Manual for Lab #2

Total Page:16

File Type:pdf, Size:1020Kb

Manual for Lab #2 CE 321 INTRODUCTION TO FLUID MECHANICS Fall 2009 LABORATORY 3: THE BERNOULLI EQUATION OBJECTIVES To investigate the validity of Bernoulli's Equation as applied to the flow of water in a tapering horizontal tube to determine if the total pressure head remains constant along the length of the tube as the equation predicts. To determine if the variations in static pressure head along the length of the tube can be predicted with Bernoulli’s equation APPROACH Establish a constant flow rate (Q) through the tube and measure it. Use a pitot probe and static probe to measure the total pressure head h Tm and static pressure head h Sm at six locations along the length of the tube. The values of h Tm will show if total pressure head remains constant along the length of the tube as required by the Bernoulli Equation. Using the flow rate and cross sectional area of the tube, calculate the velocity head h Vc at each location. Use Bernoulli’s Equation, h Tm and h Vc to predict the variations in static pressure head h St expected along the tube. Compare the calculated and measured values of static pressure head to determine if the variations in fluid pressure along the length of the tube can be predicted with Bernoulli’s Equation. EQUIPMENT Hydraulic bench with Bernoulli apparatus, stop watch THEORY Considering flow at any two positions on the central streamline of the tube (Fig. 1), Bernoulli's equation may be written as V 2 p V 2 p 1 + 1 + z = 2 + 2 + z (1) 2g γ 1 2g γ 2 1 Bernoulli’s equation indicates that the sum of the velocity head (V 2/2g), pressure head (p/ γ), and elevation (z) are constant along the central streamline. As explained in the Appendix 1, Eq. 1 can be simplified for this apparatus. The tube is horizontal so z 1=z 2, and the pressure heads h 1= p 1/γ and h 2 = p 2/γ can be measured from a common arbitrary datum so that Bernoulli’s Equation simplifies to V 2 V 2 1 + h = 2 + h (2) 2g 1 2g 2 Note that the sum on either side of the equal sign is the total pressure head h T. If Bernoulli’s Eq. is correct, the total pressure head (h T)has the same value at all locations on the central streamline. This is not obvious since the narrowing tube causes the velocity to vary along the length of the tube. For Bernoulli’s Eq. to be true the pressure head must decrease as much as the velocity head increases in moving from point 1 to point 2. The pitot probe you will use measures the total pressure head h T of the fluid a short distance upstream of the probe’s tip. The probe’s tip must be positioned about 3mm downstream from point where the measurement is desired and oriented so that it opens directly into the flow (Fig.1). 2 Fig.1. Test section and manometer tubes The piezometers installed along the side of the tube measure static pressure head h Sm. PROCEDURE A. Familiarize yourself with the apparatus. B. Level the apparatus. C. Carefully fill the manometer tubes with water to flush all air pockets from the system and ensure all connecting pipes are free of air. With the pump on and the flow control valve closed, the top of the water columns in the manometer tubes should all be at the same elevation. For best results, this level should be set at approximately 150 mm. To lower the levels, attach the hand pump to the inlet valve and increase the air pressure (p oa ) in the chamber at the top of the manometer tubes. To raise the levels, lower p oa by releasing air at the inlet valve. 3 D. Make sure that all of the manometer tubes have their zero readings at the same elevation. If not, get help from your TA. E. The pitot probe can be positioned by loosening the gland nut and carefully moving the probe to the desired position. Before a reading is taken, the gland nut should be re-tightened by hand. F. Carefully adjust the bench supply control valve and the Bernoulli apparatus flow control valve to provide the combination of flow rate and system pressure (p oa ) which will give the largest convenient difference between the highest and lowest manometer levels. G. For a given valve setting (flow rate), do the following: 1. Measure volume and time so that you can determine flow rate. 2. With the pitot probe removed entirely from the tube’s test section, 3. Record each piezometer’s manometer reading. This is h Sm . 4. Move the tip of the pitot probe to a position about 3mm downstream of each piezometer tap and record the reading of the pitot probe manometer at each location. This is h Tm . 