Boroo Gold Llc “Heap Leach Project” Detailed Environmental Impact Assessment Addendum

Total Page:16

File Type:pdf, Size:1020Kb

Boroo Gold Llc “Heap Leach Project” Detailed Environmental Impact Assessment Addendum APPROVED. MGDT expert: …………………………………………………………………………….Nyamdavaa.G /signed and stamped/ MGDT refree expert:………………………………………………………………………………….Jamyankhuu.N /signed/ BOROO GOLD LLC “HEAP LEACH PROJECT” DETAILED ENVIRONMENTAL IMPACT ASSESSMENT ADDENDUM Executed company; “ GLOBAL ENVIRON“ LLC, Executive Director; ………………………….Davaasuren.Ch /signed and stamped/ Project Proponent; “BOROO GOLD “ LLC, President and Executive Director; …………………John Kazakoff /signed and stamped/ Ulaanbaatar 2015 CHAPTER ONE. BACKGROUND The main purpose of detailed environmental impact assessment is to define and assess potential social, environmental and health impacts of a specific project implemented by a citizen or an entity in a certain area, and to define measures to prevent from and mitigate the impacts. Within the framework of a detailed environmental impact assessment of Heap leach project implemented at Boroo mine site of Boroo Gold LLC, our specialists conducted assessment of prevention and mitigation measures taken on potential social, environmental and health impacts. Moreover, they have worked with aim to define further potential impacts, ways of impact mitigation, as well as provided professional and methodical recommendations to project implementors on environment and landscaping. TETRE TECH company of Colorado (USA), MOORE WATSON company of Scotland (Great Britian) and “Gan kharsh” LLC (Mongolia) have been conducted the construction design of the project in 2008 that has been approved by state expertise and the construction has been handed over to the State commission. The Mining Institute of the University of Science and Technology developed the Feasibility Study Report of the project that has been approved by specialized committee of Mineral resources in April, 2009. The mine was approved with an act of State commission. On December 14 2013, Addendum for Feasibility study report of Boroo gold open-pit mine operation and heap leach project situated within Bayangol and Mandal soums of Selenge aimag prepared by Mining Institute has been discussed and approved by Mineral resources specialized committee of MRAM. The purpose of the project is to recover 4407 kg of gold through processing 9.8 tons of low- grade ore with heap leaching method, as processing low-grade ore through Boroo Gold processing plant is economically insufficient. Research on processing Boroo mine low-grade ore by heap leaching method started from 2005. Samples were sent to Australia and the USA for roll and column tests; moreover, pilot test has been started at Boroo mine site. Due to satisfactory results of the tests, separate low-grade ore stockpiles have been created from the end of 2005. Heap leach facility construction work has been conducted in 2007-2008. Permission for pilot heap leach ore processing has been granted in April 2008, and the pilot operation has been commenced in June 2008 and completed in May 2009. The main purpose of heap leach pilot operation was to define whether recovery can reach the planned amount and to ensure that production can go on regular basis, especially in winter time. Despite the pilot operation brought good results, heap leach stockpile and gold bearing cyanide solution have been rinsed with clear water due to delay of issuance of permission to use the technology. These measures have been taken in order to protect the environment, as well as to sustain further normal operation preventing pipeline damages and freezing. In order to perform a detailed environmental impact assessment in accordance with appendix 2 of order A-11 “Environmental impact assessment guidelines” issued by Minister of Environment and Green Development on January 2014, project documents and specifics, feasibility study report, design parameters and layouts of the project has been studied in detail. Topographic map of the project area and its vicinity, air and satellite images has been prepared in accordance with general environmental impact assessment summary; moreover, location of the project, project implementation area and other objects are shown on above mentioned maps and images. Scope and features of Boroo mine heap leach techniques and technology, economic efficiency and primary and supporting activities have been defined. Moreover, environmental analysis has been conducted and main and potential impacts have been