Crashworthiness of High Speed Rail Systems

Total Page:16

File Type:pdf, Size:1020Kb

Crashworthiness of High Speed Rail Systems CRASHWORTHINESS OF HIGH-SPEED RAIL SYSTEMS A thesis Submitted by Laura Sullivan In partial fulfillment of the requirements For the degree of Master of Science In Mechanical Engineering TUFTS UNIVERSITY November 2011 Adviser: Professor Douglas Matson i Abstract Rail crashworthiness research focuses on the ability of passenger rail equipment to protect its occupants in the event of a collision. The goal of this research is to explore current high-speed trainsets and determine the level of structural crashworthiness they can provide to the occupant. One of the most effective ways of providing structural crashworthiness is through crash energy management. A crash energy management system (CEM) utilizes energy absorbing crushable elements and a strong vehicle structure to disperse collision energy in a controlled manner and provide protection to passengers. A survey of high-speed rail systems currently in operation was performed to determine appropriate equipment characteristics. An appropriate collision scenario was selected by reviewing accidents involving high speed equipment. Occupant safety was assessed by examining the performance of the equipment in the chosen collision scenario by using a one-dimensional lumped-parameter collision dynamics model to simulate a series of collisions. The features of interest are the energy absorbing capacity of the crush zone and the strength of the occupied volume and the influence that each of these features has on structural crashworthiness. Key results examined include the maximum collision speed without loss of occupant space, the distribution of crush throughout the cars of the train, and the severity of the deceleration experienced by the passengers. ii Table of Contents List of Appendices .....................................................................................iv List of Tables .............................................................................................iv List of Figures............................................................................................iv 1. Introduction......................................................................................... 1 2. Background ........................................................................................ 5 2.1. How is Structural Crashworthiness Achieved.............................. 7 2.1.1. Previous Research .................................................................. 9 2.1.2. Existing Technology............................................................... 17 2.2. Analysis Techniques ................................................................. 21 2.3. Analysis Goals .......................................................................... 22 3. Approach.......................................................................................... 24 3.1. Force-Displacement Characteristics.......................................... 28 3.1.1. Baseline Force-Displacement Characteristics.................... 30 3.1.2. Energy Adjustment............................................................. 36 3.1.2.1. Stroke Length Strategy................................................... 36 3.1.2.2. Force Level Strategy ...................................................... 39 3.1.3. Crippling Load Adjustment ................................................. 42 3.2. Safety Performance Assessment .............................................. 45 4. Results and Discussion .................................................................... 47 4.1. Safe Speed ............................................................................... 48 4.1.1. Energy Capacity Adjustment - Stroke Length Strategy ...... 50 4.1.2. Energy Capacity Adjustment - Force Level Strategy.......... 51 4.1.3. Crippling Load Adjustments – Cars of Equal Strength ....... 52 4.1.4. Crippling Load Adjustments – Stronger Leading Car ......... 56 4.1.5. Safe Speed Summary ........................................................ 57 4.2. SIV ............................................................................................ 58 4.2.1. SIV Results – Stroke Length Strategy................................ 60 4.2.2. SIV Results – Force Level Strategy ................................... 61 4.2.3. SIV Summary..................................................................... 62 4.3. CEM Utilization.......................................................................... 63 4.3.1. Energy Utilization – Stroke Length Strategy....................... 65 4.3.2. Energy Utilization– Force Level Strategy ........................... 66 4.3.3. Utilization Summary ........................................................... 67 iii 5. Summary.......................................................................................... 68 6. Conclusions...................................................................................... 71 List of Appendices Appendix 1: Force-Displacement Characteristics of Vehicle Structures .. 74 Appendix 2: CEM Equipment Survey ...................................................... 87 Appendix 3: Force – Displacement Approximations .............................. 101 Appendix 4: Accident Survey................................................................. 107 List of Tables Table 1: Crush Zone Energy Capacities - Stroke Length Adjustments.... 38 Table 2: Crush Zone Energy Capacities - Force Level Adjustments ....... 41 Table 3: Crippling Load Combinations Analyzed..................................... 44 Table 4: Allowable Crush at Each End .................................................... 50 Table 5: Safe Speed Results................................................................... 