Korir Umd 0117E 20494.Pdf (1.137Mb)

Total Page:16

File Type:pdf, Size:1020Kb

Korir Umd 0117E 20494.Pdf (1.137Mb) ABSTRACT Title of Dissertation: FUSARIUM SPECIES OF CUCUMIS MELO IN THE MID-ATLANTIC REGION OF THE US AND THEIR IMPACT ON SALMONELLA ENTERICA NEWPORT SURVIVAL AND INTERNALIZATION ON VARIOUS MELON CULTIVARS Robert Cheruiyot Korir, Doctor of Philosophy, 2019 Dissertation directed by: Dr. Kathryne L. Everts and Dr. Shirley Ann Micallef, Department of Plant Science and Landscape Architecture Fruit rots caused by Fusarium spp. can lead to economic yield losses on melon (Cucumis melo). However, which Fusarium spp. are the most prevalent in Maryland and Delaware has not been documented. Several Salmonella enterica subsp. serovar Newport (S. Newport) outbreaks on melon have occurred over the past 25 years. Fusarium spp. infestation on melon have potential impact on survival and colonization of Salmonella. Our objectives were to identify Fusarium spp. infestations on melons within the Delmarva region, and evaluate their impact on survival and internalization of S. Newport on various melon cultivars. Fifty-six isolates were molecularly identified, according to Fusarium-ID online database, as Fusarium spp. (Fusarium fujikuroi-20, Fusarium proliferatum-18, Fusarium oxysporum-15, Fusarium graminearium-2, Fusarium verticilloides-1). Our findings revealed that most of the Fusarium isolates we collected were not pathogenic to melon fruit. We evaluated the impact of four Fusarium spp. (F. armeniacum, F. oxysporum, F. fujikuroi, and F. proliferatum) on S. Newport survival in five melon cultivars; ‘Arava’ (C. melo var. reticulatus, Galia), ‘Athena’ (var. reticulatus, muskmelon), ‘Dulce Nectar’ (var. inodorus, honeydew), ‘Jaune de Canaries’ (var. inodorus, Canary), and ‘Sivan’ (var. cantalupensis, Charentais). Impact of F. proliferatum on survival and internalization of S. Newport was evaluated on honeydew (smooth) and cantaloupe (netted) melons. Generally, Fusarium did not impact the survival of S. Newport, however greater survival of S. Newport was observed on the netted cultivars compared to the smooth surface melons. Fusarium fujikuroi significantly enhanced survival of Salmonella when inoculated on riper ‘Jaune de Canaries’ melons (above ¾ slip). However, when the experiments were replicated with less ripe (about ¾ slip) melon, F. fujikuroi did not significantly influence the growth of S. Newport. Salmonella Newport internalized in all treatments and the cantaloupe and honeydew melons, but variation in population levels were observed across the treatments. Overall, Fusarium proliferatum did not impact internalization of S. Newport on either melon type. This may be attributed to that Fusarium species used during this study were nonpathogenic. Salmonella Newport recovered gradually decreased with time. Fusarium species on melon, influence S. Newport colonization differently. Also, melon rind type affects the ability of S. Newport to survive and colonize differently. Keywords: Melon, Cultivars, Fusarium spp., Salmonella enterica Newport, Survival, Internalization. FUSARIUM SPECIES OF CUCUMIS MELO IN THE MID-ATLANTIC REGION OF THE US AND THEIR IMPACT ON SALMONELLA ENTERICA NEWPORT SURVIVAL AND INTERNALIZATION ON VARIOUS MELON CULTIVARS. by Robert Cheruiyot Korir Dissertation submitted to the Faculty of the Graduate School of the University of Maryland, College Park, in partial fulfillment of the requirements for the degree of Doctor of Philosophy 2019 Advisory Committee: Professor Kathryne Everts, Chair Associate Professor Shirley Micallef, Co-Advisor Dr. Manan Sharma Associate Professor Abani Pradhan Assistant Professor Rohan Tikekar © Copyright by Robert Cheruiyot Korir 2019 Dedication This dissertation is dedicated to my daughter, Meredith Chebet Korir, my parents; John and Esther Segem, and all other family members in Kenya. ii Acknowledgements First and foremost, I would like to acknowledge and thank my advisors, Dr. Kathryne Everts and Dr. Shirley Micallef, who worked tirelessly along with me during my doctoral studies. Many thanks are due Dr. Manan Sharma, Dr. Rohan Tikekar, and Dr. Abani Pradhan for their suggestions. Also, I sincerely thank Yacintha Johnson and Anthony LaBarck for their great help and support in the Lab., and David Armentrout and Michael Newell for their assistance in the field and high tunnel melon production. Furthermore, I would like to appreciate all the help I received from my colleagues in the Pathology and Food Microbiology Safety Labs, Department of Plant Science. Lastly, NIFA 2014 511062090 for funding this project. iii Table of Contents Dedication ..................................................................................................................... ii Acknowledgements ...................................................................................................... iii Table of Contents ......................................................................................................... iv Chapter 1: General Introduction ................................................................................... 1 Introduction ............................................................................................................... 1 1.1. Rationale for this study. ............................................................................ 1 1.2. Melon consumption in the U.S. ................................................................ 3 1.3. Melon Production in the US. .................................................................... 3 1.4. Melon Production in Maryland. ................................................................ 4 1.6. Microbial contamination of produce. ........................................................ 