defined. Vital part of the environmental impact assessment is to define environmental components under impact of project activities, as well as to define potential impacts on local residents, their social status, cultural and historical heritage and ecosystem components, introduce the project and the detailed environmental impact assessment to Citizens' Representatives' Meeting of Bag and plan project operation by integrating it with feedbacks of local authority and residents. Main impacts caused by project operation include 33 ha area disturbed during development of heap leach pad, dust generated from use of heavy duty equipment at heap leach, content of cyanide and other chemical substances that may evaporate in air or infiltrate into soil from the heap leach stockpile, pollution of soil and vegetation caused by leakage of oil products and lubricants, noise pollution and fire caused by careless action. Details for estimation of dust impact caused by project operation are included in chapter 4, and mitigation measures are included in chapters 5 and 7. In order to perform detailed environmental impact assessment, meeting has been held with local authority, soum and bag governors, the chairman of the Bag’s citizens' representatives together with the project implementer and the project has been discussed with Bag’s citizens' representatives hural in accordance with the order of ensuring public participation in environmental impact assessment. Davaasuren.Ch, a senior teacher of Physics from University of Science and Technology’s Applied Science School, Dr. Dorjgotov, a chemist, a senior teacher from University of Science and Technology, Munkhbat.G, a soil scientist, Tungalag.J, a botanist, a teacher from National University of Mongolia (NUM) and Jargalsaikhan, a zoologist, a teacher from NUM are participated in detailed environmental impact assessment conducting fieldwork studies, measurement and sampling and defined environmental baseline condition and prepared the environmental impact assessment report. “Boroo Gold” LLC “Heap Leach” Project Detailed Environmental Impact Assessment Addendum 2015 CHAPTER II. SCOPE OF OPERATION Below are environmental legislative documents related with actions reflected in DEIA and Heap leach project activities of Boroo Gold LLC implemented within the Bayangol soum territory of Selenge aimag. Following legislation and regulations should be followed. 2.1. LAWS OF MONGOLIA Law on Environmental protection, 1995 Article 1. Purpose of this law The purpose of this law is to regulate relations between the State, citizens, business entities and organizations in order to guarantee the human right to live in a healthy and safe environment, an ecologically balanced social and economic development, the protection of the environment for present and future generations, the proper use of natural resources and the restoration of available resources. Articles and provisions related to project activities Background CHAPTER TWO. ENVRONMENTAL ASSESSMENTS, DATABANKS AND RESEARCH Article 7. Environmental assessments 1. Natural resource assessments and environmental impact assessments shall be conducted in order to preserve the natural state of the environment, to develop and carry out activities aimed at sustaining environmental balance, and to regulate the use of natural resources. Article 9. Environmental impact assessments 1. (This paragraph has been annulled by the law of January 22 1998) Within the 2. Issues related with environmental impact assessment shall be framework of regulated by law. (This paragraph has been amended by law of January 22 entire project 1998) 3. The body requesting the assessment shall meet the costs of it. 4. Citizens, business entities and organizations implementing proposals, shall comply with the requirements determined by the impact assessment. (This paragraph was amended by the Law of January 22 1998) Article 101. Environmental auditing 1. Environmental auditing shall be conducted by business entity and organization engaged in industry and services using natural resources once in two years, conclusion and recommendations shall be issued and the report shall be sent to aimag and city environmental agency within the period Global Environ LLC 1-31 “Boroo Gold” LLC “Heap Leach” Project Detailed Environmental Impact Assessment Addendum 2015 indicated in recommendation. 2. Business entity and organization is in charge of costs of planned environmental auditing; however, if Governor or state central administration body in charge of environmental issues consider that unplanned auditing is required, costs shall be paid by the requester. Article 4. Environmental protection 4.2.1. to comply with environmental protection legislation Article 31 Duties of business entities and organizations Business entities and organizations shall have the following duties in respect of environmental protection: 1) to comply with environmental legislation, decisions by the Government, local self-governing organizations and Governors, and the requirements of State inspectors and rangers; 2) to comply with environmental standards, limits, legislation and procedures approved by authorized organizations and to supervise their implementation
