California State University, Northridge Host-Specificity and Its Effect On

Total Page:16

File Type:pdf, Size:1020Kb

California State University, Northridge Host-Specificity and Its Effect On California State University, Northridge Host-Specificity and its Effect on Mate Choice in a Plant-Eating Beetle A thesis submitted in partial fulfillment of the requirements For the degree of Master of Science in Biology By Katherine Gould May 2014 Copyright by Katherine Gould 2014 ii The thesis of Katherine Gould is approved: _________________________________________ ___________________ Dr. David Gray Date _________________________________________ ___________________ Dr. James Hogue Date _________________________________________ ___________________ Dr. Paul Wilson, Committee Chair Date California State University, Northridge iii Dedication For Samantha and Jocelyn iv Acknowledgements First and most importantly, I would like to thank my advisor, Dr. Paul Wilson, for his advice, answers, encouragement, and occasional well-aimed prodding. Also instrumental in helping me through this process were my committee members, Dr. Dave Gray and Dr. Jim Hogue, who were always available to answer questions and assist in whatever way I needed. Thank you to Cindy Hitchcock, whose wonderful drawings of beetle mating illustrate this work, and whose beautiful watercolor of a mating pair of beetles concludes this work. I could not have completed all the lab work necessary without the loyal and consistent help of my lab assistants. My "Minions" fed, watered, counted, and observed thousands of beetles over the summer of 2013. Thank you, thank you, thank you to Victoria Amran, Elias Atri, Jamie Carrafa, Dona Cherian, Amanda Fitzpatrick, Liz Hamel, Amaya Mendez-Molina, Alexus Merino, Joshua Muñoz, Lara Parsekhian, Lela Remington, Joyce Theilig, and Dominique Zatarain. Thanks also to my lab mates, Nickte Mendez, Lena Coleman-Ayala, and Dani Amorosa, who were an invaluable resource and sounding board. To my parents, Phil and Mary Ann Andrews, and my brother, Scott Andrews, who supported my decision to go back to school at age 38, thank you, thank you, thank you. And to my wonderful daughters, Samantha and Jocelyn Gould, thank you for not freaking out too much about beetles in the refrigerator, a car filled with the smell of Eriodictyon, and a mom who talks way too much about insects. v vi Table of Contents Signature Page ................................................................................................................... iii Dedication .......................................................................................................................... iv Acknowledgements ..............................................................................................................v List of Tables and Figures................................................................................................. vii Abstract ............................................................................................................................ viii Introduction ..........................................................................................................................1 Materials and Methods .........................................................................................................8 Study Organisms ......................................................................................................8 Experiments ...........................................................................................................14 Statistics .................................................................................................................19 Results ................................................................................................................................25 Discussion ..........................................................................................................................43 References ..........................................................................................................................53 vii List of Tables and Figures Figure 1: Trirhabda eriodictyonis ........................................................................................8 Figure 2: Distinguishing the sexes .....................................................................................10 Figure 3: Trirhabda eriodictyonis mating..........................................................................11 Figure 4: Leaves of Trirhabda eriodictyonis’ host plants .................................................12 Figure 5: Study site ............................................................................................................14 Figure 6: Choice feeding trials, larvae ...............................................................................25 Figure 7: Larval growth and development .........................................................................26 Figure 8: Time to pupation ................................................................................................28 Figure 9: Lifetime survival, host-plant switch as larvae ....................................................29 Figure 10: Choice feeding trials, adults .............................................................................30 Figure 11: Adult survival, by sex .......................................................................................31 Figure 12: Adult survival, by treatment .............................................................................32 Figure 13: Average date of death .......................................................................................33 Figure 14: Mating preferences, without plant switch ........................................................34 Figure 15: Mating behavior ...............................................................................................35 Figure 16: Mating preferences, with plant switch .............................................................36 Figure 17: Potential fecundity ............................................................................................37 Figure 18: Realized fecundity, by female treatment ..........................................................39 Figure 19: Realized fecundity, by mating treatment ..........................................................41 Figure 20: Realized fecundity, by mating treatment ..........................................................42 viii Abstract Host-Specificity and its Effect on Mate Choice in a Plant-Eating Beetle A thesis by Katherine Gould Master of Science in Biology The beetle Trirhabda eriodictyonis lives on two shrubs with different plant defenses: Eriodictyon crassifolium has hairy leaves; E. trichocalyx has sticky leaves. The relationship between these plants and the leaf-eating beetles that depend on them has been unstudied until now. In choice tests, larvae and adults showed unexpected feeding preferences, with larvae from E. crassifolium showing no preference and those from E. trichocalyx preferring E. crassifolium. Adults all strongly preferred eating E. trichocalyx. Larvae and adults that I switched from E. trichocalyx to E. crassifolium died younger than beetles that I continued to feed the original host species. Mating trials showed that the only difference in preference involved males from E. trichocalyx, which were far more attractive to females on E. crassifolium than males on the same host. Finally, females laid more eggs if they ate E. trichocalyx than E. crassifolium, even if they had started life on the latter. It is clear that E. trichocalyx provides benefit to both males and females and these beetle populations are not differentiating based on host plants. Neither the differentiation hypothesis nor the preference-performance hypothesis are validated by this plant-insect interaction. Instead, it appears that the best explanation of this relationship is phylogenetic conservatism. The plant defenses, which appear dramatically different to humans, are unimportant to the beetles. ix Introduction Chrysomelid beetles lead a simple life. Birth to death, they live on and eat their host plant. Some beetles spend their whole life on a single individual plant. While great for the beetles, this lifestyle is problematic for the plants they feed on, and the conflict between plants and herbivores shapes both organisms. Plants have adapted to defend themselves against attackers, and herbivores have evolved ways around those defenses. Relationships between plants and insect herbivores have been widely studied, yet new studies continue to reveal surprises and unexpected interactions. I investigated an unstudied relationship of two plant species with one insect herbivore, a specialized chrysomelid beetle, to determine how well this relationship is explained by prevailing theories of plant-insect interactions. To understand the relationship between plants and their herbivorous adversaries, we must first appreciate the wealth of different plant defenses against herbivores that have evolved over eons. Some plants, many annuals for example, don’t grow when the insects that would eat them are around (Feeny 1976). Plants that grow all year often produce poisonous or bad-tasting chemicals, or grow spines, hairs, or tough tissues that make stems and leaves hard to eat (Feeny 1976, Rhoades 1979, Bottrell et al. 1998, Jolivet 1998, Lucas et al. 2000). Some plants release chemicals that attract predators to eat the herbivores (Jolivet 1998). Plants frequently respond in real time to herbivory by increasing the energy they put toward defenses, making more chemicals or hairs to slow or harm their attackers (Jolivet 1998, Agrawal et
Recommended publications
  • And Belowground Insect Herbivory Mediates Invasion Dynamics and Impact of an Exotic Plant
    plants Article Release from Above- and Belowground Insect Herbivory Mediates Invasion Dynamics and Impact of an Exotic Plant Lotte Korell 1,2,3,4,* , Martin Schädler 3,4, Roland Brandl 5, Susanne Schreiter 6 and Harald Auge 3,4 1 Plant Ecology and Geobotany, Department of Ecology, University of Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany 2 Institute of Biology, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle (Saale), Germany 3 Department of Community Ecology, Helmholtz-Centre for Environmental Research -UFZ, Theodor-Lieser-Str. 4, 06120 Halle, Germany; [email protected] (M.S.); [email protected] (H.A.) 4 German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany 5 Animal Ecology, Department of Ecology, University of Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany; [email protected] 6 Department of Soil System Science, Helmholtz-Centre for Environmental Research - UFZ, Theodor-Lieser-Str. 4, 06120 Halle, Germany; [email protected] * Correspondence: [email protected] Received: 28 October 2019; Accepted: 21 November 2019; Published: 26 November 2019 Abstract: The enemy-release hypothesis is one of the most popular but also most discussed hypotheses to explain invasion success. However, there is a lack of explicit, experimental tests of predictions of the enemy-release hypothesis (ERH), particularly regarding the effects of above- and belowground herbivory. Long-term studies investigating the relative effect of herbivores on invasive vs. native plant species within a community are still lacking. Here, we report on a long-term field experiment in an old-field community, invaded by Solidago canadensis s.