5. Repeat your measurements of volume and time to show that the flow rate has remained constant while you were making your measurements. 6. Repeat steps 1 to 4 for each of the three flow rates. 7. When finished, drain the apparatus. Make sure the pitot probe is completely inserted into the tube and the gland nut is tightened before leaving. 4 ANALYSIS A. Determine the three flow rates. • Use the volume-time data. 2 B. Calculate the velocity head h vc (Va 2/ g ) at each cross section. • Use each flow rate and the six cross-sectional areas of the tube to determine the average fluid velocity (V a=Q/A) at each measurement position along the length of the tube. The tube diameters at measurement sections are in Fig.3 Appendix2 C. Calculate the best estimate of the true value of h T in the tube. • Use the value of h Tm at point A in the converging section. D. Predict the variation of static pressure head h St along the length of the tube. • Use Bernoulli’s Equation to predict h St . • Use the measured values of total pressure head h Tm . • Use the calculated values of velocity head h Vc . E. Graph the values as a function of position along the tube. • Make one graph for each flow rate. • Make each graph the same size. • Use identical scales on all three graphs. • Show the measured values of total pressure head h Tm , static pressure head h Sm , and calculated values of velocity head h Vc on each graph . • Show the theoretical variation of h T. • Label the graphs so that the different heads are clearly identifiable. F. Consider what the measurements show happened in the converging section of the tube. • Look at the graphs and tables. 5 • Describe how measured total pressure head h Tm varied with distance in this region. • Compare the variation of h Tm with the theoretical variation of h Tt that Bernoulli’s Equation predicts. • Comment on whether this suggests that the assumptions made in deriving Bernoulli’s Equation are satisfied in this part of the tube. • Describe how measured static pressure head varied with distance in this region. • Compare the variation of measured static pressure head h Sm with the theoretical variation h ST that you predicted using Bernoulli’s Equation. • Comment on what this comparison suggests about the ability to predict fluid pressure in the converging section of the tube using Bernoulli’s Equation if you know only the flow rate and the geometry of the tube. G. Consider what the measurements show happened in the diverging section of the tube. • Look at the graphs and tables. • Describe how measured total pressure head h Tm varied with distance in this region. • Compare the variation of h Tm with the theoretical variation of h Tt that Bernoulli’s Equation predicts. • Considering the assumptions made to derive Bernoulli’s Equation, offer an explanation for why the variation in total pressure head that you measured agrees or disagrees with what Bernoulli’s Equation predicts. • Describe how measured static pressure head h Sm varied with distance in this region. Where are the lowest static pressure heads? • Compare the variation of measured static pressure head h Sm with the theoretical variation h ST that you predicted using Bernoulli’s Equation. H. Consider what the measurements show happened as the flow rate increased. 6 • Describe how the increase in flow influenced the total pressure head in the converging region. • Describe how the increase in flow influenced the total pressure head in the diverging region. • Describe how the increase in flow influenced the measured static pressure head in the converging region. I. Comment on the apparent validity of Bernoulli’s Equation for convergent and divergent flows in general 7 APPENDIX1 JUSTIFICATION FOR EQ.2 Some justification for the simplifications made to obtain Eq. 2 are required. First, in Eq. 1 both elevations (z 1,z 2) must be measured from a common horizontal datum for elevation. In setting up the apparatus for this experiment, the tube is leveled so that the central streamline is also horizontal. Thus the elevation(z) is forced to remain constant (z 1 = z 2) so there is no need to determine its actual value in order to evaluate whether Bernoulli’s equation correctly describes conditions along the streamline where the velocity is changing. Second, the pressures in Eq. 1 may be measured as indicated above (p= γh) by employing a special pressure datum (Fig. 1) that is selected to simplify measurement. The absolute pressure of the datum is p da =p 0a +γ∆ z. Pressures p 1=γh1 and p 2=γh2 are the portion of the absolute pressure of the water at locations 1 and 2 that is in excess of the datum pressure p da .