Recommended publications
  • Principles of Extractive Metallurgy Lectures Note
    PRINCIPLES OF EXTRACTIVE METALLURGY B.TECH, 3RD SEMESTER LECTURES NOTE BY SAGAR NAYAK DR. KALI CHARAN SABAT DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING PARALA MAHARAJA ENGINEERING COLLEGE, BERHAMPUR DISCLAIMER This document does not claim any originality and cannot be used as a substitute for prescribed textbooks. The information presented here is merely a collection by the author for their respective teaching assignments as an additional tool for the teaching-learning process. Various sources as mentioned at the reference of the document as well as freely available material from internet were consulted for preparing this document. The ownership of the information lies with the respective author or institutions. Further, this document is not intended to be used for commercial purpose and the faculty is not accountable for any issues, legal or otherwise, arising out of use of this document. The committee faculty members make no representations or warranties with respect to the accuracy or completeness of the contents of this document and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. BPUT SYLLABUS PRINCIPLES OF EXTRACTIVE METALLURGY (3-1-0) MODULE I (14 HOURS) Unit processes in Pyro metallurgy: Calcination and roasting, sintering, smelting, converting, reduction, smelting-reduction, Metallothermic and hydrogen reduction; distillation and other physical and chemical refining methods: Fire refining, Zone refining, Liquation and Cupellation. Small problems related to pyro metallurgy. MODULE II (14 HOURS) Unit processes in Hydrometallurgy: Leaching practice: In situ leaching, Dump and heap leaching, Percolation leaching, Agitation leaching, Purification of leach liquor, Kinetics of Leaching; Bio- leaching: Recovery of metals from Leach liquor by Solvent Extraction, Ion exchange , Precipitation and Cementation process.
    [Show full text]
  • Treatment and Microscopy of Gold
    TREATMENT AND MICROSCOPY OF GOLD AND BASE METAL ORES. (Script with Sketches & Tables) Short Course by R. W. Lehne April 2006 www.isogyre.com Geneva University, Department of Mineralogy CONTENTS (Script) page 1. Gold ores and their metallurgical treatment 2 1.1 Gravity processes 2 1.2 Amalgamation 2 1.3 Flotation and subsequent processes 2 1.4 Leaching processes 3 1.5 Gold extraction processes 4 1.6 Cyanide leaching vs. thio-compound leaching 5 2. Microscopy of gold ores and treatment products 5 2.1 Tasks and problems of microscopical investigations 5 2.2 Microscopy of selected gold ores and products 6 (practical exercises) 3. Base metal ores and their beneficiation 7 3.1 Flotation 7 3.2 Development of the flotation process 7 3.3 Principles and mechanisms of flotation 7 3.4 Column flotation 9 3.5 Hydrometallurgy 10 4. Microscopy of base metal ores and milling products 10 4.1 Specific tasks of microscopical investigations 11 4.2 Microscopy of selected base metal ores and milling products 13 (practical exercises) 5. Selected bibliography 14 (Sketches & Tables) Different ways of gold concentration 15 Gravity concentration of gold (Agricola) 16 Gravity concentration of gold (“Long Tom”) 17 Shaking table 18 Humphreys spiral concentrator 19 Amalgamating mills (Mexican “arrastra”, Chilean “trapiche”) 20 Pressure oxidation flowsheet 21 Chemical reactions of gold leaching and cementation 22 Cyanide solubilities of selected minerals 23 Heap leaching flowsheet 24 Carbon in pulp process 25 Complexing of gold by thio-compounds 26 Relation gold content / amount of particles in polished section 27 www.isogyre.com Economically important copper minerals 28 Common zinc minerals 29 Selection of flotation reagents 30 Design and function of a flotation cell 31 Column cell flotation 32 Flowsheet of a simple flotation process 33 Flowsheet of a selective Pb-Zn flotation 34 Locking textures 35 2 1.