56 Table 6: Summary of High Speed Equipment Composition..................... 99 Table 7: Summary of High Speed Equipment CEM information............ 100 Table 8: Summary of Accident Survey .................................................. 122 List of Figures Figure 1: TGV Duplex Schematic ............................................................ 19 Figure 2: Acela Schematic....................................................................... 20 Figure 3: Collision Schematic .................................................................. 25 Figure 4: Trainset Schematic with Locations labeled............................... 27 Figure 5: Crush Zone Schematic............................................................. 28 Figure 6: Generic Force-Displacement Characteristic ............................. 29 Figure 7: Draft Gear Force-Displacement................................................ 30 Figure 8: Collision-end Pushback Coupler Force-Displacement.............. 31 Figure 9: Baseline Collision-end PEA Force-Displacement..................... 33 Figure 10: Baseline Occupant Volume Force-Displacement ................... 34 Figure 11: Baseline CEM System Force-Displacement........................... 35 Figure 12: Stroke Length Adjustments .................................................... 37 Figure 13: Force Level Adjustments ........................................................ 39 Figure 14: Crippling Load Adjustments.................................................... 42 Figure 15: Allowable Crush v. Occupant Volume Intrusion...................... 45 Figure 16: Crush Results for the Baseline Case at 26 mph..................... 49 Figure 17: Stroke Length Adjustment Strategy........................................ 51 Figure 18: Force Level Adjustment Strategy ........................................... 52 Figure 19: Crippling Load Adjustments to Baseline Energy Capacity...... 53 Figure 20: Variations in Crippling Load and Stroke Length ..................... 54 iv Figure 21: Variations in Crippling Load and Energy Absorber Force Level ................................................................................................................ 55 Figure 22: Relative Acceleration of Passengers within the Trainset........ 60 Figure 23: SIV Results at 3 ft – Stroke Length Adjustments................... 61 Figure 24: SIV Results at 3 ft –Force Level Adjustments ........................ 62 Figure 25: Baseline System Energy Utilized at Safe Speed .................... 64 Figure 26: CEM Utilization – Stroke Length Adjustment Strategy............ 65 Figure 27: CEM Utilization – Force Level Adjustment Strategy ............... 66 Figure 28: Safe Speed Results – Strategy Comparison .......................... 67 Figure 29: Example Force Displacement Collision Dynamics Input......... 74 Figure 30: Example Acceleration for Vehicle CG in a collision ................ 75 Figure 31: Force Applied to a Spring-Mass system ................................. 76 Figure 32: Force Applied to an Expanded Spring-Mass System ............. 77 Figure 33: Relative Force Displacement Behavior................................... 78 Figure 34: Increasing Stages of the Crush Zone ..................................... 79 Figure 35: Activation Force...................................................................... 80 Figure 36: Sloped Force Level................................................................. 81 Figure 37: Drop out in Force.................................................................... 82 Figure 38: Energy Absorbed by the Crush Zone ..................................... 83 Figure 39: Draft Gear and Coupler Schematics....................................... 84 Figure 40: Components of the Crush Zone ............................................. 85 Figure 41: The Crush Zone and Occupied Volume ................................
Recommended publications
  • Mezinárodní Komparace Vysokorychlostních Tratí
    Masarykova univerzita Ekonomicko-správní fakulta Studijní obor: Hospodářská politika MEZINÁRODNÍ KOMPARACE VYSOKORYCHLOSTNÍCH TRATÍ International comparison of high-speed rails Diplomová práce Vedoucí diplomové práce: Autor: doc. Ing. Martin Kvizda, Ph.D. Bc. Barbora KUKLOVÁ Brno, 2018 MASARYKOVA UNIVERZITA Ekonomicko-správní fakulta ZADÁNÍ DIPLOMOVÉ PRÁCE Akademický rok: 2017/2018 Studentka: Bc. Barbora Kuklová Obor: Hospodářská politika Název práce: Mezinárodní komparace vysokorychlostích tratí Název práce anglicky: International comparison of high-speed rails Cíl práce, postup a použité metody: Cíl práce: Cílem práce je komparace systémů vysokorychlostní železniční dopravy ve vybra- ných zemích, následné určení, který z modelů se nejvíce blíží zamýšlené vysoko- rychlostní dopravě v České republice, a ze srovnání plynoucí soupis doporučení pro ČR. Pracovní postup: Předmětem práce bude vymezení, kategorizace a rozčlenění vysokorychlostních tratí dle jednotlivých zemí, ze kterých budou dle zadaných kritérií vybrány ty státy, kde model vysokorychlostních tratí alespoň částečně odpovídá zamýšlenému sys- tému v ČR. Následovat bude vlastní komparace vysokorychlostních tratí v těchto vybraných státech a aplikace na český dopravní systém. Struktura práce: 1. Úvod 2. Kategorizace a členění vysokorychlostních tratí a stanovení hodnotících kritérií 3. Výběr relevantních zemí 4. Komparace systémů ve vybraných zemích 5. Vyhodnocení výsledků a aplikace na Českou republiku 6. Závěr Rozsah grafických prací: Podle pokynů vedoucího práce Rozsah práce bez příloh: 60 – 80 stran Literatura: A handbook of transport economics / edited by André de Palma ... [et al.]. Edited by André De Palma. Cheltenham, UK: Edward Elgar, 2011. xviii, 904. ISBN 9781847202031. Analytical studies in transport economics. Edited by Andrew F. Daughety. 1st ed. Cambridge: Cambridge University Press, 1985. ix, 253. ISBN 9780521268103.