Recommended publications
  • Chapter 1 PROPERTIES of FLUID & PRESSURE MEASUREMENT
    Fluid Mechanics & Machinery Chapter 1 PROPERTIES OF FLUID & PRESSURE MEASUREMENT Course Contents 1. Introduction 2. Properties of Fluid 2.1 Density 2.2 Specific gravity 2.3 Specific volume 2.4 Specific Weight 2.5 Dynamic viscosity 2.6 Kinematic viscosity 2.7 Surface tension 2.8 Capillarity 2.9 Vapor Pressure 2.10 Compressibility 3. Fluid Pressure & Pressure Measurement 3.1 Fluid pressure, Pressure head, Pascal‟s law 3.2 Concept of absolute vacuum, gauge pressure, atmospheric pressure, absolute pressure. 3.3 Pressure measuring Devices 3.4 Simple and differential manometers, 3.5 Bourdon pressure gauge. 4. Total pressure, center of pressure 4.1 Total pressure, center of pressure 4.2 Horizontal Plane Surface Submerged in Liquid 4.3 Vertical Plane Surface Submerged in Liquid 4.4 Inclined Plane Surface Submerged in Liquid MR. R. R. DHOTRE (8888944788) Page 1 Fluid Mechanics & Machinery 1. Introduction Fluid mechanics is a branch of engineering science which deals with the behavior of fluids (liquid or gases) at rest as well as in motion. 2. Properties of Fluids 2.1 Density or Mass Density -Density or mass density of fluid is defined as the ratio of the mass of the fluid to its volume. Mass per unit volume of a fluid is called density. -It is denoted by the symbol „ρ‟ (rho). -The unit of mass density is kg per cubic meter i.e. kg/m3. -Mathematically, ρ = -The value of density of water is 1000 kg/m3, density of Mercury is 13600 kg/m3. 2.2 Specific Weight or Weight Density -Specific weight or weight density of a fluid is defined as the ratio of weight of a fluid to its volume.
    [Show full text]
  • Darcy's Law and Hydraulic Head
    Darcy’s Law and Hydraulic Head 1. Hydraulic Head hh12− QK= A h L p1 h1 h2 h1 and h2 are hydraulic heads associated with hp2 points 1 and 2. Q The hydraulic head, or z1 total head, is a measure z2 of the potential of the datum water fluid at the measurement point. “Potential of a fluid at a specific point is the work required to transform a unit of mass of fluid from an arbitrarily chosen state to the state under consideration.” Three Types of Potentials A. Pressure potential work required to raise the water pressure 1 P 1 P m P W1 = VdP = dP = ∫0 ∫0 m m ρ w ρ w ρw : density of water assumed to be independent of pressure V: volume z = z P = P v = v Current state z = 0 P = 0 v = 0 Reference state B. Elevation potential work required to raise the elevation 1 Z W ==mgdz gz 2 m ∫0 C. Kinetic potential work required to raise the velocity (dz = vdt) 2 11ZZdv vv W ==madz m dz == vdv 3 m ∫∫∫00m dt 02 Total potential: Total [hydraulic] head: P v 2 Φ P v 2 h == ++z Φ= +gz + g ρ g 2g ρw 2 w Unit [L2T-1] Unit [L] 2 Total head or P v hydraulic head: h =++z ρw g 2g Kinetic term pressure elevation [L] head [L] Piezometer P1 P2 ρg ρg h1 h2 z1 z2 datum A fluid moves from where the total head is higher to where it is lower. For an ideal fluid (frictionless and incompressible), the total head would stay constant.
    [Show full text]
  • The Components of Total Head
    THE COMPONENTS OF TOTAL HEAD This chapter will introduce some of the terminology used in pumping systems. The components of Total Head will be examined one by one. Some of the more difficult to determine components, such as equipment and friction head, will be examined in more detail. I hope this will help get our heads together. 3.0 THE COMPONENTS OF TOTAL HEAD Total Head is the measure of a pump's ability to push fluids through a system. Total Head is proportional to the difference in pressure at the discharge vs. the suction of the pump. It is more useful to use the difference in pressure vs. the discharge pressure as a principal characteristic since this makes it independent of the pressure level at the pump suction and therefore independent of a particular system configuration. For this reason, the Total Head is used as the Y-axis coordinate on all pump performance curves (see Figure 4-3). The system equation for a typical single inlet — single outlet system (see equation [2- 12]) is: 1 2 2 DHP = DHF1-2 + DHEQ1-2 + (v2 -v1 )+z2 +H2 -(z1 +H1) 2g [3-1] DHP = DHF + DHEQ + DHv + DHTS [3-1a] DHP = DHF +DHEQ +DHv + DHDS + DHSS [3-1b] Equations [3-1a] and [3-1b] represent different ways of writing equation [3-1], using terms that are common in the pump industry. This chapter will explain each one of these terms in details. 3.1 TOTAL STATIC HEAD (DHTS) The total static head is the difference between the discharge static head and the suction static head, or the difference in elevation at the outlet including the pressure head at the outlet, and the elevation at the inlet including the pressure head at the inlet, as described in equation [3-2a].