    [Show full text]
  • Xstrata Technology Update Edition 13 – April 2012 Building Plants That Work
    xstrata technology update Edition 13 – April 2012 Building plants that work You have to get a lot of things it takes another operator to get them right to build a plant that works. right. Someone who has lived through the problems, had to do the maintenance, operated during a midnight power Of course the big picture must be right – doing the right project, in the right place, failure, cleaned up the spill. Someone at the right time. who has “closed the loop” on previous designs; lived with previous decisions After that, the devil is in the detail. You and improved them, over and over. need a sound design, good execution, good commissioning, and ongoing This is why Xstrata Technology provides support after commissioning. You need a technology “package”. Just as a car to operate and maintain your plant in is more than an engine, technology is the long run, long after the construction more than a single piece of equipment. company has left. That’s when all the Technology is a system. All the elements “little” details become important – how of the system have to work with each easy is it to operate, how good is the other and with the people in the plant. maintenance access, what happens in We want our cars designed by people a power failure, where are the spillage who love cars and driving. So should points and how do we clean them our plants be designed by people with up? Are the instruments reliable and experience and passion to make each is the process control strategy robust one work better than the last.
    [Show full text]
  • Copper Recovery Using Leach/Solvent Extraction/Electrowinning Technology
    Copper recovery using leach/solvent extraction/electrowinning technology: Forty years of innovation, 2.2 million tonnes of copper annually by G.A. Kordosky* small scale in analytical chemistry3 and on a large scale for the recovery of uranium from Synopsis sulphuric acid leach solutions4. Generally Mills had already developed and commercialized The concept of selectively extracting copper from a low-grade dump Alamine® 336 as an SX reagent for the leach solution followed by stripping the copper into an acid recovery of uranium from sulphuric acid leach solution from which electrowon copper cathodes could be produced liquors5 and believed that a similar technology occurred to the Minerals Group of General Mills in the early 1960s. for copper recovery would be welcome. This simple, elegant idea has resulted in a technology by which However, an extensive market survey showed about 2.2 million tonnes of high quality copper cathode was produced in year 2000. The growth of this technology is traced over that the industry reception for copper recovery time with a discussion of the key plants, the key people and the by L/SX/EW technology was almost hostile. important advances in leaching, plant design, reagents and The R&D director of a large copper producer electrowinning that have contributed to the growth of this predicted at an AIME annual meeting that technology. Some thoughts on potential further advances in the there would never be a pound of copper technology are also given. recovered using solvent extraction and his comment prompted
    [Show full text]
  • Pretreatment of Copper Ore Prior to Heap Leaching Includes Crushing and Agglomeration Processes Which Were Studied in This Thesis Research
    PRETREATMENT OF COPPER ORE PRIOR TO HEAP LEACHING by Phanindra Kodali A thesis submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Master of Science Department of Metallurgical Engineering The University of Utah August 2010 Copyright Phanindra Kodali 2010 All Rights Reserved The University of Utah Graduate School STATEMENT OF THESIS APPROVAL The thesis of Phanindra Kodali has been approved by the following supervisory committee members: Jan D. Miller , Chair 11113/2009 Chen-Luh Lin , Member 11113/2009 Xuming Wang , Member 11113/2009 Michael S. Moats . Member 11113/2009 and by Jan D. Miller , Chair of the Department of Metallurgical Engineering and by Charles A. Wight, Dean of The Graduate School. ABSTRACT Pretreatment of copper ore prior to heap leaching includes crushing and agglomeration processes which were studied in this thesis research. Crushing is a high energy consuming process. In mining operations generally jaw and gyratory crushers are used for primary crushing and cone crushers are used for secondary crushing. During the past couple of decades High Pressure Grinding Roll (HPGR) crushers are being considered by mining companies due to lower energy consumption. In the present research copper ores (copper oxide and copper sulfide ores) were crushed by a jaw crusher and by HPGR and the products evaluated for particle damage, as well as by column leaching to determine the rate and extent of copper recovery. X-ray computed tomography analysis and laboratory column leaching experiments on copper oxide samples revealed that products from HPGR crushing have more particle damage and higher copper recoveries when compared with products from jaw crusher crushing.