    [Show full text]
  • English/Presidencia/Noticias/Noticia Visualiza.Php?Id Noticia=1497&Id Pagina=1 173 Yap, Lorene (1976)
    Report No. 62905-RU. Public Disclosure Authorized RUSSIA Reshaping Economic Geography Public Disclosure Authorized Public Disclosure Authorized June 2011 Poverty Reduction and Economic Management Unit Public Disclosure Authorized Document of the World Bank Europe and Central Asia Region Table of Contents ACKNOWLEDGEMENTS ..........................................................................4 EXECUTIVE SUMMARY ...........................................................................7 SPOTLIGHT 1: FROM YALTA TO YEKATERINBURG ....................................... 20 CHAPTER 1. RUSSIA TODAY ............................................................. 23 SPOTLIGHT 2: AT THE END OF WORLD WAR II .......................................... 30 CHAPTER 2. A MODERN RUSSIA ....................................................... 34 SPOTLIGHT 3: AT THE END OF THE COLD WAR .......................................... 52 CHAPTER 3. A DIVERSIFIED RUSSIA .................................................. 58 SPOTLIGHT 4: AT THE END OF THE TRANSITION ......................................... 80 CHAPTER 4. A COMPETITIVE RUSSIA ................................................ 87 CHAPTER 5. A PROSPEROUS RUSSIA ............................................... 112 ANNEX .......................................................................................... 120 BIBLIOGRAPHY ................................................................................ 132 2 | P a g e LIST OF TABLES Table 1. Key Country Size and Economic Indicators, Russia and Six Comparator
    [Show full text]
  • Scheduling of Ticket Inspectors in Deutsche Bahn Inter-City Express Trains∗
    Scheduling of Ticket Inspectors in Deutsche Bahn Inter-City Express Trains∗ Nathan May1, Hai Nguyen2, and Ruby Abrams3 1Department of Mathematics, Washington State University, U.S.A. 2School of Computer Science, University of Birmingham, U.K. 3Department of Mathematics, University of Arizona, U.S.A. August 15, 2019 We study the underdeveloped Inspector Scheduling Problem. The Deutsche Bahn want to to maximise the number of passenger tickets inspected given already set train schedules with their limited resources, the passenger ticket inspectors. We formulate this problem as a network flow and implement this as a Mixed Integer Programme. We account for lack of data by estimating Origin-Destination Matrices and discuss complexity of the problem. We obtain empirical results of run time of the algorithm as a function of number of inspectors and conjecture that this problem is NP-hard. We also propose heuristic methods to solve this problem. Abstract Contents 1 Introduction 2 1.1 Motivations . .2 1.2 Related Work . .3 1.3 Our Contributions . .4 1.4 Outline of Paper . .5 ∗This work was done when the three authors joined the G-RIPS 2019 Team at Zuse Institute Berlin, working on the mobile ticket inspection project sponsored in part by the Deutsche Bahn Railway Company. All authors contributed equally to this project. 1 2 Preliminaries 5 2.1 Problem Definition . .6 2.2 Dataset . .6 2.3 Assumptions and Simplifications . .7 3 Mathematical model 8 3.1 Notation . .8 3.2 Graph Representation . .8 3.3 Origin-Destination Matrix . .9 3.4 The Mixed Integer Program . 12 3.4.1 Probability of passenger inspection .