    [Show full text]
  • THERMODYNAMICS, HEAT TRANSFER, and FLUID FLOW, Module 3 Fluid Flow Blank Fluid Flow TABLE of CONTENTS
    Department of Energy Fundamentals Handbook THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW, Module 3 Fluid Flow blank Fluid Flow TABLE OF CONTENTS TABLE OF CONTENTS LIST OF FIGURES .................................................. iv LIST OF TABLES ................................................... v REFERENCES ..................................................... vi OBJECTIVES ..................................................... vii CONTINUITY EQUATION ............................................ 1 Introduction .................................................. 1 Properties of Fluids ............................................. 2 Buoyancy .................................................... 2 Compressibility ................................................ 3 Relationship Between Depth and Pressure ............................. 3 Pascal’s Law .................................................. 7 Control Volume ............................................... 8 Volumetric Flow Rate ........................................... 9 Mass Flow Rate ............................................... 9 Conservation of Mass ........................................... 10 Steady-State Flow ............................................. 10 Continuity Equation ............................................ 11 Summary ................................................... 16 LAMINAR AND TURBULENT FLOW ................................... 17 Flow Regimes ................................................ 17 Laminar Flow ...............................................
    [Show full text]
  • ME 262 BASIC FLUID MECHANICS Assistant Professor Neslihan Semerci Lecture 6
    ME 262 BASIC FLUID MECHANICS Assistant Professor Neslihan Semerci Lecture 6 (Bernoulli’s Equation) 1 19. CONSERVATION OF ENERGY- BERNOULLI’S EQUATION Law of Conservation of Energy: “energy can be neither created nor destroyed. It can be transformed from one form to another.” Potential energy Kinetic energy Pressure energy In the analysis of a pipeline problem accounts for all the energy within the system. Inner wall of the pipe V P Centerline z element of fluid Reference level An element of fluid inside a pipe in a flow system; - Located at a certain elevation (z) - Have a certain velocity (V) - Have a pressure (P) The element of fluid would possess the following forms of energy; 1. Potential energy: Due to its elevation, the potential energy of the element relative to some reference level PE = Wz W= weight of the element. 2. Kinetic energy: Due to its velocity, the kinetic energy of the element is KE = Wv2/2g 2 3. Flow energy(pressure energy or flow work): Amount of work necessary to move element of a fluid across a certain section aganist the pressure (P). PE = W P/γ Derivation of Flow Energy: L P F = PA Work = PAL = FL=P∀ ∀= volume of the element. Weight of element W = γ ∀volume W Volume of element ∀ = γ Total amount of energy of these three forms possessed by the element of fluid; E= PE + KE + FE P E = Wz + Wv2/2g + W γ 3 Figure 19.1. Element of fluid moves from a section 1 to a section 2, (Source: Mott, R. L., Applied Fluid Mechanics, Prentice Hall, New Jersey) 2 V1 P1 Total energy at section 1: E = Wz + W +W 1 1 2g γ 2 V2 P2 Total energy at section 2: E = Wz + W + W × 2 2 2g γ If no energy is added to the fluid or lost between sections 1 and 2, then the principle of conservation of energy requires that; E1 = E2 2 2 V1 P1 V2 P2 Wz + W +W = Wz + W + W × 1 2g γ 2 2g γ The weight of the element is common to all terms and can be divided out.
    [Show full text]
  • Pressure and Piezometry (Pressure Measurement)
    PRESSURE AND PIEZOMETRY (PRESSURE MEASUREMENT) What is pressure? .......................................................................................................................................... 1 Pressure unit: the pascal ............................................................................................................................ 3 Pressure measurement: piezometry ........................................................................................................... 4 Vacuum ......................................................................................................................................................... 5 Vacuum generation ................................................................................................................................... 6 Hydrostatic pressure ...................................................................................................................................... 8 Atmospheric pressure in meteorology ...................................................................................................... 8 Liquid level measurement ......................................................................................................................... 9 Archimedes' principle. Buoyancy ............................................................................................................. 9 Weighting objects in air and water ..................................................................................................... 10 Siphons ...................................................................................................................................................