    [Show full text]
  • Vascular Flora of the Liebre Mountains, Western Transverse Ranges, California Steve Boyd Rancho Santa Ana Botanic Garden
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 18 | Issue 2 Article 15 1999 Vascular flora of the Liebre Mountains, western Transverse Ranges, California Steve Boyd Rancho Santa Ana Botanic Garden Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Boyd, Steve (1999) "Vascular flora of the Liebre Mountains, western Transverse Ranges, California," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 18: Iss. 2, Article 15. Available at: http://scholarship.claremont.edu/aliso/vol18/iss2/15 Aliso, 18(2), pp. 93-139 © 1999, by The Rancho Santa Ana Botanic Garden, Claremont, CA 91711-3157 VASCULAR FLORA OF THE LIEBRE MOUNTAINS, WESTERN TRANSVERSE RANGES, CALIFORNIA STEVE BOYD Rancho Santa Ana Botanic Garden 1500 N. College Avenue Claremont, Calif. 91711 ABSTRACT The Liebre Mountains form a discrete unit of the Transverse Ranges of southern California. Geo­ graphically, the range is transitional to the San Gabriel Mountains, Inner Coast Ranges, Tehachapi Mountains, and Mojave Desert. A total of 1010 vascular plant taxa was recorded from the range, representing 104 families and 400 genera. The ratio of native vs. nonnative elements of the flora is 4:1, similar to that documented in other areas of cismontane southern California. The range is note­ worthy for the diversity of Quercus and oak-dominated vegetation. A total of 32 sensitive plant taxa (rare, threatened or endangered) was recorded from the range. Key words: Liebre Mountains, Transverse Ranges, southern California, flora, sensitive plants. INTRODUCTION belt and Peirson's (1935) handbook of trees and shrubs. Published documentation of the San Bernar­ The Transverse Ranges are one of southern Califor­ dino Mountains is little better, limited to Parish's nia's most prominent physiographic features.
    [Show full text]
  • Proceedings of the United States National Museum
    : BEETLE LARVAE OF THE SUBFAMILY GALERUCINAE B}^ Adam G. Boving Senior Entoniolotjist, Bureau of Etitomology, United States Department of Agricvltwe INTRODUCTION The present pajxn- is the result of a continued investigation of the Chrysomelid hirvae in the United States National Museum, Wash- ington, D. C. Of the subfamily Galerucinae ^ belonging to this family the larvae are preserved in the Museum of the following species Monocesta coryli Say. Trirhabda canadensis Kirby. TrU'habda hrevicollis LeConte. Trirhabda nitidicollis LeConte. Trirhabda tomentosa Linnaeus. Trirhabda attenuata Say. Oalerucella nymphaeae Liiniaeus. Oalerucella lineola Fabrleius (from Euroiie). Galerucclla sagittarUu' Gylleuhal. Oalerucella luteola Miiller. Galerucclla sp. (from Nanking, China). Galcrucella vibvrni Paykull (from Europe). Oalerucella decora Say. Oalerucella notata Fabricius. Oalerucella cribrata LeConte. Monoxia puncticolUs Say. Monoxia consputa LeConte. Lochmaca capreae Linnaeus (from Europe). Qaleruca tanacett Linnaeus (from Europe). Oaleruca laticollis Sahlberg (from Europe). Oalcruca, pomonae Scopoli. Sermylassa halensls Linnaeus. Agelastica alnl Linnaeus.^ 1 The generic and specific names of tlie North American larvae are as listed in C W. Leng's " Catalogue of Coleoptera of America north of Mexico, 1920," with corrections and additions as given in the "supplement" to the catalogue published by C. W. Leng and A. J. Mutchler, 1927. The European species, not introduced into North America, are named according to the " Catalogus Coleopterorum Europae, second edition, 1906," by L. V. Heyden, E. Rcitter, and .7. Weise. 2 It will be noticed that in the enumeration above no species of Dinhrlica and Pliyllo- brotica are mentioned. The larvae of those genera were considered by tlie present author as Halticinae larvae [Boving, Adam G.
