National Museum
    : BEETLE LARVAE OF THE SUBFAMILY GALERUCINAE B}^ Adam G. Boving Senior Entoniolotjist, Bureau of Etitomology, United States Department of Agricvltwe INTRODUCTION The present pajxn- is the result of a continued investigation of the Chrysomelid hirvae in the United States National Museum, Wash- ington, D. C. Of the subfamily Galerucinae ^ belonging to this family the larvae are preserved in the Museum of the following species Monocesta coryli Say. Trirhabda canadensis Kirby. TrU'habda hrevicollis LeConte. Trirhabda nitidicollis LeConte. Trirhabda tomentosa Linnaeus. Trirhabda attenuata Say. Oalerucella nymphaeae Liiniaeus. Oalerucella lineola Fabrleius (from Euroiie). Galerucclla sagittarUu' Gylleuhal. Oalerucella luteola Miiller. Galerucclla sp. (from Nanking, China). Galcrucella vibvrni Paykull (from Europe). Oalerucella decora Say. Oalerucella notata Fabricius. Oalerucella cribrata LeConte. Monoxia puncticolUs Say. Monoxia consputa LeConte. Lochmaca capreae Linnaeus (from Europe). Qaleruca tanacett Linnaeus (from Europe). Oaleruca laticollis Sahlberg (from Europe). Oalcruca, pomonae Scopoli. Sermylassa halensls Linnaeus. Agelastica alnl Linnaeus.^ 1 The generic and specific names of tlie North American larvae are as listed in C W. Leng's " Catalogue of Coleoptera of America north of Mexico, 1920," with corrections and additions as given in the "supplement" to the catalogue published by C. W. Leng and A. J. Mutchler, 1927. The European species, not introduced into North America, are named according to the " Catalogus Coleopterorum Europae, second edition, 1906," by L. V. Heyden, E. Rcitter, and .7. Weise. 2 It will be noticed that in the enumeration above no species of Dinhrlica and Pliyllo- brotica are mentioned. The larvae of those genera were considered by tlie present author as Halticinae larvae [Boving, Adam G.
    [Show full text]
  • Host-Plant Genotype and Other Herbivores Influence Goldenrod Stem Galler Preference and Performance
    Oecologia (1999) 121:392–404 © Springer-Verlag 1999 James T. Cronin · Warren G. Abrahamson Host-plant genotype and other herbivores influence goldenrod stem galler preference and performance Received: 26 January 1999 / Accepted: 2 June 1999 Abstract Ecologists have labored to find an explanation suitability as a host to the stem gallers. One possible ex- for the lack of a positive correlation between host prefer- planation for why spittlebugs caused a significant reduc- ence and offspring performance in herbivorous insects. tion in preference, but not in performance, was that spit- This study focuses on how one herbivore species can in- tlebugs had very few long-term effects on the host plant. fluence another herbivore species’ ability to accurately Flower number, flowering phenology, and the allocation assess the suitability of different host-plant genotypes for of the ramet’s biomass to different structures (below- larval development. In particular, we examined the role ground organs, stems, leaves, and flowers) were un- that an early season xylem-feeding homopteran (meadow changed with respect to spittlebug density. The only ef- spittlebug, Philaenus spumarius) has on the preference- fect of spittlebugs was a 3–4% decrease in ramet height performance correlation of a late-season dipteran stem at the end of the growing season. We argue that the lack galler (Eurosta solidaginis) among different goldenrod of a positive correlation between host-plant preference genotypes. In a greenhouse, we released adult stem gall- and larval performance may reflect a constraint on the ers into replicate cages that contained ramets from four discriminatory ability of female stem gallers.
