Pacific Northwest Fungi Project

Total Page:16

File Type:pdf, Size:1020Kb

Pacific Northwest Fungi Project North American Fungi Volume 5, Number 5, Pages 85-96 Published December 22, 2010 Larger fungi of the Canadian Arctic Esteri Ohenoja and Martti Ohenoja Department of Biology /Botanical Museum, P.O.B. 3000, FI-90014 University of Oulu, Finland Ohenoja, E., and M. Ohenoja. 2010. Larger fungi of the Canadian Arctic. North American Fungi 5(5): 85-96. doi: 10.2509/naf2010.005.0056 Corresponding author: Esteri Ohenoja [email protected] Accepted for publication July 8, 2010. http://pnwfungi.org Copyright © 2010 Pacific Northwest Fungi Project. All rights reserved. Abstract: In all 143 fungal taxa collected in the years 1971 and 1974 are presented from different habitats of the Arctic and Subarctic tundra in the Keewatin and Franklin areas of N.W.T., Canada and at Fort Churchill, Manitoba. Of the 143 species reported, 122 species are new in N.W.T. and Fort Churchill. The diversity of mycorrhizal species was highest in drier lichen-moss and moss tundra heaths, and in late snow patches, the most common genera being Cortinarius, Inocybe, Hebeloma, Lactarius, and Russula. The most frequent saprobic fungi were Hygrocybe, Arrhenia, Clitocybe, Galerina some of which are bryophilous and Helvella species. In the forest tundra, numerous species typical of conifer forests were found as mycorrhizal symbionts of Picea and Larix. These collections remain the primary source of information on macrofungi in this region. Key words: Agaricales, Russulales, Aphyllophorales, gasteromycetes, Ascomycota, ecology, Arctic tundra, Forest tundra, Canada N.W.T, Fort Churchill/Manitoba 86 Ohenoja & Ohenoja. Larger fungi of the Canadian Arctic. North American Fungi 5(5):85-96 Introduction: This is a continuation of the flora with S. lanata L. ssp. S. richardssonii presentation of the mycological material the Hook., S. planifolia Pursh, S. niphoclada Rydb. authors collected in Arctic Canada in the years and S. vestita Pursh; these species were also 1971 and 1974. Species of the genera Lactarius found in other localities except at Repulse Bay. (Ohenoja and Ohenoja 1993) and Inocybe are published (Ohenoja, Vauras and Ohenoja 1998). Rankin Inlet (lat. 62º 49' N, long. 92º 05' W) and Also material on Marasmius epidryas (Redhead Baker Lake (lat. 64º 20' N, long. 96º 00' W) are et al. 1982), Bryoglossum (Mitrula) gracile situated in the low Arctic zone within the Arctic (Kankainen 1969), Spathularia (Ohenoja 1989), climatic region and Repulse Bay (lat. 66º 31' N, and Arrhenia auriscalpium (Cripps and Horak long. 86º 15' W) lies in the middle Arctic zone 2006) has been dealt with in the published (Polunin 1951). articles, and a small note was given after the first There are acidic and calcareous soils in all trip to Rankin Inlet (Ohenoja 1972). These mentioned areas, with Dryas integrifolia Vahl remain the few reports on larger fungi from this and Salix reticulata L. There are few differences region, however, there are some unpublished between the vegetation of Rankin Inlet and Baker reports in DAOM (Ottawa). Lake, although the tundra at Baker Lake is more mossy and less rocky than at Rankin Inlet. Betula Materials and Methods: This article is glandulosa Michaux occurs at Rankin Inlet and focused on fungi collected by the authors August Baker Lake, but does not occur at Repulse Bay, 10-17, 1971 and July 30-August 28, 1974 in the and Salix species are low-growing in these areas. Hudson Bay area (N.W.T. and Manitoba). The Arctostaphylos and Cassiope tetragona (L.) D. samples are preserved in the Botanical Museum Don plus Bistorta vivipara (L.) Gray are rather of the University of Oulu (OULU), but much common on all study sites. material has been distributed as duplicates to the herbaria DAOM (Ottawa), C (Copenhagen), H The