6 1.7. Fusarium spp. and Cucurbits. ................................................................... 6 1.8. Objectives. ................................................................................................ 8 1.9. The goal of this project was to test four main hypotheses: ....................... 9 Chapter 2: Literature Review ...................................................................................... 10 2.1. Salmonella outbreaks on cucurbits. ............................................................. 10 2.2. Phytopathogens and Human Pathogens on Plants (HPOPs). ....................... 11 2.3. Internalization of human bacteria in plants/produce. ................................... 15 2.4. Fusarium species Infection. ......................................................................... 16 Chapter 3: Fusarium spp. of Cucumis melo in the Mid-Atlantic Region of the U.S. 20 Abstract ................................................................................................................... 20 Introduction......................................................................................................... 21 Materials and Methods ....................................................................................... 22 3.1. Sample Collection. ....................................................................................... 22 3.2. Isolation of Fusarium spp. ........................................................................... 23 3.3. Pathogenicity test of Fusarium isolates; inoculum preparation. .................. 24 3.4. Identification of Fusarium Isolates. ............................................................. 26 3.5. Molecular Identification of Fusarium Isolates. ........................................... 27 3.6. PCR Amplifications. .................................................................................... 27 3.7. DNA Sequencing, Alignment, and Phylogenetic Analysis. ........................ 28 3.8. Data Analysis. .............................................................................................. 29 Results and Discussion. ...................................................................................... 29 4.1. Morphological analysis. ............................................................................... 29 4.2. Macroscopic Characteristics. ....................................................................... 30 4.3. Isolation and Pathogenicity Test. ................................................................. 30 4.4. Molecular Identification............................................................................... 31 4.5. Repeat Pathogenicity Test............................................................................ 33 Conclusion. ............................................................................................................. 33 Chapter 4: Interactions between Salmonella enterica Newport, Fusarium spp. and Melon Cultivars. ......................................................................................................... 35 Abstract ............................................................................................................... 35 Introduction. ............................................................................................................ 36 5.1. Melon Consumption and Salmonella Contamination. ................................. 36 5.2. Salmonella enterica on/in Plants. ................................................................ 36 iv 5.3. Fusarium spp. and Melon ............................................................................ 38 Materials and Methods ....................................................................................... 39 6.1. Melon Samples Production. ......................................................................... 39 6.2. Microbial Material Fusarium
Recommended publications
  • High Tunnel Melon and Watermelon Production
    High Tunnel Melon and Watermelon Production University of Missouri Extension M173 Contents Author Botany 1 Lewis W. Jett, Division of Plant Sciences, University of Missouri-Columbia Cultivar selection 3 Editorial staff Transplant production 4 MU Extension and Agricultural Information Planting in the high tunnel 5 Dale Langford, editor Dennis Murphy, illustrator Row covers 6 On the World Wide Web Soil management and fertilization 6 Find this and other MU Extension publications on the Irrigation 7 Web at http://muextension.missouri.edu Pollination 7 Photographs Pruning 8 Except where noted, photographs are by Lewis W. Jett. Trellising 8 Harvest and yield 9 Marketing 10 Pest management 10 Useful references 14 Melon and watermelon seed sources 15 Sources of high tunnels (hoophouses) 16 For further information, address questions to College of Dr. Lewis W. Jett Agriculture Extension State Vegetable Crops Specialist Food and Natural Division of Plant Sciences Resources University of Missouri Columbia, MO 65211 Copyright 2006 by the University of Missouri Board of Curators E-mail: [email protected] College of Agriculture, Food and Natural Resources High Tunnel Melon and Watermelon Production igh tunnels are low-cost, passive, melo has several botanical subgroups (Table 1). solar greenhouses that use no fossil In the United States, reticulatus and inodorus are Hfuels for heating or venting (Figure commercially grown, while the remaining groups 1). High tunnels can provide many benefits to are grown for niche or local markets. horticulture crop producers: The cantaloupe fruit that most Americans • High tunnels are used to lengthen the are familiar with is not actually a true cantaloupe.