    [Show full text]
  • Pathways Analysis of Invasive Plants and Insects in the Northwest Territories
    PATHWAYS ANALYSIS OF INVASIVE PLANTS AND INSECTS IN THE NORTHWEST TERRITORIES Project PM 005529 NatureServe Canada K.W. Neatby Bldg 906 Carling Ave., Ottawa, ON, K1A 0C6 Prepared by Eric Snyder and Marilyn Anions NatureServe Canada for The Department of Environment and Natural Resources. Wildlife Division, Government of the Northwest Territories March 31, 2008 Citation: Snyder, E. and Anions, M. 2008. Pathways Analysis of Invasive Plants and Insects in the Northwest Territories. Report for the Department of Environment and Natural Resources, Wildlife Division, Government of the Northwest Territories. Project No: PM 005529 28 pages, 5 Appendices. Pathways Analysis of Invasive Plants and Insects in the Northwest Territories i NatureServe Canada Acknowledgements NatureServe Canada and the Government of the Northwest Territories, Department of Environment and Natural Resources, would like to acknowledge the contributions of all those who supplied information during the production of this document. Canada : Eric Allen (Canadian Forest Service), Lorna Allen (Alberta Natural Heritage Information Centre, Alberta Community Development, Parks & Protected Areas Division), Bruce Bennett (Yukon Department of Environment), Rhonda Batchelor (Northwest Territories, Transportation), Cristine Bayly (Ecology North listserve), Terri-Ann Bugg (Northwest Territories, Transportation), Doug Campbell (Saskatchewan Conservation Data Centre), Suzanne Carrière (Northwest Territories, Environment & Natural Resources), Bill Carpenter (Moraine Point Lodge, Northwest
    [Show full text]
  • Exposure of Solidago Altissima Plants to Volatile Emissions of an Insect Antagonist (Eurosta Solidaginis) Deters Subsequent Herbivory
    Exposure of Solidago altissima plants to volatile emissions of an insect antagonist (Eurosta solidaginis) deters subsequent herbivory Anjel M. Helms, Consuelo M. De Moraes, John F. Tooker, and Mark C. Mescher1 Center for Chemical Ecology, Department of Entomology, The Pennsylvania State University, University Park, PA 16802 Edited by James H. Tumlinson, The Pennsylvania State University, University Park, PA, and approved November 19, 2012 (received for review October 25, 2012) Recent work indicates that plants respond to environmental odors. olfactory cues has been documented after exposure to herbivore- For example, some parasitic plants grow toward volatile cues from induced volatiles emitted either by neighboring plants (9, 10) or by their host plants, and other plants have been shown to exhibit other parts of the same plant (11, 14). The latter finding has given enhanced defense capability after exposure to volatile emissions rise to speculation that such mechanisms might have initially from herbivore-damaged neighbors. Despite such intriguing dis- evolved to overcome constraints on the within-plant transmission coveries, we currently know relatively little about the occurrence of wound signals imposed by the discontinuous architecture of and significance of plant responses to olfactory cues in natural plant vascular systems, with eavesdropping by neighboring plants systems. Here we explore the possibility that some plants may arising secondarily (11). respond to the odors of insect antagonists. We report that tall Defense priming also has been reported in response to (non- goldenrod (Solidago altissima) plants exposed to the putative sex olfactory) cues directly associated with the presence of herbivores, attractant of a closely associated herbivore, the gall-inducing fly including insect footsteps on leaves and broken trichomes (15, 16).
    [Show full text]
  • Evidence for Plant-Mediated Competition Between Defoliating and Gall-Forming Specialists Attacking Solidago Altissima Author(S): Ellery T
    Evidence For Plant-mediated Competition Between Defoliating and Gall-forming Specialists Attacking Solidago altissima Author(s): Ellery T. CunanThomas H. Q. PowellArthur E. Weis Source: The American Midland Naturalist, 173(2):208-217. Published By: University of Notre Dame DOI: http://dx.doi.org/10.1674/amid-173-02-208-217.1 URL: http://www.bioone.org/doi/full/10.1674/ amid-173-02-208-217.1 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Am. Midl. Nat. (2015) 173:208–217 Evidence For Plant-mediated Competition Between Defoliating and Gall-forming Specialists Attacking Solidago altissima ELLERY T. CUNAN Koffler Scientific Reserve at Joker’s Hill, Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario Department of Biology, McMaster University, Hamilton, Ontario THOMAS H. Q. POWELL1 Department of Entomology and Nematology, University of Florida, Gainesville AND ARTHUR E.