    [Show full text]
  • Approches Empiriques Et Théoriques De La Prédation Pré-Dispersion Des Graines Par Les Insectes Violette Doublet
    Interactions biotiques et dynamiques des populations : approches empiriques et théoriques de la prédation pré-dispersion des graines par les insectes Violette Doublet To cite this version: Violette Doublet. Interactions biotiques et dynamiques des populations : approches empiriques et théoriques de la prédation pré-dispersion des graines par les insectes. Sciences agricoles. Université Montpellier, 2020. Français. NNT : 2020MONTG007. tel-03136980 HAL Id: tel-03136980 https://tel.archives-ouvertes.fr/tel-03136980 Submitted on 10 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE POUR OBTENIR LE GRADE DE DOCTEUR DE L’UNIVERSITÉ DE M ONTPELLIER En Écologie, Évolution, Ressources Génétiques, Paléobiologie (EERGP) - École doctorale GAIA Unité de recherche UR0629 - Écologie des Forêts Méditerranéennes (URFM) - INRAE INTERACTIONS BIOTIQUES ET DYNAMIQUES DES POPULATIONS Approches empiriques et théoriques de la prédation pré-dispersion des graines par les insectes BIOTIC INTERACTIONS AND POPULATION DYNAMICS Empirical and theoretical approaches
    [Show full text]
  • The Pennsylvania State University
    The Pennsylvania State University The Graduate School PLANTS AS ILLEGITIMATE RECEIVERS OF INSECT SIGNALS: INSIGHT FROM MAIZE AND TEOSINTE A Thesis in Entomology by Julianne Golinski © 2020 Julianne Golinski Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science August 2020 ii The thesis of Julianne Golinski was reviewed and approved by the following: John F. Tooker Professor of Entomology and Extension Specialist Thesis Advisor Jared G. Ali Assistant Professor of Entomology Ben McGraw Associate Professor of Turfgrass Science Gary W. Felton Professor of Entomology Head of Department of Entomology iii ABSTRACT Plants have evolved to be sensitive to a range of insect-associated cues to detect the presence of herbivorous species and mount effective defense responses against future attack. Insect pheromones have recently been added to this library of cues as some plant species can act as “illegitimate receivers” that eavesdrop on the pheromones of insect herbivores, which act as reliable indicators of future larval damage. My thesis begins with a review that explores the perceptive capabilities of plants and how the ability to eavesdrop on insect pheromone cues may have evolved. I also cover the three known examples of plant illegitimate receivers and use shared traits in these systems to build criteria for finding other host plant species that may also utilize this strategy; native host plants species with (1) native, co-evolved insect herbivore species (2) that release abundant amounts of chemicals on or near the host plant, and (3) substantially reduce host plant fitness. My second chapter highlights two agriculturally relevant plant species that fit the criteria, maize (Zea mays ssp.
    [Show full text]
  • Exposure of Solidago Altissima Plants to Volatile Emissions of an Insect Antagonist (Eurosta Solidaginis) Deters Subsequent Herbivory
    Exposure of Solidago altissima plants to volatile emissions of an insect antagonist (Eurosta solidaginis) deters subsequent herbivory Anjel M. Helms, Consuelo M. De Moraes, John F. Tooker, and Mark C. Mescher1 Center for Chemical Ecology, Department of Entomology, The Pennsylvania State University, University Park, PA 16802 Edited by James H. Tumlinson, The Pennsylvania State University, University Park, PA, and approved November 19, 2012 (received for review October 25, 2012) Recent work indicates that plants respond to environmental odors. olfactory cues has been documented after exposure to herbivore- For example, some parasitic plants grow toward volatile cues from induced volatiles emitted either by neighboring plants (9, 10) or by their host plants, and other plants have been shown to exhibit other parts of the same plant (11, 14). The latter finding has given enhanced defense capability after exposure to volatile emissions rise to speculation that such mechanisms might have initially from herbivore-damaged neighbors. Despite such intriguing dis- evolved to overcome constraints on the within-plant transmission coveries, we currently know relatively little about the occurrence of wound signals imposed by the discontinuous architecture of and significance of plant responses to olfactory cues in natural plant vascular systems, with eavesdropping by neighboring plants systems. Here we explore the possibility that some plants may arising secondarily (11). respond to the odors of insect antagonists. We report that tall Defense priming also has been reported in response to (non- goldenrod (Solidago altissima) plants exposed to the putative sex olfactory) cues directly associated with the presence of herbivores, attractant of a closely associated herbivore, the gall-inducing fly including insect footsteps on leaves and broken trichomes (15, 16).
    [Show full text]
  • Extending the Resource Concentration Hypothesis to Plant Communities: Effects of Litter and Herbivores Author(S): Zachary T
    Extending the Resource Concentration Hypothesis to Plant Communities: Effects of Litter and Herbivores Author(s): Zachary T. Long, Charles L. Mohler, Walter P. Carson Source: Ecology, Vol. 84, No. 3 (Mar., 2003), pp. 652-665 Published by: Ecological Society of America Stable URL: http://www.jstor.org/stable/3107860 . Accessed: 04/03/2011 10:46 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at . http://www.jstor.org/action/showPublisher?publisherCode=esa. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Ecological Society of America is collaborating with JSTOR to digitize, preserve and extend access to Ecology. http://www.jstor.org Ecology, 84(3), 2003, pp.