habitats for the Arctic localities are peat (Helsinki), and TUR (Turku). Dr. D.B. Savile communities, patterned hummock-sedge identified some of the Salix species. The authors communities (tussock tundra), seepage slopes, received help in determination of some fungi as unpatterned Carex and Eriophorum meadows on noted in the species list. The nomenclature of the wet lowland depressions, snow patches, and fungi presented follows Index Fungorum. grassy mounds of ground squirrels. At Rankin Inlet and Baker Lake the sandy areas, e.g. along The collection localities were situated at Fort rivers, provide diverse habitats for fungi, similar Churchill, Manitoba, at Rankin Inlet and Baker to burnt ground patterns. At Repulse Bay Lake (N.W.T., District of Keewatin), and Repulse windswept plains and polygonal soils are typical Bay (N.W.T., District of Franklin). between very rocky terrains. Fort Churchill along the southeastern coast of The collection dates were as follows: Hudson Bay (lat. 58 40' N, long. 93 46' W) is Fort Churchill 24.8.1971, 23-25.8.1974, Baker situated on forest tundra at the extent of Lake 14-21.8.1974, Rankin Inlet 10-23.8.1971, latitudinal tree-line for the Northern climatic 30.7. and 22.8.1974, Repulse Bay 1-5.8.1974. region. This represents a transition zone between subarctic forest and tundra. Picea mariana (Miller) Britton, Sterns & Poggenb., P. glauca Results: Fungi characteristic of various habitats (Moench) Voss, Larix laricina (Du Roi) K. Koch are presented in order of: boletes, gilled and Betula "occidentalis" are low lying plants mushrooms (white then dark spored), non-gilled, that support many fungi. There is also a rich Salix gasteromycetes and ascomycete groups. Ohenoja & Ohenoja. Larger fungi of the Canadian Arctic. North American Fungi 5(5):85-96 87 In the low Arctic area there were significant Cortinarius favrei sandy areas on dunes and along roads and rivers C. cinnamomeoluteus (Fig. 1) with Salix herbacea L., S. arctophila C. polaris Cockerell ex A. Heller, Epilobium latifolium L., C. subtorvus Cassiope tetragona, Empetrum nigrum ssp. Inocybe dulcamara hermaphroditum, and Vaccinium uliginosum L. I. geophylla var. alpinum Bigelow. Typical fungi in sandy I. leiocephala habitats were: Lactarius nanus L. rufus Inocybe impexa Russula laccata Laccaria maritima R. nana Clavaria argillacea R. pubescens Helvella atra Calvatia cretacea H. corium C. turneri Thuemenidium arenarium Helvella albella Fungi on dry tundra heaths of Alectoria- Moist mossy tundra heaths (with Betula Cetraria, Carex-Dryas and Cassiope-Dryas glandulosa, Salix reticulata, etc., Cassiope heaths (with Salix spp., Arctostaphylos)(Fig. 2): tetragona, Dryas integrifolia) (Fig. 4): Clitocybe lateritia Clitocybe candicans Gymnopus fuscopurpureus Gymnopus fuscopurpureus Hebeloma alpinum Laccaria montana Hygrocybe lilacina Mycenitis epidryas Inocybe lacera Coprinopsis martinii Rhodocybe popinalis Cortinarius septentrionalis Lactarius dryadophilus Hebeloma monticola Russula altaica Inocybe geophylla var. lilacina R. delica Lactarius glyciosmus L. lanceolatus Fungi in dryish tundra heaths (with Betula L. torminosus glandulosa, Salix arctica Pall., S. herbacea, S. Russula rivulicola polaris Wahlenb. ssp. pseudopolaris (Flod.) Russula Subsect. Xerampelinae Hultén, S. reticulata L., Cassiope tetragona, Helvella queletii Vaccinium uliginosum var. alpinum, V. vitis- Humaria hemisphaerica idaea L. var. minus Lodd., Arctostaphylos alpina (L.) Spreng., Dryas integrifolia and Bistorta vivipara) (Fig. 3): River shores, seeping patches and snow-beds (with Salix herbacea, S. reticulata, Cassiope Leccinum scabrum tetragona, C. hypnoides (L.) D. Don, Dryas Amanita groenlandica integrifolia) (Fig. 5): Clitocybe diatreta Cystodermella adnatifolia Arrhenia auriscalpium Loreleia postii Arrhenia rustica Omphaliaster