Specials: Combination Tools

Total Page:16

File Type:pdf, Size:1020Kb

Specials: Combination Tools SPECIALS There are some situations in which a standard tool just doesn’t fit the job. When a complicated application or other limitations are introduced, a custom tool can provide the unique capabilities required. COMPLEX TOOLS In some applications, the end result required for the job cannot physically be completed with a single, standard tool. Utilizing custom tools may provide the most effective solution. EXAMPLE: Intersecting Form Tool By dividing the required forms and applying them to alternating flutes, a customer can manufacture an inside corner with a zero radius. Without the use of the intersecting form tool, a perfectly sharp inside corner would be physically impossible to manufacture. MODIFIED STANDARDS Standard tools provide an immediate manufacturing solution. In some cases, the tool needed may be similar to a stocked tool, but requires some changes to improve efficiencies. EXAMPLE: Modified Drill By making small modifications to a standard drill, the modified tool can save machine time and reduce manufacturing costs. In addition, by converting the standard drill into a customized step drill, the lead time can be significantly less than if opting for a newly designed custom tool. COMBINATION TOOLS When several tools are blended into one, the resulting combination tool can complete all of the necessary tasks in one pass. By reducing the number of tools needed to complete the tasks, the number of variables and potential variances are reduced, allowing the combination tool to perform with greater precision and repeatability. Specials: Combination Tools THREAD MILL COUNTERBORE COMBO Produces a thread in a pre-drilled hole Makes a at-bottomed hole Thread Mill + Counterbore EXAMPLE: Combination Thread Mill and Counterbore By combining several tools used in a work station, a single tool can complete multiple tasks. Not only does this make room for other tools in the work station, but it reduces the number of tool changes to complete the same work. Additionally, the total cost difference between a single combination tool vs. multiple tools can reduce the overall tool costs by 20-30%. 82 MADE IN THE USA Contact Us: (320) 455-0535 / [email protected] / www.mitgi.us Contact Us: (320) 455-0535 / [email protected] / www.mitgi.us MADE IN THE USA ORDERING CUSTOM TOOLS The process to get exactly the right tool you need does not have to be complicated. Using our Custom Tool Design Service, your specifications can turn into a working tool within two weeks of receiving a purchase order. Custom variables can Quote Sheet: End Mill include: • Tool Type • Cutter Diameter OAL • Length of Cut SHOULDER ANGLE FLUTE LENGTH • Shank Diameter • Overall Length SHANK DIAMETER • Extended Reach CUTTER DIAMETER • Number of Flutes • Included Angle Corner Chamfer Corner Radius Ball Nose Square End • Thread Size • Pitch • Max Depth of Thread COMPANY INFORMATION • Work Piece Material Company Name For over 20 years, MITGI has manufactured high quality, Contact Name precision custom tooling. • Radius Phone Number Once we receive your specifi cations, we’ll contact • Neck Diameter Fax Number you with pricing and Email delivery information. In the • Coating meantime, if you have any Date Submitted questions, please contact us Target Delivery Date by phone or email. For more information on the TOOL INFORMATION TOLERANCES types of tools that MITGI can Quantity .XX ± .010 produce, see page 55. Material Machining .XXX ± .001 Coating AlTiN TiCN TiN .XXXX ± .0005 Number of Flutes Angular ± 1.0° Helix Special Tolerances Complete form and (If none are noted, tool will be return to MITGI to quoted with block tolerance) receive a quote. Special Notes or Instructions Fax: (320) 455-0805 (Coolant thru, Chip breaker, LH or Email: [email protected] RH cut/spiral) ©2015 Midwest Industrial Tool Grinding, Inc. www.mitgi.us (320) 455-0535 Rev 04/23/2015 Custom tools can be manufactured from an existing design or created using our in-house design service. Within two weeks of approval print and receipt of a purchase order, we can have the custom tool in your hands and ready for use. To make re-ordering easier, we’ll keep detailed notes on each custom order so that we’re always ready to manufacture the tool to the exact same specifications. Tips for Ordering Specials When ordering custom tools, consider the following: • Would you like to test the tool before placing a large order? Consider our Approval Based Sample Program. See page 107 for more info. • Want to reduce the per tool price? Ordering in larger quantities will help to lower the per tool price. Blanket POs and stocking options allow us to build larger quantities and gives you the ability to schedule appropriate delivery dates. Ask for more info on our stocking options. • Concerned about long lead times? MITGI specials can be manufactured within two weeks of the order. See page 45 for more info. MADE IN THE USA Contact Us: (320) 455-0535 / [email protected] / www.mitgi.us Contact Us: (320) 455-0535 / [email protected] / www.mitgi.us MADE IN THE USA 83.