    [Show full text]
  • In-Situ Chromium and Vanadium Recovery of Landfilled Ferrochromium
    Chemical Engineering Journal 303 (2016) 359–368 Contents lists available at ScienceDirect Chemical Engineering Journal journal homepage: www.elsevier.com/locate/cej In-situ chromium and vanadium recovery of landfilled ferrochromium and stainless steel slags ⇑ Jeroen Spooren a, , Eunyoung Kim a,b, Liesbeth Horckmans a, Kris Broos a, Peter Nielsen a, Mieke Quaghebeur a a VITO – Flemish Institute for Technological Research, Boeretang 200, B-2400 Mol, Belgium b Department of Bioengineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium highlights NaOCl assisted alkaline heap leaching of Cr and V from slags was investigated. The matrix material of stainless steel slag and ferrochromium slag remains intact. 11–19% Cr and 7.0–7.5% V were leached selectively after 64 days. A model shows that Cr will leach for 4–5 years at chosen heap leaching conditions. Cr and V extraction potentially improves the slags’ environmental quality. article info abstract Article history: A novel heap leaching method was investigated for selective removal of chromium (Cr) and vanadium (V) Received 26 March 2016 from ferrochromium (FeCr) and stainless steel (SS) slags. In particular, alkaline oxidative heap leaching Received in revised form 25 May 2016 was simulated on lab-scale by batch and column leaching tests. The results show a selective leaching Accepted 26 May 2016 of Cr (11–19%) and V (7.0–7.5%) after 64 days of column leaching, with a very low dissolution (<2.2% Available online 27 May 2016 (FeCr slag) and <0.15% (SS slag)) of matrix elements (e.g. Al, Fe, Si, Mg, Ca), when NaOCl is applied as oxi- dation agent and NaOH as alkaline agent.
    [Show full text]
  • Study of the Calcination Process of Two Limonitic Iron Ores Between 250 °C and 950 °C
    Lisbeth Longa-Avello - Cristina Pereyra-Zerpa - Julio Andrés Casal-Ramos - Pedro Delvasto Study of the calcination process of two limonitic iron ores between 250 °C and 950 °C Estudio del proceso de calcinación en dos minerales de hierro limoníticos entre 250 °C y 950 °C Estudo do processo de calcinação em dois minerais de ferro limoníticos entre 250 °C e 950 °C Lisbeth Longa-Avello* Cristina Pereyra-Zerpa** Fecha de recepción: 20 de septiembre de 2016 Julio Andrés Casal-Ramos*** Fecha de aprobación: 20 de marzo de 2017 Pedro Delvasto**** Abstract The dehydration process of two limonitic ores from Venezuela was studied between 250 °C and 950 °C by means of thermogravimetry, infrared spectroscopy, and x-ray diffraction. These techniques indicated for both minerals that the goethite-to-hematite transformation occurred in the range of 250-350 °C. In addition, the x-ray diffraction showed a structural re-arrangement within the orebody above 350 °C, temperature above which only the hematite structure is recognizable. Finally, infrared spectroscopy revealed that such transformation implies the loss of structural OH- functional groups, characteristic of the limonite. Keywords: Iron Ore; Limonite; Thermal Modification of Minerals. Resumen Se estudió el proceso de deshidratación de dos minerales limoníticos de Venezuela entre 250 °C y 950 °C, usando termogravimetría, espectroscopia infrarroja y difracción de rayos x. Para ambos materiales, estas técnicas indicaron que la transformación de goethita a hematita ocurrió en el rango de 250 °C a 350 °C. Adicionalmente, la difracción de rayos X mostró un rearreglo estructural dentro de la mena a una temperatura por encima de 350 °C; a temperaturas mayores, solo se reconoce la estructura de la hematita.