asterosporus Laccaria pumila Entoloma sericeum Galerina pseudomycenopsis 88 Ohenoja & Ohenoja. Larger fungi of the Canadian Arctic. North American Fungi 5(5):85-96 Inocybe calamistrata S. viscidus Lactarius pseudouvidus Hygrophorus speciosus L. salicis-herbaceae Tricholoma inamoenum Thelephora caryophyllea T. vaccinum Helvella aestivalis Cortinarius bovinus C. gentilis Fungi on turfy, half-bare habitats of tundra heath C. delibutus and on roadsides (with grasses, sedges) (Fig. 6): C. obtusus Lactarius deterrimus Arrhenia chlorocyanea L. pubescens Lichenomphalia hudsoniana L. cf. resimus Entoloma alpicola L. trivialis Hebeloma mesophaeum Russula paludosa Naucoria tantilla R. cf. violaceoincarnata Psilocybe montana Clavulina coralloides Also the rare saprobic Sarcosphaera coronaria Bovista limosa was found in a mossy conifer stand east of Fort B. tomentosa Churchill. It is a rare ascomycete in Europe as Geopora arenosa well. Other saprophytes were Pluteus cervinus, Helvella lacunosa Fomitopsis pinicola and Xeromphalina Peziza badia cauticinalis. Sarcoleotia globosa These collections remain the primary source of Fungi in wet boggy hummocky Carex- information for this region of the Canadian Eriophorum communities (with e.g. Arctagrostis arctic. Huhtinen (1985) reported Geoglossum latifolia (R. Br.) Griseb.) (Fig.7): arenarium, Poculum firmum, Bryoglossum gracile, Sarcoleotia globosa, Helvella corium, Arrhenia lobata and Laccaria maritima (Huhtinen 1987) from Arrhenia philonotis timberline areas in northern Québec. Most of the Lichenomphalia umbellifera taxa presented here also occur in other Galerina pseudomycenopsis circumpolar areas (Miller 1982, Knudsen and Inocybe hirculus Borgen 1982, Laursen and Chmielevski 1982, Lactarius torminosulus Gulden et al. 1985, 1988, Knudsen and Borgen Bryoglossum gracile 1998, Borgen 2006, Borgen et al. 2006, Knudsen Scutellinia patagonica and Vesterholt 2008, etc.) and in alpine habitats (Moser 1982, Senn-Irlet 1988, etc.). Also the Leccinum
Recommended publications
  • BGBM Annual Report 2017–2019
    NETWORKING FOR DIVERSITY Annual Report 2017 – 2019 2017 – BGBM BGBM Annual Report 2017 – 2019 Cover image: Research into global biodiversity and its significance for humanity is impossible without networks. The topic of networking can be understood in different ways: in the natural world, with the life processes within an organism – visible in the network of the veins of a leaf or in the genetic diversity in populations of plants – networking takes place by means of pollen, via pollinators or the wind. In the world of research, individual objects, such as a particular plant, are networked with the data obtained from them. Networking is also crucial if this data is to be effective as a knowledge base for solving global issues of the future: collaboration between scientific experts within and across disciplines and with stakeholders at regional, national and international level. Contents Foreword 5 Organisation 56 A network for plants 6 Facts and figures 57 Staff, visiting scientists, doctoral students 57 Key events of 2017 – 2019 10 Affiliated and unsalaried scientists, volunteers 58 BGBM publications 59 When diversity goes online 16 Species newly described by BGBM authors 78 Families and genera newly described by BGBM authors 82 On the quest for diversity 20 Online resources and databases 83 Externally funded projects 87 Invisible diversity 24 Hosted scientific events 2017 – 2019 92 Collections 93 Humboldt 2.0 30 Library 96 BGBM Press: publications 97 Between East and West 36 Botanical Museum 99 Press and public relations 101 At the service of science 40 Visitor numbers 102 Budget 103 A research museum 44 Publication information 104 Hands-on science 50 Our symbol, the corncockle 52 4 5 Foreword BGBM Annual Report 2017 – 2019 We are facing vital challenges.