Recommended publications
  • Manufacturing Glossary
    MANUFACTURING GLOSSARY Aging – A change in the properties of certain metals and alloys that occurs at ambient or moderately elevated temperatures after a hot-working operation or a heat-treatment (quench aging in ferrous alloys, natural or artificial aging in ferrous and nonferrous alloys) or after a cold-working operation (strain aging). The change in properties is often, but not always, due to a phase change (precipitation), but never involves a change in chemical composition of the metal or alloy. Abrasive – Garnet, emery, carborundum, aluminum oxide, silicon carbide, diamond, cubic boron nitride, or other material in various grit sizes used for grinding, lapping, polishing, honing, pressure blasting, and other operations. Each abrasive particle acts like a tiny, single-point tool that cuts a small chip; with hundreds of thousands of points doing so, high metal-removal rates are possible while providing a good finish. Abrasive Band – Diamond- or other abrasive-coated endless band fitted to a special band machine for machining hard-to-cut materials. Abrasive Belt – Abrasive-coated belt used for production finishing, deburring, and similar functions.See coated abrasive. Abrasive Cutoff Disc – Blade-like disc with abrasive particles that parts stock in a slicing motion. Abrasive Cutoff Machine, Saw – Machine that uses blade-like discs impregnated with abrasive particles to cut/part stock. See saw, sawing machine. Abrasive Flow Machining – Finishing operation for holes, inaccessible areas, or restricted passages. Done by clamping the part in a fixture, then extruding semisolid abrasive media through the passage. Often, multiple parts are loaded into a single fixture and finished simultaneously. Abrasive Machining – Various grinding, honing, lapping, and polishing operations that utilize abrasive particles to impart new shapes, improve finishes, and part stock by removing metal or other material.See grinding.
    [Show full text]
  • Skilled Trades Sector Brochure
    Architectural Glass and Metal Hoisting Engineer - Tower Crane Bearings Mechanic Mould Maker Technician (Glazier) Operator (Tower Crane Operator) Blacksmith Mould or Die Finisher Brick and Stone Mason (Bricklayer) Ironworker - Generalist Cabinetmaker Optics Technician (Lens and Prism Cement (Concrete) Finisher Ironworker - Structural and Composite Structures Technician Maker) Concrete Pump Operator Ornamental Computer Numerical Control (CNC) Packaging Machine Mechanic Construction Boilermaker Native Residential Construction Worker Programmer Pattern Maker (Boilermaker) Painter and Decorator - Commercial and Die Designer Precision Metal Fabricator Construction Craft Worker Residential (Painter and Decorator) Draftsperson - Mechanical Pressure Systems Welder Construction Millwright Painter and Decorator - Industrial Draftsperson - Plastic Mould Design Process Operator - Food Drywall Finisher and Plasterer Plumber Draftsperson - Tool and Die Design Manufacturing Drywall, Acoustic and Lathing Powerline Technician Electric Motor System Technician Process Operator - Power Applicator (Lather – Interior Systems Precast Concrete Erector Electrical Control (Machine) Builder Process Operator - Refinery, Mechanic) Precast Concrete Finisher Electrician (Signal Maintenance) Chemical and Liquid Processes Electrician — Construction and Refractory Mason Elevating Devices Mechanic Process Operator - Wood Products Maintenance Refrigeration and Air Conditioning Entertainment Industry Power Technician Pump Systems Installer Electrician — Domestic and Rural
    [Show full text]
  • Ring-Bending Machines