    [Show full text]
  • AGV FULL SPEED AHEAD INTO the 21ST CENTURY in the 21St Century, Very High Speed Rail Is Emerging As a Leading Means of Travel for Distances of up to 1000Km
    AGV FULL SPEED AHEAD INTO THE 21ST CENTURY In the 21st century, very high speed rail is emerging as a leading means of travel for distances of up to 1000km. The AGV in final assembly in our La Rochelle facility: placing the lead car on bogies ALSTOM’S 21ST CENTURY RESPONSE INTERNATIONAL OPPORTUNITY KNOCKS AGV, INNOVATION WITH A CLEAR PURPOSE Clean-running very high speed rail offers clear economic and The AGV is designed for the world’s expanding market in very high environmental advantages over fossil-fuel powered transportation. speed rail. It allows you to carry out daily operations at 360 km/h in total It also guarantees much greater safety and security along with high safety, while providing passengers with a broad new range of onboard operational flexibility: a high speed fleet can be easily configured and amenities. reconfigured in its operator’s service image, whether it is being acquired With responsible energy consumption a key considera- to create a new rail service or to complement or compete with rail and The single-deck AGV, along with the double-deck TGV Duplex, bring tion in transportation, very high speed rail is emerging airline operations. operators flexibility and capacity on their national or international itineraries. Solidly dependable, the AGV delivers life-long superior as a serious contender for market-leading positions in Major technological advances in rail are helping to open these new performance (15% lower energy consumption over competition) while business prospects. As new national and international opportunities assuring lower train ownership costs from initial investment through the competition between rail, road and air over distances arise, such advances will enable you to define the best direction for your operating and maintenance.
    [Show full text]
  • Federal Railroad Administration Office of Safety Headquarters Assigned Accident Investigation Report HQ-2006-88
    Federal Railroad Administration Office of Safety Headquarters Assigned Accident Investigation Report HQ-2006-88 Union Pacific Midas, CA November 9, 2006 Note that 49 U.S.C. §20903 provides that no part of an accident or incident report made by the Secretary of Transportation/Federal Railroad Administration under 49 U.S.C. §20902 may be used in a civil action for damages resulting from a matter mentioned in the report. DEPARTMENT OF TRANSPORTATION FRA FACTUAL RAILROAD ACCIDENT REPORT FRA File # HQ-2006-88 FEDERAL RAILROAD ADMINISTRATION 1.Name of Railroad Operating Train #1 1a. Alphabetic Code 1b. Railroad Accident/Incident No. Union Pacific RR Co. [UP ] UP 1106RS011 2.Name of Railroad Operating Train #2 2a. Alphabetic Code 2b. Railroad Accident/Incident N/A N/A N/A 3.Name of Railroad Responsible for Track Maintenance: 3a. Alphabetic Code 3b. Railroad Accident/Incident No. Union Pacific RR Co. [UP ] UP 1106RS011 4. U.S. DOT_AAR Grade Crossing Identification Number 5. Date of Accident/Incident 6. Time of Accident/Incident Month Day Year 11 09 2006 11:02: AM PM 7. Type of Accident/Indicent 1. Derailment 4. Side collision 7. Hwy-rail crossing 10. Explosion-detonation 13. Other (single entry in code box) 2. Head on collision 5. Raking collision 8. RR grade crossing 11. Fire/violent rupture (describe in narrative) 3. Rear end collision 6. Broken Train collision 9. Obstruction 12. Other impacts 01 8. Cars Carrying 9. HAZMAT Cars 10. Cars Releasing 11. People 12. Division HAZMAT Damaged/Derailed HAZMAT Evacuated 0 0 0 0 Roseville 13. Nearest City/Town 14.