    [Show full text]
  • Checklist of Argentine Agaricales 4
    Checklist of the Argentine Agaricales 4. Tricholomataceae and Polyporaceae 1 2* N. NIVEIRO & E. ALBERTÓ 1Instituto de Botánica del Nordeste (UNNE-CONICET). Sargento Cabral 2131, CC 209 Corrientes Capital, CP 3400, Argentina 2Instituto de Investigaciones Biotecnológicas (UNSAM-CONICET) Intendente Marino Km 8.200, Chascomús, Buenos Aires, CP 7130, Argentina CORRESPONDENCE TO *: [email protected] ABSTRACT— A species checklist of 86 genera and 709 species belonging to the families Tricholomataceae and Polyporaceae occurring in Argentina, and including all the species previously published up to year 2011 is presented. KEY WORDS—Agaricomycetes, Marasmius, Mycena, Collybia, Clitocybe Introduction The aim of the Checklist of the Argentinean Agaricales is to establish a baseline of knowledge on the diversity of mushrooms species described in the literature from Argentina up to 2011. The families Amanitaceae, Pluteaceae, Hygrophoraceae, Coprinaceae, Strophariaceae, Bolbitaceae and Crepidotaceae were previoulsy compiled (Niveiro & Albertó 2012a-c). In this contribution, the families Tricholomataceae and Polyporaceae are presented. Materials & Methods Nomenclature and classification systems This checklist compiled data from the available literature on Tricholomataceae and Polyporaceae recorded for Argentina up to the year 2011. Nomenclature and classification systems followed Singer (1986) for families. The genera Pleurotus, Panus, Lentinus, and Schyzophyllum are included in the family Polyporaceae. The Tribe Polyporae (including the genera Polyporus, Pseudofavolus, and Mycobonia) is excluded. There were important rearrangements in the families Tricholomataceae and Polyporaceae according to Singer (1986) over time to present. Tricholomataceae was distributed in six families: Tricholomataceae, Marasmiaceae, Physalacriaceae, Lyophyllaceae, Mycenaceae, and Hydnaginaceae. Some genera belonging to this family were transferred to other orders, i.e. Rickenella (Rickenellaceae, Hymenochaetales), and Lentinellus (Auriscalpiaceae, Russulales).
    [Show full text]
  • Biological Diversity
    From the Editors’ Desk….. Biodiversity, which is defined as the variety and variability among living organisms and the ecological complexes in which they occur, is measured at three levels – the gene, the species, and the ecosystem. Forest is a key element of our terrestrial ecological systems. They comprise tree- dominated vegetative associations with an innate complexity, inherent diversity, and serve as a renewable resource base as well as habitat for a myriad of life forms. Forests render numerous goods and services, and maintain life-support systems so essential for life on earth. India in its geographical area includes 1.8% of forest area according to the Forest Survey of India (2000). The forests cover an actual area of 63.73 million ha (19.39%) and consist of 37.74 million ha of dense forests, 25.51 million ha of open forest and 0.487 million ha of mangroves, apart from 5.19 million ha of scrub and comprises 16 major forest groups (MoEF, 2002). India has a rich and varied heritage of biodiversity covering ten biogeographical zones, the trans-Himalayan, the Himalayan, the Indian desert, the semi-arid zone(s), the Western Ghats, the Deccan Peninsula, the Gangetic Plain, North-East India, and the islands and coasts (Rodgers; Panwar and Mathur, 2000). India is rich at all levels of biodiversity and is one of the 12 megadiversity countries in the world. India’s wide range of climatic and topographical features has resulted in a high level of ecosystem diversity encompassing forests, wetlands, grasslands, deserts, coastal and marine ecosystems, each with a unique assemblage of species (MoEF, 2002).