    [Show full text]
  • Pressure and Fluid Statics
    cen72367_ch03.qxd 10/29/04 2:21 PM Page 65 CHAPTER PRESSURE AND 3 FLUID STATICS his chapter deals with forces applied by fluids at rest or in rigid-body motion. The fluid property responsible for those forces is pressure, OBJECTIVES Twhich is a normal force exerted by a fluid per unit area. We start this When you finish reading this chapter, you chapter with a detailed discussion of pressure, including absolute and gage should be able to pressures, the pressure at a point, the variation of pressure with depth in a I Determine the variation of gravitational field, the manometer, the barometer, and pressure measure- pressure in a fluid at rest ment devices. This is followed by a discussion of the hydrostatic forces I Calculate the forces exerted by a applied on submerged bodies with plane or curved surfaces. We then con- fluid at rest on plane or curved submerged surfaces sider the buoyant force applied by fluids on submerged or floating bodies, and discuss the stability of such bodies. Finally, we apply Newton’s second I Analyze the rigid-body motion of fluids in containers during linear law of motion to a body of fluid in motion that acts as a rigid body and ana- acceleration or rotation lyze the variation of pressure in fluids that undergo linear acceleration and in rotating containers. This chapter makes extensive use of force balances for bodies in static equilibrium, and it will be helpful if the relevant topics from statics are first reviewed. 65 cen72367_ch03.qxd 10/29/04 2:21 PM Page 66 66 FLUID MECHANICS 3–1 I PRESSURE Pressure is defined as a normal force exerted by a fluid per unit area.
    [Show full text]
  • Fluid Mechanics Policy Planning and Learning
    Science and Reactor Fundamentals – Fluid Mechanics Policy Planning and Learning Fluid Mechanics Science and Reactor Fundamentals – Fluid Mechanics Policy Planning and Learning TABLE OF CONTENTS 1 OBJECTIVES ................................................................................... 1 1.1 BASIC DEFINITIONS .................................................................... 1 1.2 PRESSURE ................................................................................... 1 1.3 FLOW.......................................................................................... 1 1.4 ENERGY IN A FLOWING FLUID .................................................... 1 1.5 OTHER PHENOMENA................................................................... 2 1.6 TWO PHASE FLOW...................................................................... 2 1.7 FLOW INDUCED VIBRATION........................................................ 2 2 BASIC DEFINITIONS..................................................................... 3 2.1 INTRODUCTION ........................................................................... 3 2.2 PRESSURE ................................................................................... 3 2.3 DENSITY ..................................................................................... 4 2.4 VISCOSITY .................................................................................. 4 3 PRESSURE........................................................................................ 6 3.1 PRESSURE SCALES .....................................................................
    [Show full text]
  • 5. Flow of Water Through Soil
    5-1 5. FLOW OF WATER THROUGH SOIL 5.1 FLOW OF WATER IN A PIPE The flow of water through a rough open pipe may be expressed by means of the Darcy- Weisbach resistance equation L v2 ∆ h = f D 2g (5.1) in which _h is the head loss over a length L of pipe of diameter D. The average velocity of flow is v. f is a measure of pipe resistance. In Fig. 4.1 standpipes or piezometers have been connected to the pipe at points P and Q. The heights to which the water rises in these piezometers indicate the heads at these points. The difference between the elevations for the water surfaces in the piezometers is the head loss (_h). If the hydraulic gradient (i) is defined as i = ∆h (5.2) L then it is clear from equation (4.1) that the velocity v is proportional to the square root of i. The expression for rate of discharge of water Q may be written as πD2 2gD Q = v 1/2 1/2 4 = v A = ( f ) i A (5.3) If the pipe is filled with a pervious material such as sand the rate of discharge of water through the sand is no longer proportional to the square root of i. Darcy, in 1956, found that Q was proportional to the first power of i Q = k i A (5.4) Q = k i (5.5) or v = A where k is the constant of proportionality which is called the coefficient of permeability or the hydraulic conductivity .