    THE CHRONICLE OF THE COMPANY 1965 Foundation of the company as an one-man-business, trading of gates, metal doors and door frames, window bars and grills. Glaser headquarter is still at Kleestadt, near Groß-Umstadt. First exhibitions in Erbach, Groß-Umstadt and Frankfurt. 1971 Company moves to Groß-Umstadt; building of the first storage- and production hall "Am Brüchelsteg" Extension of the production line: windows, doors, benches and fences made out of plastic, wrought iron works and wrought-iron machines. Automatic Machines 1976 Achieving of the Master Craftsman's Diploma of the Handwerkskammer Darmstadt. 1977 Opening up the second production hall. Extension of teh production line for wrought-iron articles 1982 For the first time GLASER is represented at the International Handwerkermesse München and the Hannover Fair. First pioneering success, mostly in the construction of machinery 1986 Buildingof the fourth factory hall for the production of machines and tools. Achieving the license to train in wrought-iron crafts and constructing of tools and machines. Export business is extended. Attachments for GDM 1990 Demolition of the first factory hall and putting up the new exhibition and administration building. GLASER's 25th anniversary on 8th December 1990 1992 Opening up a new establishment at Bamberg (Bavaria) of 2.000 square meters for the production of wrought-iron articles. 1995 Erection of the fifth hall of 3.000 m² with the most modern bending centre and facilities for stainless Automatic Scroll Benders Scroll steel- and CAD trainings as well as production of machinery and tools. 1997 Wining award »Staatspreis der Bayerischen Staatsregierung« and the »Bundespreis für hervorragende innovative Leistungen für das Handwerk« .
    [Show full text]
  • Grinding Machine Construction Types of Grinders
    Grinding machine A grinding machine is a machine tool used for producing very fine finishes or making very light cuts, using an abrasive wheel as the cutting device. This wheel can be made up of various sizes and types of stones, diamonds or of inorganic materials. For machines used to reduce particle size in materials processing see grinding. Construction The grinding machine consists of a power driven grinding wheel spinning at the required speed (which is determined by the wheel’s diameter and manufacturer’s rating, usually by a formula) and a bed with a fixture to guide and hold the work-piece. The grinding head can be controlled to travel across a fixed work piece or the workpiece can be moved whilst the grind head stays in a fixed position. Very fine control of the grinding head or tables position is possible using a vernier calibrated hand wheel, or using the features of NC or CNC controls. Grinding machines remove material from the workpiece by abrasion, which can generate substantial amounts of heat; they therefore incorporate a coolant to cool the workpiece so that it does not overheat and go outside its tolerance. The coolant also benefits the machinist as the heat generated may cause burns in some cases. In very high-precision grinding machines (most cylindrical and surface grinders) the final grinding stages are usually set up so that they remove about 2/10000mm (less than 1/100000 in) per pass - this generates so little heat that even with no coolant, the temperature rise is negligible. Types of grinders These machines include the Belt grinder, which is usually used as a machining method to process metals and other materials, with the aid of coated abrasives.
    [Show full text]
  • Study Unit Toolholding Systems You’Ve Studied the Process of Machining and the Various Types of Machine Tools That Are Used in Manufacturing
    Study Unit Toolholding Systems You’ve studied the process of machining and the various types of machine tools that are used in manufacturing. In this unit, you’ll take a closer look at the interface between the machine tools and the work piece: the toolholder and cutting tool. In today’s modern manufacturing environ ment, many sophisti- Preview Preview cated machine tools are available, including manual control and computer numerical control, or CNC, machines with spe- cial accessories to aid high-speed machining. Many of these new machine tools are very expensive and have the ability to machine quickly and precisely. However, if a careless deci- sion is made regarding a cutting tool and its toolholder, poor product quality will result no matter how sophisticated the machine. In this unit, you’ll learn some of the fundamental characteristics that most toolholders have in common, and what information is needed to select the proper toolholder. When you complete this study unit, you’ll be able to • Understand the fundamental characteristics of toolhold- ers used in various machine tools • Describe how a toolholder affects the quality of the machining operation • Interpret national standards for tool and toolholder iden- tification systems • Recognize the differences in toolholder tapers and the proper applications for each type of taper • Explain the effects of toolholder concentricity and imbalance • Access information from manufacturers about toolholder selection Remember to regularly check “My Courses” on your student homepage. Your instructor