    [Show full text]
  • Additions to the Czech List of Euura Newman, 1837 (Hymenoptera, Tenthredinidae)
    ISSN 1211-8788 Acta Musei Moraviae, Scientiae biologicae (Brno) 99(1): 69–75, 2014 Additions to the Czech list of Euura Newman, 1837 (Hymenoptera, Tenthredinidae) KAREL BENEŠ Kreuzmannova 14, CZ-318 00 Plzeò, Czech Republic; e-mail: [email protected] BENEŠ K. 2014: Additions to the Czech list of Euura Newman, 1837 (Hymenoptera, Tenthredinidae). Acta Musei Moraviae, Scientiae biologicae (Brno) 99(1): 69–75. – Based on gall records, eight species of gall- making sawflies of the genus Euura Newman, 1837, are listed from the Czech Republic for the first time: E. angusta (Hartig, 1837), E. auritae Kopelke, 2000, E. cinereae Kopelke, 1996, E. daphnoidica Kopelke, 2001, E. gemmacinereae Kopelke, 2001, E. hastatae Malaise, 1921, E. nigritarsis Cameron, 1885, and E. weiffenbachii Ermolenko, 1988. A list of seventeen species known from the Czech Republic is also included. Keywords. Euura, new records, host plants, galls, distribution Introduction Czech species of the genus Euura Newman, 1837 are listed and eight species new for the country are recorded, based largely on investigation of the herbarium kept by the late Prof. Ing. Dr. Eduard Baudyš, now deposited in the Botanical Department of the Moravian Museum based at Budišov Castle at Tøebíè. The cecidological material had previously been collected, identified and much of it published (BAUDYŠ 1915, 1916, 1926, 1939, 1953, 1954, 1961), but recently published taxonomic revisions of the genus by KOPELKE (1996, 1999, 2000, 2001, 2002, 2006) and LISTON et al. (2006) have rendered a new evaluation of these records necessary. In these papers the host plants of individual species are discussed, while more detailed distribution data may be found in TAEGER & BLANK (2011).
    [Show full text]
  • Chrysomela 36
    CHRYSOMELA newsletter Dedicated to information about the Chrysomelidae Report No. 36 October 1998 Hanoi, VIETNAM: INSIDE THIS ISSUE 2-In Memoriam Institute of Ecology 2-Notes Up Front 3-Again, Bruchid Classification 4-Proposed Upper Classification Course 4-Green Algae & Chrysomelid Evolu- tion 5-Colombia Field Trip & Museum Tours 6-Fifth International Symposium on the Chrysomelids 6-ICE XXI Updates 7-The 1998 Mid-Atlantic States Field Trip 8-Far Eastern Entomology 10-The ICIPE WWW site 11-Literature on the Chrysomelidae 13-Book Notices 14-Literature (Available or Needed) Pierre and Siraj are hosted by our Vietnam collegues in Hanoi on his November ‘97 trip 14-Specimens(Available or Needed) to the Far East. from left: Siraj HASSAN (Phytopathologist), VU Quang Con (Director, 15-Member Directory, October ‘98 Inst. of Ecology), PHAM Van Lam (Entomologist), DANG Thi Dap (Deputy Director, Inst. of Ecology, Entomologist), and Pierre JOLIVET. (story, page 8) Research Activities and Interests Laurnet Amsellem (Bangkok, Pleurosticha; planning to revise subgen- outbreak of western corn rootworm, and Thailand) PhD student working in era Arctolina (Siberian and Arctic is interested in trying to develop an Thailand on the interactions between species), Ovosoma, Lithopteroides and identification guide or “key” that Rubus alceifolius and its associated Taeniosticha. Also finishing doctoral incorporates new world Diabrotica with pathogens: a rust and a chrysomelid... thesis, Biology of Palaearctic Donacii- the old world fauna. Anyone interested, The plant is actually a real weed in La nae (Chrysomelidae). please contact him (send an email note). Reunion Island, and in order to do Lech Borowiec (Wroclaw, Poland) Shawn M.