    [Show full text]
  • Extractive Metallurgy of Copper This Page Intentionally Left Blank Extractive Metallurgy of Copper
    Extractive Metallurgy of Copper This page intentionally left blank Extractive Metallurgy of Copper Mark E. Schlesinger Matthew J. King Kathryn C. Sole William G. Davenport AMSTERDAM l BOSTON l HEIDELBERG l LONDON NEW YORK l OXFORD l PARIS l SAN DIEGO SAN FRANCISCO l SINGAPORE l SYDNEY l TOKYO Elsevier The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands First edition 1976 Second edition 1980 Third edition 1994 Fourth edition 2002 Fifth Edition 2011 Copyright Ó 2011 Elsevier Ltd. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: permissions@ elsevier.com. Alternatively you can submit your request online by visiting the Elsevier web site at http://elsevier.com/locate/permissions, and selecting Obtaining permission to use Elsevier material Notice No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Cataloging-in-Publication Data A catalog record for this book is available from the Library of Congress ISBN: 978-0-08-096789-9 For information on all Elsevier publications visit our web site at elsevierdirect.com Printed and bound in Great Britain 11 12 13 14 10 9 8 7 6 5 Photo credits: Secondary cover photograph shows anode casting furnace at Palabora Mining Company, South Africa.
    [Show full text]
  • Cyanide Heap-Leach Gold Mining and Its Impacts on the Environment
    l CYANIDE HEAP-LEACH GOLD MINING AND ITS IMPACTS ON THE ENVIRONMENT Prepared for: John C. Parks Senior Environmental Coordinator Atlas Precious Metals Inc. Princeton, New Jersey By... Diane Young Technical Writing Beth Camp, Instructor November 20, 1989 Diane Young 1405 Southwest Brooklane Drive Corvallis, Oregon 97333 November 20, 1989 Beth Camp Technical Writing Instructor Linn-Benton Community College Albany, Oregon 97321 Dear Beth, The purpose of "cyanide heap-leach gold mining and its impacts on the environment" is to introduce alternative mining techniques that will help alleviate wildlife death, and ground and surface water pollution due to cyanide ponds and leaks. Cyanide heap-leach gold mining is a process where micro-gold is extracted from ore. The ore is spread out in heaps and sprinkled with a dilute cyanide solution. The gold-laden or ''pregnant" cyanide is contained under the ore by plastic liners and a layer of clay. The "pregnant'' solution is pumped through a series of carbon columns which separates the gold from the cyanide. This cyanide solution is then sent to a "holding pond'' where it is restored to its former strength and later reused. Through library research and personal interviews, I have recommended that the following alternative systems be implemented. They are: -installing French drains and double liners for the detection of cyanide leaks, -installing nets and flags, and double fences for wildlife preservation. Atlas Mining Company's benefits will include improving relationships with environmental agencies,
    [Show full text]
  • 2015 US Bond
    NOTICE THIS OFFERING CIRCULAR IS AVAILABLE ONLY TO INVESTORS WHO ARE EITHER (1) QUALIFIED INSTITUTIONAL BUYERS WITHIN THE MEANING OF RULE 144A UNDER THE U.S. SECURITIES ACT OF 1933, AS AMENDED (THE “U.S. SECURITIES ACT”) OR (2) PERSONS WHO ARE NOT U.S. PERSONS (AS DEFINED IN REGULATION S UNDER THE U.S. SECURITIES ACT) AND WHO ARE OUTSIDE OF THE UNITED STATES IN ACCORDANCE WITH REGULATION S UNDER THE U.S. SECURITIES ACT (AND, IF INVESTORS ARE RESIDENT IN A MEMBER STATE OF THE EUROPEAN ECONOMIC AREA, A QUALIFIED INVESTOR). IMPORTANT: You must read the following before continuing. The following applies to the offering circular following this notice, whether received by email or otherwise received as a result of electronic communication. You are advised to read this disclaimer carefully before reading, accessing or making any other use of the offering circular. In accessing the offering circular, you agree to be bound by the following terms and conditions, including any modifications to them, each time you receive any information from us as a result of such access. NOTHING IN THIS ELECTRONIC TRANSMISSION CONSTITUTES AN OFFER OF SECURITIES FOR SALE IN ANY JURISDICTION WHERE IT IS UNLAWFUL TO DO SO. THE SECURITIES HAVE NOT BEEN, AND WILL NOT BE, REGISTERED UNDER THE U.S. SECURITIES ACT OR THE SECURITIES LAWS OF ANY STATE OF THE UNITED STATES OR OTHER JURISDICTION AND THE SECURITIES MAY NOT BE OFFERED OR SOLD WITHIN THE UNITED STATES EXCEPT PURSUANT TO AN EXEMPTION FROM, OR IN A TRANSACTION NOT SUBJECT TO, THE REGISTRATION REQUIREMENTS OF THE U.S.