    [Show full text]
  • Pressure and Head
    64 Fundamentals of Fluid Mechanics Chapter 2 PRESSURE AND HEAD KEYWORDS AND TOPICS Ù PASCALS LAW Ù VACUUM PRESSURE Ù HYDROSTATIC LAW Ù PIEZOMETER Ù PRESSURE HEAD Ù U TUBE MANOMETER Ù HYDROSTATIC PARADOX Ù MICROMETER Ù MERCURY BAROMETER Ù DIFFERENTIAL MANOMETER Ù ABSOLUTE PRESSURE Ù MICRO MANOMETER Ù GAUGE PRESSURE Ù BOUDON TUBE GAUGE INTRODUCTION A fluid is a substance which is capable of flowing. If a certain mass of any fluid is held in static equilibrium by confining it within solid boundaries, then the fluid exerts forces against the boundary surfaces. The forces so exerted always act in the direction normal to the surface in contact. The reason for the forces having no tangential components is that the fluid at rest cannot sustain shear stress. The fluid pressure is therefore nothing but the normal force exerted by the fluid on the unit area of the surface. The fluid pressure and pressure force on any imaginary surface in the fluid remain exactly same as those acting on any real surface. The pressure at a point in a static fluid is same in all directions. The pressure inside the fluid increases as we go down in the fluid and the gradient of the pressure with respect to the depth of the fluid at any point is equal to its specific weight. The pressure exerted by a fluid is dependent on the vertical head and its specific weight. 1. What are the forces acting on a fluid at rest? When a fluid is at rest, there is no relative motion between the layers of the fluid.
    [Show full text]
  • The Mathematics of Pumping Water AECOM Design Build Civil, Mechanical Engineering
    The Mathematics of Pumping Water AECOM Design Build Civil, Mechanical Engineering Please observe the conversion of units in calculations throughout this exemplar. INTRODUCTION Water is pumped from the reservoir into a In any pumping system, the role of the pump is to receiving tank. This kind of arrangement is used provide sufficient pressure to overcome the to lift water from a reservoir, or river, into a water operating pressure of the system to move fluid at treatment works for treatment before the water a required flow rate. The operating pressure of goes into the supply network. The water level in the system is a function of the flow through the the reservoir varies but the discharge level in the system and the arrangement of the system in receiving tanks remains constant as the water is terms of the pipe length, fittings, pipe size, the discharged from a point above the water level. The pump is required to pass forward a flow of change in liquid elevation, pressure on the liquid 3 surface, etc. To achieve a required flow through a 2500 m /hr to the receiving tank. pumping system, we need to calculate what the The operating pressure of a pumped system is operating pressure of the system will be to select calculated in the SI unit of meters (m). To a suitable pump. maintain dimensional consistency, any pressure values used within the calculations are therefore converted from kPa into m using the following conversion; 1 kPa = 0.102 m (as measured by a water filed U tube manometer) For the above system, the operating pressure or the
    [Show full text]
  • Fluid Mechanics
    FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER ANKARA UNIVERSITY FACULTY OF AGRICULTURE DEPARTMENT OF AGRICULTURAL MACHINERY AND TECHNOLOGIES ENGINEERING 1 3-FLUID STATICS 3.8. Hydrostatic Force on a Curved Surface For a submerged curved surface, the determination of the resultant hydrostatic force is more involved since it typically requires the integration of the pressure forces that change direction along the curved surface. The concept of the pressure prism in this case is not much help either because of the complicated shapes involved. Consider a curved portion of the swimming pool shown in Fig.3.30a. We wish to find the resultant fluid force acting on section BC (which has a unit length perpendicular to the plane of the paper) shown in Fig.3.30b. We first isolate a volume of fluid that is bounded by the surface of interest, in this instance section BC, the horizontal plane surface AB, and the vertical plane surface AC. The free- body diagram for this volume is shown in Fig. 3.30c. The magnitude and location of forces F1 and F2 can be determined from the relationships for planar surfaces. The weight, W, is simply the specific weight of the fluid times the enclosed volume and acts through the center of gravity (CG) of the mass of fluid contained within the volume. Figure 3.30. Hydrostatic force on a curved surface. The forces FH and FV represent the components of the force that the tank exerts on the fluid. In order for this force system to be in equilibrium, the horizontal component must be equal in magnitude and collinear with F2, and the vertical 2 component FV equal in magnitude and collinear with the resultant of the vertical forces F1 and W.
    [Show full text]