    [Show full text]
  • Pioneering the Application of High Speed Rail Express Trainsets in the United States
    Parsons Brinckerhoff 2010 William Barclay Parsons Fellowship Monograph 26 Pioneering the Application of High Speed Rail Express Trainsets in the United States Fellow: Francis P. Banko Professional Associate Principal Project Manager Lead Investigator: Jackson H. Xue Rail Vehicle Engineer December 2012 136763_Cover.indd 1 3/22/13 7:38 AM 136763_Cover.indd 1 3/22/13 7:38 AM Parsons Brinckerhoff 2010 William Barclay Parsons Fellowship Monograph 26 Pioneering the Application of High Speed Rail Express Trainsets in the United States Fellow: Francis P. Banko Professional Associate Principal Project Manager Lead Investigator: Jackson H. Xue Rail Vehicle Engineer December 2012 First Printing 2013 Copyright © 2013, Parsons Brinckerhoff Group Inc. All rights reserved. No part of this work may be reproduced or used in any form or by any means—graphic, electronic, mechanical (including photocopying), recording, taping, or information or retrieval systems—without permission of the pub- lisher. Published by: Parsons Brinckerhoff Group Inc. One Penn Plaza New York, New York 10119 Graphics Database: V212 CONTENTS FOREWORD XV PREFACE XVII PART 1: INTRODUCTION 1 CHAPTER 1 INTRODUCTION TO THE RESEARCH 3 1.1 Unprecedented Support for High Speed Rail in the U.S. ....................3 1.2 Pioneering the Application of High Speed Rail Express Trainsets in the U.S. .....4 1.3 Research Objectives . 6 1.4 William Barclay Parsons Fellowship Participants ...........................6 1.5 Host Manufacturers and Operators......................................7 1.6 A Snapshot in Time .................................................10 CHAPTER 2 HOST MANUFACTURERS AND OPERATORS, THEIR PRODUCTS AND SERVICES 11 2.1 Overview . 11 2.2 Introduction to Host HSR Manufacturers . 11 2.3 Introduction to Host HSR Operators and Regulatory Agencies .
    [Show full text]
  • Usability of the Sip Protocol Within Smart Home Solutions
    4 55 Jakub Hrabovsky - Pavel Segec - Peter Paluch Peter Czimmermann - Stefan Pesko - Jan Cerny Marek Moravcik - Jozef Papan USABILITY OF THE SIP PROTOCOL UNIFORM WORKLOAD DISTRIBUTION WITHIN SMART HOME SOLUTIONS PROBLEMS 13 59 Ivan Cimrak - Katarina Bachrata - Hynek Bachraty Lubos Kucera, Igor Gajdac, Martin Mruzek Iveta Jancigova - Renata Tothova - Martin Busik SIMULATION OF PARAMETERS Martin Slavik - Markus Gusenbauer OBJECT-IN-FLUID FRAMEWORK INFLUENCING THE ELECTRIC VEHICLE IN MODELING OF BLOOD FLOW RANGE IN MICROFLUIDIC CHANNELS 64 21 Peter Pechac - Milan Saga - Ardeshir Guran Jaroslav Janacek - Peter Marton - Matyas Koniorczyk Leszek Radziszewski THE COLUMN GENERATION AND TRAIN IMPLEMENTATION OF MEMETIC CREW SCHEDULING ALGORITHMS INTO STRUCTURAL OPTIMIZATION 28 Martina Blaskova - Rudolf Blasko Stanislaw Borkowski - Joanna Rosak-Szyrocka 70 SEARCHING CORRELATIONS BETWEEN Marek Bruna - Dana Bolibruchova - Petr Prochazka COMMUNICATION AND MOTIVATION NUMERICAL SIMULATION OF MELT FILTRATION PROCESS 36 Michal Varmus - Viliam Lendel - Jakub Soviar Josef Vodak - Milan Kubina 75 SPORTS SPONSORING – PART Radoslav Konar - Marek Patek - Michal Sventek OF CORPORATE STRATEGY NUMERICAL SIMULATION OF RESIDUAL STRESSES AND DISTORTIONS 42 OF T-JOINT WELDING FOR BRIDGE Viliam Lendel - Stefan Hittmar - Wlodzimierz Sroka CONSTRUCTION APPLICATION Eva Siantova IDENTIFICATION OF THE MAIN ASPECTS OF INNOVATION MANAGEMENT 81 AND THE PROBLEMS ARISING Alexander Rengevic – Darina Kumicakova FROM THEIR MISUNDERSTANDING NEW POSSIBILITIES OF ROBOT ARM MOTION SIMULATION
    [Show full text]
  • Numerical Investigation on the Aerodynamic Characteristics of High-Speed Train Under Turbulent Crosswind