    [Show full text]
  • Reimer Seeds Catalog
    LCTRONICLCTRONIC CATALOGCATALOG Cantaloupes & Melons CA52‐20 ‐ Amarillo Oro Melons CA24‐10 ‐ Ambrosia Melons 100 days. Cucumis melo. Open Pollinated. 86 days. Cucumis melo. (F1) The plant The plant produces good yields of 3 ½ to 5 lb produces high yields of 4 ½ to 5 lb round golden yellow oblong melons and can reach cantaloupes. These eastern type melons 15 lbs. It has a creamy white flesh that is have a terrific extra sweet flavor and peach‐ sweet. A winter‐type melon that is a good colored flesh. It has a nectarous aroma and shipper. An excellent choice for home is very juicy. Melons have small seed gardens and market growers. A pre‐1870 cavities. Ambrosia is recognized as one of heirloom variety from Spain. the best‐tasting melons. An excellent choice for home gardens and market growers. Disease Resistant: DM, PM. CA48‐20 ‐ Amish Melons CA31‐20 ‐ Casaba Golden Beauty Melons 90 days. Cucumis melo. Open Pollinated. 90 days. Cucumis melo. Open Pollinated. The plant produces high yields of 4 to 7 lb Plant produces good yields of 6 to 8 lb cantaloupes. The sweet orange flesh is very golden cantaloupes with dark green juicy and has a muskmelon flavor. It does mottling. The melon has white flesh that is well in most regions of the United States, very sweet. Stores well. Does well in hot dry even in extreme heat. An excellent choice climates. Excellent choice for home gardens for home gardens. An heirloom variety from and market growers. A heirloom variety the Amish community. dating back to the 1920s.
    [Show full text]
  • Genetic Resources of the Genus Cucumis and Their Morphological Description (English-Czech Version)
    Genetic resources of the genus Cucumis and their morphological description (English-Czech version) E. KŘÍSTKOVÁ1, A. LEBEDA2, V. VINTER2, O. BLAHOUŠEK3 1Research Institute of Crop Production, Praha-Ruzyně, Division of Genetics and Plant Breeding, Department of Gene Bank, Workplace Olomouc, Olomouc-Holice, Czech Republic 2Palacký University, Faculty of Science, Department of Botany, Olomouc-Holice, Czech Republic 3Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany Academy of Sciences of the Czech Republic, Olomouc-Holice, Czech Republic ABSTRACT: Czech collections of Cucumis spp. genetic resources includes 895 accessions of cultivated C. sativus and C. melo species and 89 accessions of wild species. Knowledge of their morphological and biological features and a correct taxonomical ranging serve a base for successful use of germplasm in modern breeding. List of morphological descriptors consists of 65 descriptors and 20 of them are elucidated by figures. It provides a tool for Cucumis species determination and characterization and for a discrimination of an infraspecific variation. Obtained data can be used for description of genetic resources and also for research purposes. Keywords: Cucurbitaceae; cucumber; melon; germplasm; data; descriptors; infraspecific variation; Cucumis spp.; wild Cucumis species Collections of Cucumis genetic resources include pollen grains and ovules, there are clear relation of this not only cultivated species C. sativus (cucumbers) taxon with the order Passiflorales (NOVÁK 1961). Based and C. melo (melons) but also wild Cucumis species. on latest knowledge of cytology, cytogenetics, phyto- Knowledge of their morphological and biological fea- chemistry and molecular genetics (PERL-TREVES et al. tures and a correct taxonomical ranging serve a base for 1985; RAAMSDONK et al.