    [Show full text]
  • MSL Engineering Limited Platinum Blue House 1St Floor, 18 the Avenue Egham, Surrey, TW20 9AB
    SMR Final Report 121404 Purpose of Issue Rev Date of Issue Author Agreed Approved Issued for information 0 Aug 2004 SM Issued for internal comment 1 November 2004 AFD DJM JB Issued as Final Report 2 December 2004 AFD DJM JB This Final report has been reviewed and approved by the Mineral Management Service. Approval does not signify that the contents necessarily reflect the views and policies of the Service, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. This study was funded by the Mineral Management Service, U.S. Department of the Interior, Washington, D.C., under Contract Number 1435-01-04-CT-35320 ASSESSMENT OF REPAIR TECHNIQUES FOR AGEING OR DAMAGED STRUCTURES Project #502 DOC REF C357R001 Rev 1 NOV 2004 MSL Engineering Limited Platinum Blue House 1st Floor, 18 The Avenue Egham, Surrey, TW20 9AB Tel: +44 (0)1784 439194 Fax: +44 (0)1784 439198 E-mail: [email protected] C357R001Rev 2, December 2004 MMS Project #502 NUMBER DETAILS OF REVISION 0 Issued for information, August 2004 1 Issued for comment, November 2004. Extensive revisions throughout, including restructuring of report. 2 Issued as Final Report, December 2004. Conversion table added, Figure showing clamp details to avoid added, and general editorial revisions. C357R001Rev 2, December 2004 MMS Project #502 Assessment of Repair Techniques for Ageing or Damaged Structures By Dr. Adrian F Dier MSL Services Corporation Final Project Report: ASSESSMENT OF REPAIR TECHNIQUES FOR AGEING OR DAMAGED STRUCTURES MMS Project Number 502 November 2004 C357R001Rev 2, December 2004 i This Final report has been reviewed a nd approved by the Mineral Management Service.
    [Show full text]
  • Professional Profiles | Cutting Tool Engineering | April 2015
    Professional profiles | Cutting Tool Engineering | April 2015 http://www.ctemag.com/aa_pages/2015/150404-ToolGrinding.html April 2015 / Volume 67 / Issue 4 Professional profiles By Evan Jones Thorne, Assistant Editor Grinding a complex cutting tool can be, well, complex. And defining what makes a cutting tool complex can be challenging too. “A complex cutting tool is generally defined by the tool profile and its tolerances,” said Paul Ehrlich, senior applications engineer for grinding machine builder United Grinding North America Inc., Miamisburg, Ohio. “You really need to take both of those parameters into consideration, because you might have a wide open geometry with a tolerance of two or three thousandths, and that’s not a big deal, but an odd shape, even with a looser tolerance, would be complex.” The Walter Helitronic Vision grinding machine produces rotationally symmetrical tools and parts with complex 1 of 7 4/8/2015 8:57 AM Professional profiles | Cutting Tool Engineering | April 2015 http://www.ctemag.com/aa_pages/2015/150404-ToolGrinding.html geometries. Image courtesy United Grinding North America. Bill Freese, president of grinding machine builder Rush Machinery Inc., Rushville, N.Y., concurred, adding that multifunction tools, which may feature geometries intended to serve multiple purposes, are also complex. Toolmaker and machine tool builder Star Cutter Co., Farmington Hills, Mich., expands the definition of complex to encompass anything outside of its normal range, noted Paul Schulte, manager of advanced technology. “We view ‘complex’ as a tool with more than one diameter or a tolerance that is tighter than our off-the-shelf products,” he explained.