    [Show full text]
  • Influence of Tree Species on Richness and Diversity of Epigeous Fungal
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archive Ouverte en Sciences de l'Information et de la Communication fungal ecology 4 (2011) 22e31 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/funeco Influence of tree species on richness and diversity of epigeous fungal communities in a French temperate forest stand Marc BUE´Ea,*, Jean-Paul MAURICEb, Bernd ZELLERc, Sitraka ANDRIANARISOAc, Jacques RANGERc,Re´gis COURTECUISSEd, Benoıˆt MARC¸AISa, Franc¸ois LE TACONa aINRA Nancy, UMR INRA/UHP 1136 Interactions Arbres/Microorganismes, 54280 Champenoux, France bGroupe Mycologique Vosgien, 18 bis, place des Cordeliers, 88300 Neufchaˆteau, France cINRA Nancy, UR 1138 Bioge´ochimie des Ecosyste`mes Forestiers, 54280 Champenoux, France dUniversite´ de Lille, Faculte´ de Pharmacie, F59006 Lille, France article info abstract Article history: Epigeous saprotrophic and ectomycorrhizal (ECM) fungal sporocarps were assessed during Received 30 September 2009 7 yr in a French temperate experimental forest site with six 30-year-old mono-specific Revision received 10 May 2010 plantations (four coniferous and two hardwood plantations) and one 150-year-old native Accepted 21 July 2010 mixed deciduous forest. A total of 331 fungal species were identified. Half of the fungal Available online 6 October 2010 species were ECM, but this proportion varied slightly by forest composition. The replace- Corresponding editor: Anne Pringle ment of the native forest by mono-specific plantations, including native species such as beech and oak, considerably altered the diversity of epigeous ECM and saprotrophic fungi. Keywords: Among the six mono-specific stands, fungal diversity was the highest in Nordmann fir and Conifer plantation Norway spruce plantations and the lowest in Corsican pine and Douglas fir plantations.
    [Show full text]
  • CZECH MYCOLOGY Publication of the Czech Scientific Society for Mycology
    CZECH MYCOLOGY Publication of the Czech Scientific Society for Mycology Volume 57 August 2005 Number 1-2 Central European genera of the Boletaceae and Suillaceae, with notes on their anatomical characters Jo s e f Š u t a r a Prosetická 239, 415 01 Tbplice, Czech Republic Šutara J. (2005): Central European genera of the Boletaceae and Suillaceae, with notes on their anatomical characters. - Czech Mycol. 57: 1-50. A taxonomic survey of Central European genera of the families Boletaceae and Suillaceae with tubular hymenophores, including the lamellate Phylloporus, is presented. Questions concerning the delimitation of the bolete genera are discussed. Descriptions and keys to the families and genera are based predominantly on anatomical characters of the carpophores. Attention is also paid to peripheral layers of stipe tissue, whose anatomical structure has not been sufficiently studied. The study of these layers, above all of the caulohymenium and the lateral stipe stratum, can provide information important for a better understanding of relationships between taxonomic groups in these families. The presence (or absence) of the caulohymenium with spore-bearing caulobasidia on the stipe surface is here considered as a significant ge­ neric character of boletes. A new combination, Pseudoboletus astraeicola (Imazeki) Šutara, is proposed. Key words: Boletaceae, Suillaceae, generic taxonomy, anatomical characters. Šutara J. (2005): Středoevropské rody čeledí Boletaceae a Suillaceae, s poznámka­ mi k jejich anatomickým znakům. - Czech Mycol. 57: 1-50. Je předložen taxonomický přehled středoevropských rodů čeledí Boletaceae a. SuiUaceae s rourko- vitým hymenoforem, včetně rodu Phylloporus s lupeny. Jsou diskutovány otázky týkající se vymezení hřibovitých rodů. Popisy a klíče k čeledím a rodům jsou založeny převážně na anatomických znacích plodnic.