    [Show full text]
  • Nutritional Composition and Oil Characteristics of Golden Melon (Cucumis Melo ) Seeds
    Food Science and Quality Management www.iiste.org ISSN 2224-6088 (Paper) ISSN 2225-0557 (Online) Vol.27, 2014 Nutritional Composition and Oil Characteristics of Golden Melon (Cucumis melo ) Seeds Oluwatoyin H. Raji * Oluwaseun T. Orelaja Department of Food Technology, Moshood Abiola Polytechnic Abeokuta, P.O.box 2210 Abeokuta, Ogun state * E-mail of the corresponding author: [email protected] Abstract This study investigated the mineral and proximate composition of Golden/canary melon ( Cucumis melo ) seeds and the physiochemical properties of the seed oil. Proximate composition and physicochemical properties of oil were performed according to AOAC procedures. Minerals were determined using the method of Novozamsky et al. (1983). Results show that the seeds contained high percentage of crude fibre (33.94%) and low percentage of carbohydrate (3.14%). The seeds also contain high value of iron (136.5ppm), zinc (48.35ppm), manganese (25.70ppm), copper (15.40ppm) and low value of calcium (0.023±0.001%). Hexane extracted oil had acid value (2.68mgKOH/g) peroxide value (7.42mgKOH/g), iodine value of (117.43mgKOH/g), saponification value (191.42), free fatty acid (2.34) moisture content (5.68%), and refractive index (1.62) respectively. The seeds serve as good sources of crude fiber, fat and protein. Results also showed that the golden/canary melon oil is non rancid. Keywords: Physicochemical, Golden melon, Hexane extracted oil 1. Introduction Cucurbitaceae (Cucurbit) is an important family comprising one of the most genetically diverse groups of food plants. Most of the plants belonging to this family are frost sensitive and drought-tolerant (Whitaker and Bohn, 1950).
    [Show full text]
  • Generate Evaluation Form
    Great Lakes Fruit, Vegetable & Farm Market EXPO Michigan Greenhouse Growers EXPO December 5-7, 2017 DeVos Place Convention Center, Grand Rapids, MI Vine Crops Where: Grand Gallery (main level) Room E & F MI Recertification credits: 2 (1B, COMM CORE, PRIV CORE) OH Recertification credits: 1 (presentations as marked) CCA Credits: PM(1.0) CM(1.0) Moderator: Ben Phillips, Vegetable Extension Educator, MSU Extension, Saginaw, MI 9:00 am Integrated Management of Powdery Mildew and Gummy Stem Blight on Cucurbits: A Florida Perspective (OH: 2B, 0.5 hr) Gary Vallad, Plant Pathology Dept., Univ. of Florida 9:30 am Perspectives and Opportunities for Growing Orange Flesh and Specialty Melons Jonathan Schultheis, Dept. Horticultural Science, North Carolina State University 10:00 am Best Management Practices: Controlling Insects While Protecting Pollinators (OH: CORE, 0.5 hr) Rick Foster, Entomology Dept., Purdue Univ. 10:30 am Cover Cropping in Melons for Reduced Washing After Harvest Chris Gunter, Horticultural Science Dept., North Carolina State Univ. 11:00 am Session Ends Perspectives and Opportunities for Growing Orange Flesh and Specialty Melons Jonathan R. Schultheis North Carolina State University Department of Horticultural Science 2721 Founders Drive, 264 Kilgore Raleigh, NC 27695-7609 [email protected] Orange Flesh Melon Types: The landscape of orange flesh muskmelons (cantaloupes) has changed dramatically over the past five to ten years. Traditionally, there were two primary orange flesh melon types grown and sold; western types, which are fruits that range in size from about 3 to 5 pounds which are heavily netted and not sutured, and eastern types which have some netting, have a shorter shelf life but have a larger fruit size than a western melon, and tend to have a softer flesh with apparent more flavor than a western melon.