    [Show full text]
  • Morfologia Comparada Da Genitália Masculina De Galerucini (Coleoptera, Chrysomelidae, Galerucinae)
    Morfologia comparadaMorfologia da genitália comparada masculina de Galerucini da genitália masculina de Galerucini 15 (Coleoptera, Chrysomelidae, Galerucinae) Luciano de A. Moura1,2 1Programa de Pós-Graduação em Biologia Animal, Departamento de Zoologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre-RS, Brasil. Bolsista do CNPq. 2Seção de Zoologia de Invertebrados, Museu de Ciências Naturais, Fundação Zoobotânica do Rio Grande do Sul. Rua Dr. Salvador França, 1427, 90690-000 Porto Alegre-RS, Brasil. ABSTRACT. Comparative morphology of male genitalia of Galerucini (Coleoptera, Chrysomelidae, Galerucinae). The morphology of the genitalia, especially of the male, has been used to elucidate taxonomical and evolutive questions in chrysomelids, particularly Galerucini. In this contribution, we selected genera representing the Nearctic and Neotropical subtribes of Galerucini. We provide comparative descriptions and illustrations of male genitalia of six species: Coelomera lanio (Dalman, 1823) and Dircema nigripenne (Fabricius, 1792) (Subtribe Galerucina); Exora encaustica (Germar, 1824) and Uaupesia amazona (Weise, 1921) (Subtribe Metacyclina); Paranapiacaba teinturieri (Allard, 1894) and Isotes eruptiva (Bechyné, 1955) (Subtribe Luperina). The spiculum gastrale is present in the studied species of Metacyclina and Luperina. In the median lobe, basal spurs directed ventrad do not occur only in P. teinturieri and I. eruptiva; these species present a hood-like process protecting the basal orifice. The subbasal fenestra is observed in C. lanio and U. amazona; the flagellum, an internal sac sclerite, occurs only in U. amazona. The morphology of Galerucini male genitalia is still poorly known and further studies including other genera are needed. KEYWORDS. Aedeagus; spiculum gastrale; internal sac. RESUMO. Morfologia comparada da genitália masculina de Galerucini (Coleoptera, Chrysomelidae, Galerucinae).
    [Show full text]
  • Trirhabda Lewisii) Feeding on Chrysothamnus Nauseosus Regrowth After Fire
    Western North American Naturalist Volume 64 Number 2 Article 11 4-30-2004 Feeding behavior and performance of a rabbitbrush leaf-beetle (Trirhabda lewisii) feeding on Chrysothamnus nauseosus regrowth after fire Ann L. Herzig Bryn Mawr College, Bryn Mawr, Pennsylvania Cynthia Skema Bryn Mawr College, Bryn Mawr, Pennsylvania Follow this and additional works at: https://scholarsarchive.byu.edu/wnan Recommended Citation Herzig, Ann L. and Skema, Cynthia (2004) "Feeding behavior and performance of a rabbitbrush leaf-beetle (Trirhabda lewisii) feeding on Chrysothamnus nauseosus regrowth after fire," Western North American Naturalist: Vol. 64 : No. 2 , Article 11. Available at: https://scholarsarchive.byu.edu/wnan/vol64/iss2/11 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Western North American Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Western North American Naturalist 64(2), ©2004, pp. 249–256 FEEDING BEHAVIOR AND PERFORMANCE OF A RABBITBRUSH LEAF-BEETLE (TRIRHABDA LEWISII) FEEDING ON CHRYSOTHAMNUS NAUSEOSUS REGROWTH AFTER FIRE Ann L. Herzig1,2 and Cynthia Skema1 ABSTRACT.—Fire often positively affects the growth and nutrient content of plants regrowing after a burn. These changes have been associated with preferential feeding by herbivores in burned areas. In this study in southeastern Wyoming, Chrysothamnus nauseosus Pursh (rubber rabbitbrush) regrowing after a fire produced new shoots with a dis- tinct growth form. Shoots were longer than those on unburned control sites and had longer leaves with longer inter- nodes between leaves.
    [Show full text]
  • Molecular Phylogeny of the Sawfly Subfamily Nematinae (Hymenoptera: Tenthredinidae)
    Systematic Entomology (2006),31, 569–583 DOI: 10.1111/j.1365-3113.2006.00336.x Molecular phylogeny of the sawfly subfamily Nematinae (Hymenoptera: Tenthredinidae) TOMMI NYMAN1 , ALEXEY G. ZINOVJEV2 , VELI VIKBERG3 and BRIAN D. FARRELL4 1Department of Biology, University of Oulu, Oulu, Finland, 2Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia, 3Liinalammintie 11 as. 6, Turenki, Finland, 4Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, U.S.A. Abstract. Nematinae is one of the largest subfamilies in the sawfly family Tenthredinidae, but internal relationships are unknown in the absence of any formal phylogenetic analysis. To understand the internal phylogeny of Nematinae, we sequenced a portion of the mitochondrial cytochrome oxidase I gene and the nuclear elongation factor-1a gene from thirteen outgroup taxa and sixty-eight nematine species, the ingroup taxa of which represent all major genera and subgenera within the subfamily. Maximum parsimony and Bayesian phyloge- netic analyses of the DNA sequence data show that: (1) Nematinae are monophy- letic in a broad sense which includes Hoplocampa, Susana and the tribe Cladiini, which have been classified often into separate subfamilies; together with Craterocercus, these taxa form a paraphyletic basal grade with respect to the remaining Nematinae, but among-group relationships within the grade remain weakly resolved; (2) the remainder of the ingroup, Nematinae s. str, is monophy- letic in all combined-data analyses; (3) within Nematinae s. str, the ‘Higher’ Nematinae is divided into three groups, Mesoneura and the large tribes Nematini and Pristiphorini; (4) although the traditional classifications at the tribal level are largely upheld, some of the largest tribes and genera are obviously para- or polyphyletic; (5) according to rate-smoothed phylogenies dated with two fossil calibration points, Nematinae originated 50–120 million years ago.