    [Show full text]
  • Forest Fungi in Ireland
    FOREST FUNGI IN IRELAND PAUL DOWDING and LOUIS SMITH COFORD, National Council for Forest Research and Development Arena House Arena Road Sandyford Dublin 18 Ireland Tel: + 353 1 2130725 Fax: + 353 1 2130611 © COFORD 2008 First published in 2008 by COFORD, National Council for Forest Research and Development, Dublin, Ireland. All rights reserved. No part of this publication may be reproduced, or stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying recording or otherwise, without prior permission in writing from COFORD. All photographs and illustrations are the copyright of the authors unless otherwise indicated. ISBN 1 902696 62 X Title: Forest fungi in Ireland. Authors: Paul Dowding and Louis Smith Citation: Dowding, P. and Smith, L. 2008. Forest fungi in Ireland. COFORD, Dublin. The views and opinions expressed in this publication belong to the authors alone and do not necessarily reflect those of COFORD. i CONTENTS Foreword..................................................................................................................v Réamhfhocal...........................................................................................................vi Preface ....................................................................................................................vii Réamhrá................................................................................................................viii Acknowledgements...............................................................................................ix
    [Show full text]
  • A Synopsis of the Saddle Fungi (Helvella: Ascomycota) in Europe – Species Delimitation, Taxonomy and Typification
    Persoonia 39, 2017: 201–253 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/persoonia.2017.39.09 A synopsis of the saddle fungi (Helvella: Ascomycota) in Europe – species delimitation, taxonomy and typification I. Skrede1,*, T. Carlsen1, T. Schumacher1 Key words Abstract Helvella is a widespread, speciose genus of large apothecial ascomycetes (Pezizomycete: Pezizales) that are found in terrestrial biomes of the Northern and Southern Hemispheres. This study represents a beginning on molecular phylogeny assessing species limits and applying correct names for Helvella species based on type material and specimens in the Pezizales university herbaria (fungaria) of Copenhagen (C), Harvard (FH) and Oslo (O). We use morphology and phylogenetic systematics evidence from four loci – heat shock protein 90 (hsp), translation elongation factor alpha (tef), RNA polymerase II (rpb2) and the nuclear large subunit ribosomal DNA (LSU) – to assess species boundaries in an expanded sample of Helvella specimens from Europe. We combine the morphological and phylogenetic information from 55 Helvella species from Europe with a small sample of Helvella species from other regions of the world. Little intraspecific variation was detected within the species using these molecular markers; hsp and rpb2 markers provided useful barcodes for species delimitation in this genus, while LSU provided more variable resolution among the pertinent species. We discuss typification issues and identify molecular characteristics for 55 European Helvella species, designate neo- and epitypes for 30 species, and describe seven Helvella species new to science, i.e., H. alpicola, H. alpina, H. carnosa, H. danica, H. nannfeldtii, H. pubescens and H.
    [Show full text]
  • Introduction Materials and Methods Results
    Journal of Applied Biological Sciences 6 (3): 31-33, 2012 ISSN: 1307-1130, E-ISSN: 2146-0108, www.nobel.gen.tr Two New Helvella Records For Turkish Mycobiota Ilgaz AKATA1 Abdullah KAYA2* 1Ankara University, Science Faculty, Department of Biology, Ankara, TURKEY 2Karamanoglu Mehmetbey University, Kamil Özdag Science Faculty, Department of Biology, Karaman, TURKEY *Corresponding Author Received: April 10, 2012 e-mail:[email protected] Accepted: May 15, 2012 Abstract Two Helvella species, Helvella macropus (Pers.) P. Karst and H. pezizoides Afzel. are given as new records for Turkey. Short descriptions and photographs related to macro and micromorphologies of the species are provided and discussed briefly. Keywords: Helvella, biodiversity, macrofungi, new records, Turkey INTRODUCTION MATERIALS AND METHODS Helvella, commonly known as elfin saddles or false morels, Macrofungi samples were collected from Yomra district is a genus of the family Helvellaceae (Ascomycota) [1]. The of Trabzon province (Turkey) in 2011. During field study, members of the genus, are characterized by sub sessile or necessary morphological and ecological features of the stipitate fruiting body, cup to saddle shaped apothecia, smooth, specimens were recorded and they were photographed in wavy or wrinkled hymenium, 1-2 mm thick flesh, operculate to their natural habitats. Then the samples were taken to the nonamyloid asci, and cylindrical and tapering or grooved and laboratory for further investigation. Some reagents (distilled ribbed stem, ellipsoid to fusoid, hyaline, smooth to verrucose water, Melzer’s reagent, 5% KOH) were used for microscopic spores with one large central oil droplet [2]. investigation. Microphotographs were taken under a Leica DM The genus, which was erected by Linnaeus in 1753 to 1000 light microscope.