    [Show full text]
  • Ck01e Index.Qxp 4/24/2006 2:09 PM Page 258 Ck01e Index.Qxp 4/24/2006 2:09 PM Page 259
    ck01e index.qxp 4/24/2006 2:09 PM Page 258 ck01e index.qxp 4/24/2006 2:09 PM Page 259 Index BOTANICAL LATIN NAMES Citrofortunella mitis J. Ingram and H. E. Feijoa sellowiana, 109 Moore, 121 Ficus carica, 66 Abelmoschus manihot, 239 Citrus aurantium Linn, 123 Acer saccharum, 206 Citrus aurantium var. grandis, 132 Ganoderma lucidum, 56 Achras zapota, L., 204 Citrus bigaradia Risso, 123 Garcinia mangostana Linn., 206 Actinidia arguta, 190 Citrus decumana, 132 Gaylussacia, 63 Actinidia chinensis, 190 Citrus grandis, 132 Gelidium cartilagineum Gaill., 202 Actinidia deliciosa, 190 Citrus maxima (Burm.) Merr., 132 Gelidium corneum Lam., 202 Actinidia species, 190 Citrus mitis Blanco, 121 Glycyrrhiza glabra, 56 Aloysia triphylla, 161-62 Citrus reticulata, 120, 123 Amelanchier bartramiana, 208 Citrus sinensis (L.) Osbeck, 123, 129, 181 Hibiscus sabdariffa Linn., 207, 238 Amelanchier sanguinea (Purch.) D C, Citrus sinensis ‘Maltese’, 181 Hylocereus undatus, 199 207 Coccoloba uvifera, 208 Amelanchier sanguinea var. alnifolia, 208 Cucumis metuliferus, 205 Ipomoea batatas, 234 Angelica archangelica, 134, 176 Cucurbitaceae, 169 Annona cherimola Mill., 208 Cucurbita pepo Linn., 169 Lansium domesticum, 205 Annona muricata, 208, 239 Cucurbita pepo melopepo, 169 Lippia citriodora, 161-62 Annona reticulate, 239 Cucurbita pepo pepo, 169 Litchi chinensis Sonn., 205 Annona squamosa, 208, 239 Cucurbita pepos, 171 Anthemis nobilis, 128-29 Cucurbita species, 173 Malpighia punicifolia Linn., 238 Anthriscus cerefolium (L.) Hoffm., 200 Cucurbita texana, 169 Mammea
    [Show full text]
  • Transformation of 'Galia' Melon to Improve Fruit
    TRANSFORMATION OF ‘GALIA’ MELON TO IMPROVE FRUIT QUALITY By HECTOR GORDON NUÑEZ-PALENIUS A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2005 Copyright 2005 by Hector Gordon Nuñez-Palenius This document is dedicated to the seven reasons in my life, who make me wake up early all mornings, work hard in order to achieve my objectives, dream on new horizons and goals, feel the beaty of the wind, rain and sunset, but mostly because they make me believe in God: my Dads Jose Nuñez Vargas and Salvador Federico Nuñez Palenius, my Moms Janette Ann Palenius Alberi and Consuelo Nuñez Solís, my wife Nélida Contreras Sánchez, my son Hector Manuel Nuñez Contreras and my daughter Consuelo Janette Nuñez Contreras. ACKNOWLEDGMENTS This dissertation could not have been completed without the support and help of many people who are gratefully acknowledged here. My greatest debt is to Dr. Daniel James Cantliffe, who has been a dedicated advisor and mentor, but mostly an excellent friend. He provided constant and efficient guidance to my academic work and research projects. This dissertation goal would not be possible without his insightful, invariable and constructive criticism. I thank Dr. Daniel J. Cantliffe for his exceptional course on Advanced Vegetable Production Techniques (HOS-5565) and the economic support for living expenses during my graduate education in UF. I extend my appreciation to my supervisory committee, Dr. Donald J. Huber, Dr. Harry J. Klee, and Dr. Donald Hopkins, for their academic guidance.