    J. Mod. Transport. (2014) 22(4):225–234 DOI 10.1007/s40534-014-0058-7 Numerical investigation on the aerodynamic characteristics of high-speed train under turbulent crosswind Mulugeta Biadgo Asress • Jelena Svorcan Received: 4 March 2014 / Revised: 12 July 2014 / Accepted: 15 July 2014 / Published online: 12 August 2014 Ó The Author(s) 2014. This article is published with open access at Springerlink.com Abstract Increasing velocity combined with decreasing model were in good agreement with the wind tunnel data. mass of modern high-speed trains poses a question about Both the side force coefficient and rolling moment coeffi- the influence of strong crosswinds on its aerodynamics. cients increase steadily with yaw angle till about 50° before Strong crosswinds may affect the running stability of high- starting to exhibit an asymptotic behavior. Contours of speed trains via the amplified aerodynamic forces and velocity magnitude were also computed at different cross- moments. In this study, a simulation of turbulent crosswind sections of the train along its length for different yaw flows over the leading and end cars of ICE-2 high-speed angles. The result showed that magnitude of rotating vortex train was performed at different yaw angles in static and in the lee ward side increased with increasing yaw angle, moving ground case scenarios. Since the train aerodynamic which leads to the creation of a low-pressure region in the problems are closely associated with the flows occurring lee ward side of the train causing high side force and roll around train, the flow around the train was considered as moment.
    [Show full text]
  • Disposición 2198 Del BOE Núm. 50 De 2013
    BOLETÍN OFICIAL DEL ESTADO Núm. 50 Miércoles 27 de febrero de 2013 Sec. III. Pág. 15921 III. OTRAS DISPOSICIONES MINISTERIO DE EMPLEO Y SEGURIDAD SOCIAL 2198 Resolución de 8 de febrero de 2013, de la Dirección General de Empleo, por la que se registra y publica del acuerdo de incorporar como anexo I los acuerdos de desarrollo profesional de RENFE-Operadora, conforme establece la cláusula 4.ª del II Convenio colectivo. Visto el acta de 22 de enero de 2013 en la que se contiene el acuerdo de incorporar como anexo I los acuerdos alcanzados de desarrollo profesional de la empresa RENFE- Operadora, conforme establece la cláusula 4.ª del II Convenio colectivo publicado en el «BOE» de 18 de enero de 2013, (código de convenio n.º 90017022012008) que fue suscrita, de una parte por los designados por la Dirección de la empresa en representación de la misma, y de otra por el Comité General de Empresa, en representación de los trabajadores, y de conformidad con lo dispuesto en el artículo 90, apartados 2 y 3, de la Ley del Estatuto de los Trabajadores, Texto Refundido aprobado por Real Decreto Legislativo 1/1995, de 24 de marzo, y en el Real Decreto 713/2010, de 28 de mayo, sobre registro y depósito de convenios y acuerdos colectivos de trabajo, Esta Dirección General de Empleo resuelve: Primero. Ordenar la inscripción de la citada acta en el correspondiente Registro de convenios y acuerdos colectivos de trabajo con funcionamiento a través de medios electrónicos de este Centro directivo, con notificación a la Comisión Paritaria.
    [Show full text]
  • Bilevel Rail Car - Wikipedia
    Bilevel rail car - Wikipedia https://en.wikipedia.org/wiki/Bilevel_rail_car Bilevel rail car The bilevel car (American English) or double-decker train (British English and Canadian English) is a type of rail car that has two levels of passenger accommodation, as opposed to one, increasing passenger capacity (in example cases of up to 57% per car).[1] In some countries such vehicles are commonly referred to as dostos, derived from the German Doppelstockwagen. The use of double-decker carriages, where feasible, can resolve capacity problems on a railway, avoiding other options which have an associated infrastructure cost such as longer trains (which require longer station Double-deck rail car operated by Agence métropolitaine de transport platforms), more trains per hour (which the signalling or safety in Montreal, Quebec, Canada. The requirements may not allow) or adding extra tracks besides the existing Lucien-L'Allier station is in the back line. ground. Bilevel trains are claimed to be more energy efficient,[2] and may have a lower operating cost per passenger.[3] A bilevel car may carry about twice as many as a normal car, without requiring double the weight to pull or material to build. However, a bilevel train may take longer to exchange passengers at each station, since more people will enter and exit from each car. The increased dwell time makes them most popular on long-distance routes which make fewer stops (and may be popular with passengers for offering a better view).[1] Bilevel cars may not be usable in countries or older railway systems with Bombardier double-deck rail cars in low loading gauges.