    [Show full text]
  • Anti-Predator Defence Drives Parallel Morphological Evolution in Flea
    Proc. R. Soc. B (2011) 278, 2133–2141 doi:10.1098/rspb.2010.1500 Published online 15 December 2010 Anti-predator defence drives parallel morphological evolution in flea beetles Deyan Ge1,2,3, Douglas Chesters2,4, Jesu´ sGo´mez-Zurita5, Lijie Zhang1, Xingke Yang1,* and Alfried P. Vogler2,4,* 1Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road, Chaoyang, Beijing 100101, China 2Department of Entomology, Natural History Museum, Cromwell Road, London, UK 3Graduate School of Chinese Academy of Sciences, Beijing 100039, China 4Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, UK 5Institut de Biologia Evolutiva (CSIC-UPF), 08003 Barcelona, Spain Complex morphological or functional traits are frequently considered evolutionarily unique and hence useful for taxonomic classification. Flea beetles (Alticinae) are characterized by an extraordinary jumping apparatus in the usually greatly expanded femur of their hind legs that separates them from the related Galerucinae. Here, we examine the evolution of this trait using phylogenetic analysis and a time-calibrated tree from mitochondrial (rrnL and cox1) and nuclear (small subunits and large subunits) genes, as well as morphometrics of femora using elliptic Fourier analysis. The phylogeny strongly supports multiple independent origins of the metafemoral spring and therefore rejects the monophyly of Alticinae, as defined by this trait. Geometric outline analysis of femora shows the great plasticity of this structure and its correlation with the type and diversity of the metafemoral springs. The recognition of convergence in jumping apparatus now resolves the long-standing difficulties of Galerucinae–Alticinae classification, and cautions against the value of trait complexity as a measure of taxonomic significance.
    [Show full text]
  • The Host Plants of Euura Cinereae Kopelke, 1996 and E. Auritae Kopelke, 2000 (Hymenoptera: Tenthredinidae)
    134© Entomologica Fennica. 30 October 2002 Kopelke • ENTOMOL. FENNICA Vol. 13 The host plants of Euura cinereae Kopelke, 1996 and E. auritae Kopelke, 2000 (Hymenoptera: Tenthredinidae) Jens-Peter Kopelke Kopelke, J.-P. 2002: The host plants of Euura cinereae Kopelke, 1996 and E. auritae Kopelke, 2000 (Hymenoptera: Tenthredinidae). — Entomol. Fennica 13: 134–138. Euura auritae and Euura cinereae are distinct species making spindle-shaped stem galls on Salix aurita and on Salix cinerea, respectively. Different mor- phological criteria and no-choice as well as multiple choice oviposition experiments have proved E. auritae and E. cinereae to be distinct species. Euura cinereae on S. cinerea is distributed at least over Southern Norway, Germany and Austria, but within its distribution area it may occur patchily. A recent paper doubted that the type specimens of E. cinereae had been reared from S. cinerea, but rather that they had been reared from S. aurita. However, as discussed in the present paper, they give no convincing evidence that E. cinereae occurs on S. aurita rather than on S. cinerea in Finland. Jens-Peter Kopelke, Forschungsinstitut Senckenberg, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany; E-mail: [email protected] Received 8 February 2002, accepted 2 August 2002 1. Introduction Norway, and in Schleswig-Holstein, Germany (Kopelke 1999). In addition, stem galls of Euura Euura cinereae Kopelke, 1996 and E. auritae from S. cinerea have been reared by Ewald Kopelke, 2000 are monophagous, univoltine Altenhofer in Lower Austria. These willow speci- sawflies, inducing spindle-shaped stem galls on mens were checked by the author during a field their host plants Salix cinerea and S.
    [Show full text]