    [Show full text]
  • Fungal Genomes Tell a Story of Ecological Adaptations
    Folia Biologica et Oecologica 10: 9–17 (2014) Acta Universitatis Lodziensis Fungal genomes tell a story of ecological adaptations ANNA MUSZEWSKA Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland E-mail: [email protected] ABSTRACT One genome enables a fungus to have various lifestyles and strategies depending on environmental conditions and in the presence of specific counterparts. The nature of their interactions with other living and abiotic elements is a consequence of their osmotrophism. The ability to degrade complex compounds and especially plant biomass makes them a key component of the global carbon circulation cycle. Since the first fungal genomic sequence was published in 1996 mycology has benefited from the technolgical progress. The available data create an unprecedented opportunity to perform massive comparative studies with complex study design variants targeted at all cellular processes. KEY WORDS: fungal genomics, osmotroph, pathogenic fungi, mycorrhiza, symbiotic fungi, HGT Fungal ecology is a consequence of osmotrophy Fungi play a pivotal role both in encountered as leaf endosymbionts industry and human health (Fisher et al. (Spatafora et al. 2007). Since fungi are 2012). They are involved in biomass involved in complex relationships with degradation, plant and animal infections, other organisms, their ecological fermentation and chemical industry etc. repertoire is reflected in their genomes. They can be present in the form of The nature of their interactions with other resting spores, motile spores, amebae (in organisms and environment is defined by Cryptomycota, Blastocladiomycota, their osmotrophic lifestyle. Nutrient Chytrydiomycota), hyphae or fruiting acquisition and communication with bodies. The same fungal species symbionts and hosts are mediated by depending on environmental conditions secreted molecules.
    [Show full text]
  • Description and Identification of Ostryopsis Davidiana Ectomycorrhizae in Inner Mongolia Mountain Forest of China
    Österr. Z. Pilzk. 26 (2017) – Austrian J. Mycol. 26 (2017) 17 Description and identification of Ostryopsis davidiana ectomycorrhizae in Inner Mongolia mountain forest of China QING-ZHI YAO1 WEI YAN2 HUI-YING ZHAO1 JIE WEI2 1 Life Science College 2 Forestry College Inner Mongolia Agriculture University Huhhot, 010018, P. R. China Email: [email protected] Accepted 27. March 2017. © Austrian Mycological Society, published online 23. August 2017 YAO, Q.-Z., YAN, W., ZHAO, H.-Y., WEI, J., 2017: Description and identification of Ostryopsis davidi- ana ectomycorrhizae in Inner Mongolia mountain forest of China. – Austrian J. Mycol. 26: 17–25. Key words: ECM, Mountain forest, Ostryopsis davidiana, morpho-anatomical features. Abstract: The ectomycorrhizal (ECM) fungal composition and anatomical structures of root samples of the shrub Ostryopsis davidiana were examined. The root samples were collected from two plots in the Daqing Mountain and Han Mountain around Hohhot, Inner Mongolia of China. Basing on mor- pho-anatomical features of the samples, we have got totally 12 ECM morphotypes. Twelve fungal taxa were identified via sequencing of the internal transcribed spacer region of their nuclear rDNA. Nine species are Basidiomycotina, incl. Thelephoraceae (Tomentella), Cortinariaceae (Inocybe and Cortinarius), Tremellaceae (Sebacina), Russulaceae (Lactarius), and Tricholomataceae (Tricholoma), three Ascomycotina, incl. Elaphomycetaceae (Cenococcum), Tuberaceae (Tuber), and Pyronema- taceae (Wilcoxina). Cenococcum geophilum was the dominant species in O. davidiana. The three To- mentella and the two Inocybe ECMF of O. davidiana are very common in Inner Mongolia. Zusammenfassung: Die Pilzdiversität der Ektomykorrhiza (ECM) und deren anatomische Strukturen von Wurzelproben des Strauches Ostryopsis davidiana wurden untersucht. Die Wurzelproben wurden aus zwei Untersuchungsflächen im Daqing Berg und Han Berg nahe Hohhot, Innere Mongolei, China, gesammelt.