    [Show full text]
  • Semi-Solid Slurry Formation Via Liquid Metal
    SEMI-SOLID SLURRY FORMATION VIA LIQUID METAL MIXING A Thesis Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Master of Science in Materials Science and Engineering July 2003 by Matthew M. Findon ________________________________________ APPROVED: Diran Apelian, Howmet Professor of Engineering, Advisor Richard D. Sisson, Jr., Professor of Mechanical Engineering, Materials Science and Engineering Program Head ii Abstract New, economical semi-solid metal (SSM) processes rely on forced convection during solidification to influence non-dendritic growth. The fundamental mechanisms that produce SSM microstructures in the presence of forced convection (due to fluid flow) are not fully understood. The objective of this work is to elucidate these mechanisms through the use of a new semi-solid slurry-making technique. Employing an apparatus developed at WPI, two alloy melts are mixed within a static reactor that induces convection and rapid cooling. Experiments carried out with this apparatus, named the “Continuous Rheoconversion Process” (CRP), result in globular semi-solid microstructures throughout a wide range of processing conditions. These conditions include the superheat in the melts before mixing, cooling rate of the slurry through the SSM range, and the presence or absence of inoculants in the melts. The results comprise repeatable sets of semi-solid microstructures having fine particle size and shape factors approaching unity. Even in the absence of melt inoculants, uniform distributions of α-Al particle sizes of about 60µm are attainable. Entrapped liquid is not present in the majority of the samples obtained with the CRP, and irregular particles that form in the process are of a limited distribution.
    [Show full text]
  • Enghandbook.Pdf
    785.392.3017 FAX 785.392.2845 Box 232, Exit 49 G.L. Huyett Expy Minneapolis, KS 67467 ENGINEERING HANDBOOK TECHNICAL INFORMATION STEELMAKING Basic descriptions of making carbon, alloy, stainless, and tool steel p. 4. METALS & ALLOYS Carbon grades, types, and numbering systems; glossary p. 13. Identification factors and composition standards p. 27. CHEMICAL CONTENT This document and the information contained herein is not Quenching, hardening, and other thermal modifications p. 30. HEAT TREATMENT a design standard, design guide or otherwise, but is here TESTING THE HARDNESS OF METALS Types and comparisons; glossary p. 34. solely for the convenience of our customers. For more Comparisons of ductility, stresses; glossary p.41. design assistance MECHANICAL PROPERTIES OF METAL contact our plant or consult the Machinery G.L. Huyett’s distinct capabilities; glossary p. 53. Handbook, published MANUFACTURING PROCESSES by Industrial Press Inc., New York. COATING, PLATING & THE COLORING OF METALS Finishes p. 81. CONVERSION CHARTS Imperial and metric p. 84. 1 TABLE OF CONTENTS Introduction 3 Steelmaking 4 Metals and Alloys 13 Designations for Chemical Content 27 Designations for Heat Treatment 30 Testing the Hardness of Metals 34 Mechanical Properties of Metal 41 Manufacturing Processes 53 Manufacturing Glossary 57 Conversion Coating, Plating, and the Coloring of Metals 81 Conversion Charts 84 Links and Related Sites 89 Index 90 Box 232 • Exit 49 G.L. Huyett Expressway • Minneapolis, Kansas 67467 785-392-3017 • Fax 785-392-2845 • [email protected] • www.huyett.com INTRODUCTION & ACKNOWLEDGMENTS This document was created based on research and experience of Huyett staff. Invaluable technical information, including statistical data contained in the tables, is from the 26th Edition Machinery Handbook, copyrighted and published in 2000 by Industrial Press, Inc.
    [Show full text]
  • High-Performance Solid Carbide End Mill Catalog
    High-Performance Solid Carbide End Mill Catalog 3rd Edition GUHRING USA USA Headquarters California Distribution Center and Reconditioning Facility Brookfield Distribution Center, manufacturing and 15581 Computer Lane Reconditioning Facility Huntington Beach, CA 92649 1445 Commerce Avenue Tel (714) 841-3582 Brookfield, WI 53045 Fax (800) 877-7202 Tel (262) 784-6730 (800) 776-6170 Fax (262) 784-9096 Dear customers, Highest productivity, excellent economic efficiency and optimum machining results are the principles to which we steer our products and services towards. At Guhring this is achieved with great success by more than of 5,000 employees world-wide. Their objective is customer satisfaction and this makes Guhring the leading world wide manufacturer of rotary cutting tools. YOU BENEFIT IN MANY WAYS: Pooled expertise With Guhring tools you can rely on the tool material, the geometry and the coating – the essential parameters for the efficiency of a precision tool – to be perfectly coordinated. Our own carbide production, our own machine and equipment construction, our own coating technology as well as our own development departments ensure we maintain technological leadership in rotary cutting tools. Within the framework of our special tool production we develop optimized tools with an excellent price-performance-ratio for our customers. 2 Connecticut Reconditioning Facility Michigan Manufacturing and Reconditioning Facility 121 W Dudley Town Rd. 29550 W.K. Smith Rd. Suite B Bloomfield, CT 06002 New Hudson, MI 48165 Tel (860) 216-5948 Tel (248) 486-3783 Fax (860) 519-5819 Fax (248) 486-0046 Trend-setting innovations In excess of 600 granted patents world-wide are proof of our capability for innovation.