    [Show full text]
  • Acmispon Glaber Var
    Finding Balance: Considering Species' Traits, Species Distribution Models, and Climate Forecasting in Seed Sourcing Decisions Arlee M. Montalvo Nov. 15, 2016 Do No Harm Workshop, Davis, CA Acknowledgements: My collaborators! Erin C. Riordan- the modeling and maps Jan L. Beyers- editing, profile assistance Thanks to USFS Pacific Southwest Research Station and RCRCD for funding and UCR and UCLA for logistical support! California shrublands occupy a diverse landscape: Ecological Sections and Subsections Goudey and Smith (1994) updated with ECOMAP (2007) Parent geology continental influence topography ocean influence Precipitation and temperature Ecological Sections can be diverse and contain many contrasting Subsections Elevation: 300 to 11,500 ft Precipitation: 6 to 40 inches Temperature: 40° to 70°F Goudey & Smith 1994 Growing Season: 150 to 300 days Environmental diversity supports amazing biological diversity California shrublands and their foundation plant taxa are diverse protecting, supporting, managing native biodiversity chaparral alluvial scrub coastal sage scrub Many foundation species of shrubs are distributed across multiple Ecological Sections and plant communities Plant Community Plant Community Scientific Name Life Form‡ ALSC CHAP CSS MIX Scientific Name Life Form‡ ALSC CHAP CSS MIX Acmispon glaber var. brevialatus† suffr subshr X X Eriodictyon trichocalyx var. lanatum suffr subshr X X Acmispon glaber var. glaber † Forsuffr subshreachX ofX 36X shrubsX E. t. var &. trichocalyx subshrubs: suffr subshr X X X Adenostoma fasciculatum shrub X X X Eriogonum fasciculatum var. Arctostaphylos glandulosa (3 subsp) shrub X fasciculatum subshrub X X Artemisia californica subshrub X X X E. f. var. foliolosum subshrub X X X X E. f. var. polifolium subshrub X X Ceanothus crassifolius var.
    [Show full text]
  • PDF/?Uri=CELEX:32014R1143&From=EN
    A University of Sussex PhD thesis Available online via Sussex Research Online: http://sro.sussex.ac.uk/ This thesis is protected by copyright which belongs to the author. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Please visit Sussex Research Online for more information and further details i Ecological interactions of an invading insect: the planthopper Prokelisia marginata Claire Harkin Submitted for the degree of Doctor of Philosophy University of Sussex July 2016 iii For Indigo My greatest challenge and my deepest joy. “It seems to me that the natural world is the greatest source of excitement; the greatest source of visual beauty; the greatest source of intellectual interest. It is the greatest source of so much in life that makes life worth living.” Sir David Attenborough iv University of Sussex Claire Harkin, Doctor of Philosophy Ecological interactions of an invading insect: the planthopper Prokelisia marginata Summary The planthopper Prokelisia marginata Van Duzee is native to the eastern coast of North America, where densities on its foodplant, the cordgrass Spartina alterniflora, frequently exceed several thousand per square metre. It has little impact on its host plant in its native range where both species have co-evolved, however where the plant has been introduced and has had no recent exposure to the planthopper, it has a major impact and has been trialled as a biological control agent.
    [Show full text]
  • Evidence for Plant-Mediated Competition Between Defoliating and Gall-Forming Specialists Attacking Solidago Altissima Author(S): Ellery T
    Evidence For Plant-mediated Competition Between Defoliating and Gall-forming Specialists Attacking Solidago altissima Author(s): Ellery T. CunanThomas H. Q. PowellArthur E. Weis Source: The American Midland Naturalist, 173(2):208-217. Published By: University of Notre Dame DOI: http://dx.doi.org/10.1674/amid-173-02-208-217.1 URL: http://www.bioone.org/doi/full/10.1674/ amid-173-02-208-217.1 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Am. Midl. Nat. (2015) 173:208–217 Evidence For Plant-mediated Competition Between Defoliating and Gall-forming Specialists Attacking Solidago altissima ELLERY T. CUNAN Koffler Scientific Reserve at Joker’s Hill, Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario Department of Biology, McMaster University, Hamilton, Ontario THOMAS H. Q. POWELL1 Department of Entomology and Nematology, University of Florida, Gainesville AND ARTHUR E.