    [Show full text]
  • Behaviour in Cultures and Habitat Requirements of Species Within the Genera Loreleia and Rickenella (Agaricales)
    ACTA MYCOLOGICA Dedicated to Professor Alina Skirgiełło Vol. 41 (2): 189-208 on the occasion of her ninety-fifth birthday 2006 Behaviour in cultures and habitat requirements of species within the genera Loreleia and Rickenella (Agaricales) ANDREAS BRESINSKY and ANGELIKA SCHÖTZ Institute of Botany, Regensburg University D-93040 Regensburg, [email protected] Bresinsky A., Schötz A.: Behaviour in cultures and habitat requirements of species within the genera Loreleia and Rickenella (Agaricales). Acta Mycol. 41 (2): 189-208, 2006. The term eco-geogram is introduced for surveying (in logical order) ecological and geographical data connected with fungal species. The database PILZOEK was established for that purpose. Eco-geograms are provided in this paper as an example for data retrieval from PILZOEK concerning the agarics Loreleia marchantiae, L. postii, Rickenella swartzii and R. fibula. The potential degree of endangerment is discussed in regard to habitat requirements. European species of Loreleia are not regarded to be endangered in Central Europe, although the risk to get threatened, because of low frequency of fruit body occurrence and quite a narrow substrate specialization, could be higher than in case of Rickenella fibula and R. swartzii. Cultures of Rickenella fibula, R. swartzii, Loreleia marchantiae (= Gerronema daamsii) and L. postii were investigated in regard to pigment accumulation, chlamydospore formation and some other characters. Key words: eco-geogram, Rickenella, Loreleia, habitats, substrates, cultures, endangerment INTRODUCTION The genera Loreleia and Rickenella emerged taxonomically from the genus Ger- ronema in its broader sense, as it was originally interpreted by Singer 1986. Various contributions to the generic concept brought evidence to the assumption that Ger- ronema in the sense of Singer (1986) represents an artificial assemblage of species.
    [Show full text]
  • Composition and Specialization of the Lichen Functional Traits in a Primeval Forest—Does Ecosystem Organization Level Matter?
    Article Composition and Specialization of the Lichen Functional Traits in a Primeval Forest—Does Ecosystem Organization Level Matter? Anna Łubek 1,*, Martin Kukwa 2 , Bogdan Jaroszewicz 3 and Patryk Czortek 3 1 Division of Environmental Biology, Institute of Biology, The Jan Kochanowski University in Kielce, Uniwersytecka 7, PL-25-406 Kielce, Poland 2 Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gda´nsk, Wita Stwosza 59, PL-80-308 Gda´nsk,Poland; [email protected] 3 Białowieza˙ Geobotanical Station, Faculty of Biology, University of Warsaw, Sportowa 19, PL-17-230 Białowieza,˙ Poland; [email protected] (B.J.); [email protected] (P.C.) * Correspondence: [email protected] Abstract: Current trends emphasize the importance of the examination of the functional composition of lichens, which may provide information on the species realized niche diversity and community assembly processes, thus enabling one to understand the specific adaptations of lichens and their interaction with the environment. We analyzed the distribution and specialization of diverse mor- phological, anatomical and chemical (lichen secondary metabolites) traits in lichen communities in a close-to-natural forest of lowland Europe. We considered these traits in relation to three levels of forest ecosystem organization: forest communities, phorophyte species and substrates, in order to recognize the specialization of functional traits to different levels of the forest complexity. Traits related to the sexual reproduction of mycobionts (i.e., ascomata types: lecanoroid apothecia, lecideoid Citation: Łubek, A.; Kukwa, M.; apothecia, arthonioid apothecia, lirellate apothecia, stalked apothecia and perithecia) and asexual Jaroszewicz, B.; Czortek, P.
    [Show full text]