    [Show full text]
  • Helical's Machining Guidebook
    Helical MACHINING GUIDEBOOK Quick Reference eBook for CNC Milling Practices & Techniques 1 | Machining Guidebook | © 2016 Helical Solutions, LLC Helical Contents Milling Techniques & Strategies Terminology & Common Calculations 01 | Milling Techniques . 3 04 | End Mill Construction . 37 Types of Tool Entry . 4 Geometry Definitions . 38 Ramping . 6 End Mill Construction . 40 Thin Wall Milling . 8 End Mill Anatomy . 42 Deep Pocket Milling . 10 05 | Common Calculations . 51 Finishing . 11 Decimal Conversion Chart . 52 Ball Nose Strategy . 13 Common Milling Calculations . 53 Corner Engagement . 17 Speeds & Feeds . 54 Angle Engagement . 19 Conventional vs Climb Milling . 20 06 | Tool Holding . 55 Chip Thinning . 22 Tool Holding . 56 Preventing Tool Pull Out . 58 02 | High Efficiency Milling . 23 High Efficiency Milling . 24 HEM Tooling . 25 Troubleshooting 03 | Depth of Cut . 26 07 | Troubleshooting . 60 Depth of Cut . 27 Troubleshooting Chart . 61 Depth of Cut - Peripheral . 28 Tool Wear . 65 Depth of Cut - Slotting . 34 Tool Deflection . 69 Copyright © 2016 by Helical Solutions, LLC . All rights reserved . This book or any portion thereof may not be reproduced or used in any manner whatsoever without the express written permission of Helical Solutions . 2 | Machining Guidebook | © 2016 Helical Solutions, LLC Helical 01 Milling Techniques Types of Tool Entry . 4 Ball Nose Strategy . 13 Ramping . 6 Corner Engagement . 17 Thin Wall Milling . 8 Angle Engagement . 19 Deep Pocket Milling . 10 Conventional vs Climb Milling . 20 Finishing . 11 Chip Thinning . 22 3 | Machining Guidebook | © 2016 Helical Solutions, LLC Helical Types of Tool Entry The type of part entry that is programmed has a lot of influence on the tool’s success and is one of the most punishing Theoperations type of part for entry a cutter programmed .
    [Show full text]
  • Evaluation of Surface Roughness and Material Removal Rate in End Milling of Complex Shape
    Universal Journal of Mechanical Engineering 4(3): 69-73, 2016 http://www.hrpub.org DOI: 10.13189/ujme.2016.040303 Evaluation of Surface Roughness and Material Removal Rate in End Milling of Complex Shape Suha K. Shihab1,*, Ethar Mohamed Mahdi Mubarak2 1Department of Materials Engineering, Engineering College, Diyala University, Iraq 2Mechanical Department, Institute of Technology, Middle Technical University, Iraq Copyright©2016 by authors, all rights reserved. Authors agree that this article remains permanently open access under the terms of the Creative Commons Attribution License 4.0 International License Abstract In this work, an attempt has been made to the material removal rate is another important aspect in analyze the influence of various machining input parameters improving machining performance, effecting on the of CNC end milling process viz. cutting speed, feed rate and productivity and reduced lead times and cost [6]. It is very depth of cut on machining output variables (surface difficult for an operator to select optimum machining roughness and material removal rate) during machining parameters to achieve best surface finish and higher complex shape of copper. Three different levels of input productivity. Therefore, many researchers have focused on parameters were planned as per Taguchi’s L9 orthogonal the effect of machining parameters and selection the array. The parameters are optimised from analysis of mean optimum values of these parameters to determine best (ANOM). Analysis of variance (ANOVA) was employed to surface finish and highest value of material removal rate [1, investigate the effect of machining parameters on the 7].In this research an attempt has been made to produce variables.
    [Show full text]