    [Show full text]
  • Cucumis Sativus and Cucumis Melo and Their Dissemination Into Europe and Beyond
    Untangling the origin of Cucumis sativus and Cucumis melo and their dissemination into Europe and beyond AIMEE LEVINSON WRITER’S COMMENT: In Professor Gepts’ course on the evolution of crop plants I learned about the origins and patterns of domestication of many crops we consume and use today. As this was the only plant biology course I took during my time at UC Davis, I wasn’t sure what to expect. We were assigned to write a term paper on the origin of do- mestication of a crop of our choosing. Upon reading the list of possible topics I noticed a strange pairing, cucumber/melon. I thought that it was just a typing error, but to my surprise cucumbers and melons are closely related and from the same genus. I wanted to untangle the domestication history of the two crops, and I quickly learned that uncovering the origins requires evidence across many different disci- plines. Finding the origin of a crop is challenging; as new evidence from different fields comes forward, the origins of domestication often shift. INSTRUCTOR’S COMMENT: In a predominantly urbanized and devel- oped society like California, agriculture—let alone the origins of agri- culture—is an afterthought. Yet, the introduction of agriculture some 10,000 years ago represents one of the most significant milestones in the evolution of humanity. Since then, humans and crops have de- veloped a symbiotic relationship of mutual dependency for continued survival. In her term paper, Aimee Levinson describes in a lucid and succinct way the domestication and subsequent dissemination of two related crops, cucumber and melon.
    [Show full text]
  • Descriptors for Melon (Cucumis Melo L.)
    Descriptors for CucumisMelon melo L. List of Descriptors Allium (E,S) 2000 Pearl millet (E,F) 1993 Almond (revised) * (E) 1985 Phaseolus acutifolius (E) 1985 Apple * (E) 1982 Phaseolus coccineus * (E) 1983 Apricot * (E) 1984 Phaseolus vulgaris * (E,P) 1982 Avocado (E,S) 1995 Pigeonpea (E) 1993 Bambara groundnut (E,F) 2000 Pineapple (E) 1991 Banana (E,S,F) 1996 Pistacia (excluding Pistacia vera) (E) 1998 Barley (E) 1994 Pistachio (E,F,A,R) 1997 Beta (E) 1991 Plum * (E) 1985 Black pepper (E,S) 1995 Potato variety * (E) 1985 Brassica and Raphanus (E) 1990 Quinua * (E) 1981 Brassica campestris L. (E) 1987 Rice * (E) 1980 Buckwheat (E) 1994 Rocket (E,I) 1999 Capsicum * (E,S) 1995 Rye and Triticale * (E) 1985 Cardamom (E) 1994 Safflower * (E) 1983 Carrot (E,S,F) 1999 Sesame * (E) 1981 Cashew * (E) 1986 Setaria italica Cherry * (E) 1985 and S. pumilia (E) 1985 Chickpea (E) 1993 Sorghum (E,F) 1993 Citrus (E,F,S) 1999 Soyabean * (E,C) 1984 Coconut (E) 1992 Strawberry (E) 1986 Coffee (E,S,F) 1996 Sunflower * (E) 1985 Cotton * (Revised) (E) 1985 Sweet potato (E,S,F) 1991 Cowpea * (E) 1983 Taro (E,F,S) 1999 Cultivated potato * (E) 1977 Tea (E,S,F) 1997 Echinochloa millet * (E) 1983 Tomato (E, S, F) 1996 Eggplant (E,F) 1990 Tropical fruit * (E) 1980 Faba bean * (E) 1985 Vigna aconitifolia Finger millet * (E) 1985 and V. trilobata (E) 1985 Forage grass * (E) 1985 Vigna mungo Forage legumes * (E) 1984 and V. radiata (Revised) * (E) 1985 Grapevine (E,S,F) 1997 Walnut (E) 1994 Groundnut (E,S,F) 1992 Wheat (Revised) * (E) 1985 Jackfruit (E) 2000 Wheat and Aegilops * (E) 1978 Kodo millet * (E) 1983 White Clover (E) 1992 Lathyrus spp.