    [Show full text]
  • Nonoxidative Leaching of Non-Ferrous Metals from Wastes of Kola Mining by Sulphuric Acid
    International Journal of Mining Science (IJMS) Volume 1, Issue 1, June 2015, PP 17-24 www.arcjournals.org Nonoxidative Leaching of Non-ferrous Metals from Wastes of Kola Mining by Sulphuric Acid Anton Svetlov, Dmitry Makarov, Vladimir Vigdergauz 1Institute of Industrial North Ecology Problems of the Kola Science Centre of RAS, Fersman St., 14a, Apatity, Murmansk Region, Russia. [email protected] Abstract: Dressing tailings and metallurgical slags, while being a major source of non-ferrous metals, pose a serious environmental hazard if unprocessed. In this study, the leaching kinetics of copper and nickel from low- grade wastes of Kola Mining was investigated. Leaching experiments were conducted in sulfuric acid electrolyte at a room temperature. The output solutions were analyzed using the atom-absorption spectrometry and the solid phase was analyzed using X-ray diffraction. The dynamics of metal leaching in the experiment show that heap leaching is quite advantageous when re-extracting metals from pelletized copper-nickel ore dressing tailings of current production, or of lean additional concentrate of tailings flotation. Taking into account the availability of excess sulphuric acid turned out by the "Kola MMC" JSC enterprises, sulphatization of pellets, where H2SO4 acts as a binder in tailing pelletizing, is recommended. Keywords: Cu-Ni ore dressing tailings, granulated slag, heap leaching 1. INTRODUCTION From the accumulated on the territory of Russia wastes three quarters fall to the mining industries. For producing of a ton of metal it is formed from 30 up to 100 tons of tails of benefication. For their removal and storage it is spent from five to eight percents of the costs of produced metals.
    [Show full text]
  • In Situ Resource Recovery from Waste Repositories: Exploring the Potential for Mobilization and Capture of Metals from Anthropogenic Ores
    J. Sustain. Metall. DOI 10.1007/s40831-016-0102-4 RESEARCH ARTICLE In Situ Resource Recovery from Waste Repositories: Exploring the Potential for Mobilization and Capture of Metals from Anthropogenic Ores 1 1 1 Devin Sapsford • Peter Cleall • Michael Harbottle Ó The Author(s) 2016. This article is published with open access at Springerlink.com Abstract Wastes and the waste repositories in which they Introduction reside are becoming targets for resource recovery, both for legacy wastes and for future waste arisings as part of a Waste repositories can be considered the ore deposits of the desire to move toward a circular economy. There is an ‘anthropocene.’ Having historically disposed of vast urgent requirement to explore concepts for practicable quantities of industrial, municipal, metallurgical, and technologies that can be applied to these ends. This paper mining waste into or onto the ground, societies have put presents a synthesis of concepts concerning in situ tech- into geological storage an enormous quantity of resource in nologies (developed from mining and contaminated land a range of materials of value such as metals and energy (in remediation industries) that have enormous potential for the form of biomass and polymers). Therefore, instead of application to technospheric mining. Furthermore, poten- considering these waste repositories to be a legacy waste tial target waste streams and their mineralogy and character issue and a long-term liability, a paradigm shift is required are presented along with a discussion concerning lixiviant to view these installations as ‘resource hubs’ for future and metal capture systems that could be applied. Issues of recovery.
    [Show full text]