    [Show full text]
  • Guía De Servicios Ferroviarios Para Viajeros Con Discapacidad Guía De Servicios Ferroviarios Para Viajeros Con Discapacidad
    Guía de servicios ferroviarios para viajeros con discapacidad Guía de servicios ferroviarios para viajeros con discapacidad Edición mayo 2008 4 Nos dirigimos a viajeros… ¿Dónde reservo y compro el billete? ¿Qué debo hacer para solicitar el servicio de ayuda? 5 ¿Dónde y con qué antelación debo presentarme? 6 ¿Qué ventajas puedo obtener para realizar el viaje? Si uso silla de ruedas… ¿Qué clase de asistencia no podemos facilitarle? 7 Más información Recomendaciones 8 Estaciones y trenes accesibles Presentación En esta guía se recogen los servicios que se ofrecen a los viajeros con discapacidad con necesidades especiales relacionadas con su desplazamiento y el procedimiento a seguir para recibir asistencia en la realización de su viaje. Se trata de una versión actualizada y ampliada de la guía editada en julio de 2007, teniendo en cuenta las mejoras incorporadas en el servicio desde su puesta en funcionamiento: mayor número de estaciones y trenes accesibles, reducción de los tiempos de aviso de solicitud de la ayuda y servicios de ayuda inmediata, sin necesidad de aviso, en algunas de las principales estaciones. Esta guía representa un paso más dentro de la firme voluntad del Ministerio de Fomento por mejorar la accesibilidad en el modo ferroviario, reforzando su orientación como servicio público. Tanto Renfe como Adif, empresas públicas adscritas a dicho Ministerio, siguen avanzando, en el desarrollo de sus estrategias de Responsabilidad Social, en un proceso de mejora continua, desarrollando planes de accesibilidad en relación con las instalaciones y los trenes, siempre desde la premisa de la necesaria concertación con los agentes sociales implicados, con el objetivo de convertirse en el modo de transporte de referencia de las personas con discapacidad.
    [Show full text]
  • High Speed Rail and Sustainability High Speed Rail & Sustainability
    High Speed Rail and Sustainability High Speed Rail & Sustainability Report Paris, November 2011 2 High Speed Rail and Sustainability Author Aurélie Jehanno Co-authors Derek Palmer Ceri James This report has been produced by Systra with TRL and with the support of the Deutsche Bahn Environment Centre, for UIC, High Speed and Sustainable Development Departments. Project team: Aurélie Jehanno Derek Palmer Cen James Michel Leboeuf Iñaki Barrón Jean-Pierre Pradayrol Henning Schwarz Margrethe Sagevik Naoto Yanase Begoña Cabo 3 Table of contnts FOREWORD 1 MANAGEMENT SUMMARY 6 2 INTRODUCTION 7 3 HIGH SPEED RAIL – AT A GLANCE 9 4 HIGH SPEED RAIL IS A SUSTAINABLE MODE OF TRANSPORT 13 4.1 HSR has a lower impact on climate and environment than all other compatible transport modes 13 4.1.1 Energy consumption and GHG emissions 13 4.1.2 Air pollution 21 4.1.3 Noise and Vibration 22 4.1.4 Resource efficiency (material use) 27 4.1.5 Biodiversity 28 4.1.6 Visual insertion 29 4.1.7 Land use 30 4.2 HSR is the safest transport mode 31 4.3 HSR relieves roads and reduces congestion 32 5 HIGH SPEED RAIL IS AN ATTRACTIVE TRANSPORT MODE 38 5.1 HSR increases quality and productive time 38 5.2 HSR provides reliable and comfort mobility 39 5.3 HSR improves access to mobility 43 6 HIGH SPEED RAIL CONTRIBUTES TO SUSTAINABLE ECONOMIC DEVELOPMENT 47 6.1 HSR provides macro economic advantages despite its high investment costs 47 6.2 Rail and HSR has lower external costs than competitive modes 49 6.3 HSR contributes to local development 52 6.4 HSR provides green jobs 57
    [Show full text]