    [Show full text]
  • Weiser Gourmet Melon Mix #7312
    SPECIALS TAKING PRODUCE CONCERNS OFF YOUR PLATE Weiser Gourmet Melon Mix #7312 $27.00 per case Each case is a twenty pound assortment of gourmet melons Weiser Family Farms. Varieties pending on availability. Weiser Gourmet Melon Mix Special available while supplies last until mid October. Baby French The Baby French is an innovative new type of melon bred by crossing an Anana and a Charentais. The result is a very sweet, rich, aromatic cantaloupe-like melon with a superb shelf life. Fruits are round to oval with an attractive netting and weighs an average 1 3/4 - 2 1/2 lbs. This melon continues to ripen off the vine, which is a great plus Sugar Cube Gourmet Melon A type of French Charentais melon, the Sugar This is the first year we have Cube got its name from its high sugar content. grown this variety. It's a very sweet Like the Cavaillon, it is a "breakfast melon", melon with a subtle flavor, reminis- meaning it will never get larger than 1.5-2 lbs.! cent of a white peach. Unlike other melons, the Sugar Cube holds its sugar level for ~2 weeks after picking. Sugar Queen Canary A type of Persian melon, the The canary melon has a bright, golden yellow Sugar Queen is oblong-shaped rind with smooth skin and no netting. The with a netted skin. Very sweet ivory-yellow flesh is rated very highly for its and juicy orange-flesh melon aroma, firm texture, and exceptional sweet- with a great aroma! ness. Charentais Arava This is a classic French variety The Arava is a type of Galia melon.
    [Show full text]
  • Cucurbit Seed Production
    CUCURBIT SEED PRODUCTION An organic seed production manual for seed growers in the Mid-Atlantic and Southern U.S. Copyright © 2005 by Jeffrey H. McCormack, Ph.D. Some rights reserved. See page 36 for distribution and licensing information. For updates and additional resources, visit www.savingourseeds.org For comments or suggestions contact: [email protected] For distribution information please contact: Cricket Rakita Jeff McCormack Carolina Farm Stewardship Association or Garden Medicinals and Culinaries www.carolinafarmstewards.org www.gardenmedicinals.com www.savingourseed.org www.savingourseeds.org P.O. Box 448, Pittsboro, NC 27312 P.O. Box 320, Earlysville, VA 22936 (919) 542-2402 (434) 964-9113 Funding for this project was provided by USDA-CREES (Cooperative State Research, Education, and Extension Service) through Southern SARE (Sustainable Agriculture Research and Education). Copyright © 2005 by Jeff McCormack 1 Version 1.4 November 2, 2005 Cucurbit Seed Production TABLE OF CONTENTS Scope of this manual .............................................................................................. 2 Botanical classification of cucurbits .................................................................... 3 Squash ......................................................................................................................... 4 Cucumber ................................................................................................................... 15 Melon (Muskmelon) .................................................................................................
    [Show full text]
  • Screening Cucumis Melo L. Agrestis Germplasm for Resistance to Monosporascus Cannonballus
    Subtropical Plant Science, 53: 24-26.2001 Screening Cucumis melo L. agrestis germplasm for resistance to Monosporascus cannonballus Kevin M. Crosby Texas A&M University, Texas Agricultural Experiment Station, Weslaco, 78596. ABSTRACT The destruction of melon roots by the fungus Monosporascus cannonballus causes vine decline and crop loss in south Texas and other hot regions. This investigation was carried out to screen germplasm accessions of Cucumis melo L. agrestis, along with commercial melons, for resistance to this pathogen. Field tolerant and susceptible varieties were included as checks. All lines were grown in pasteurized sand, which had been inoculated with a high level (60 CFUs/g of soil) of M. cannonballus mycelium from culture. After three weeks all root systems were carefully cleaned and a root damage rating was taken. Three accessions, 20608, 20747, 20826 all demonstrated high resistance or immunity to the fungus with ratings of 1. This was superior to the best commercial melon lines, ‘Deltex,’ and ‘TXC 2015.’ All other commercial materials were moderately to highly susceptible, with ratings of 3 or more. RESUMEN La destrucción de las raíces de melón por el hongo Monosporascus cannonballus ocasiona el declinamiento de la planta y pérdidas del cultivo en el sur de Texas y otras regiones cálidas. Esta investigación se efectuó para evaluar germoplama de Cucumis melo L. agrestis, así como de cultivares comerciales en lo referente a la resistencia a este patógeno. Se incluyeron variedades tolerantes y susceptibles en campo como testigos. Todas las lineas se cultivaron en arena pasteurizada, la cual había sido inoculada con un alto nivel (60 UFCs/g de suelo) de micelio cultivado de M.
    [Show full text]