    [Show full text]
  • Eriodictyon Crassifolium Benth. NRCS CODE: Family: Boraginaceae (ERCR2) (Formerly Placed in Hydrophyllaceae) Order: Solanales E
    I. SPECIES Eriodictyon crassifolium Benth. NRCS CODE: Family: Boraginaceae (ERCR2) (formerly placed in Hydrophyllaceae) Order: Solanales E. c. var. nigrescens, Subclass: Asteridae Zoya Akulova, Creative Commons cc, cultivated at E. c. var. crassifolium, Class: Magnoliopsida Tilden Park, Berkeley W. Riverside Co., E. c. var. crassifolium, W. Riverside Co., A. Montalvo A. Subspecific taxa 1. ERCRC 1. E. crassifolium var. crassifolium 2. ERCRN 2. E. crassifolium var. nigrescens Brand. B. Synonyms 1. Eriodictyon tomentosum of various authors, not Benth.; E. c. subsp. grayanum Brand, in ENGLER, Pflanzenreich 59: I39. I9I3; E. c. var. typica Brand (Abrams & Smiley 1915). 2. Eriodictyon crassifolium Benth. var. denudatum Abrams C.Common name 1. thickleaf yerba santa (also: thick-leaved yerba santa, felt-leaved yerba santa, and variations) (Painter 2016a). 2. bicolored yerba santa (also: thickleaf yerba santa) (Calflora 2016, Painter 2016b). D.Taxonomic relationships Plants are in the subfamily Hydrophylloideae of the Boraginaceae along with the genera Phacelia, Hydrophyllum , Nemophila, Nama, Emmenanthe , and Eucrypta, all of which are herbaceous and occur in the western US and California. The genus Nama has been identified as a close relative to Eriodictyon (Ferguson 1999). Eriodictyon, Nama, and Turricula , have recently been placed in the new family Namaceae (Luebert et al. 2016). E.Related taxa in region Hannan (2016) recognizes 10 species of Eriodictyon in California, six of which have subspecific taxa. All but two taxa have occurrences in southern California. Of the southern California taxa, the most similar taxon is E. trichocalyx var. lanatum, but it has narrow, lanceolate leaves with long wavy hairs; the hairs are sparser on the adaxial (upper) leaf surface than on either variety of E.
    [Show full text]
  • Chrysomela 36
    CHRYSOMELA newsletter Dedicated to information about the Chrysomelidae Report No. 36 October 1998 Hanoi, VIETNAM: INSIDE THIS ISSUE 2-In Memoriam Institute of Ecology 2-Notes Up Front 3-Again, Bruchid Classification 4-Proposed Upper Classification Course 4-Green Algae & Chrysomelid Evolu- tion 5-Colombia Field Trip & Museum Tours 6-Fifth International Symposium on the Chrysomelids 6-ICE XXI Updates 7-The 1998 Mid-Atlantic States Field Trip 8-Far Eastern Entomology 10-The ICIPE WWW site 11-Literature on the Chrysomelidae 13-Book Notices 14-Literature (Available or Needed) Pierre and Siraj are hosted by our Vietnam collegues in Hanoi on his November ‘97 trip 14-Specimens(Available or Needed) to the Far East. from left: Siraj HASSAN (Phytopathologist), VU Quang Con (Director, 15-Member Directory, October ‘98 Inst. of Ecology), PHAM Van Lam (Entomologist), DANG Thi Dap (Deputy Director, Inst. of Ecology, Entomologist), and Pierre JOLIVET. (story, page 8) Research Activities and Interests Laurnet Amsellem (Bangkok, Pleurosticha; planning to revise subgen- outbreak of western corn rootworm, and Thailand) PhD student working in era Arctolina (Siberian and Arctic is interested in trying to develop an Thailand on the interactions between species), Ovosoma, Lithopteroides and identification guide or “key” that Rubus alceifolius and its associated Taeniosticha. Also finishing doctoral incorporates new world Diabrotica with pathogens: a rust and a chrysomelid... thesis, Biology of Palaearctic Donacii- the old world fauna. Anyone interested, The plant is actually a real weed in La nae (Chrysomelidae). please contact him (send an email note). Reunion Island, and in order to do Lech Borowiec (Wroclaw, Poland) Shawn M.
    [Show full text]