High Tunnel Melon and Watermelon Production
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Heirloom Gardener's Seed-Saving Primer Seed Saving Is Fun and Interesting
The Heirloom Gardener's Seed-Saving Primer Seed saving is fun and interesting. It tells the story of human survival, creativity, and community life. Once you learn the basics of saving seeds you can even breed your own variety of crop! Share your interesting seeds and stories with other gardeners and farmers while helping to prevent heirloom varieties from going extinct forever. Contact The Foodshed Project to find out about local seed saving events! 1. Food “as a system”...........................................................................................................................5 2. Why are heirloom seeds important?.................................................................................................6 3. How are plants grouped and named?...............................................................................................8 4. Why is pollination important?... ......................................................................................................11 5. What is a monoecious or a dioecious plant?....................................................................................12 6. How do you know if a plant will cross-breed?.................................................................................14 7. What types of seeds are easiest to save?........................................................................................18 8. What about harvesting and storing seeds?.....................................................................................20 9. What do I need to know -
Watermelon Seed Oil: Its Extraction, Analytical Studies, Modification and Utilization in Cosmetic Industries
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 07 Issue: 02 | Feb 2020 www.irjet.net p-ISSN: 2395-0072 Watermelon Seed Oil: Its Extraction, Analytical studies, Modification and Utilization in Cosmetic Industries Sarfaraz Athar1, Abullais Ghazi2, Osh Chourasiya3, Dr. Vijay Y. Karadbhajne4 1,2,3Department of Oil Technology, Laxminarayan Institute of Technology, Nagpur 4Head, Dept. of Oil Technology, Professor, Laxminarayan Institute of Technology, Nagpur, Maharashtra, India ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - Watermelon seed is one of the unexplored seed in acid or omega 6 fatty acid (about 45-73%). Oleic, palmitic the world which is often discarded after eating the fruit. and stearic acid are also present in small quantities [3]. Researches show that these seeds contain nutrients like protein, essential fatty acids, vitamins and minerals. Oil Various researches report the positive effect of watermelon content in the seeds is between 35-40% and the unsaturated seed oil over skin. The oil is light, consists of humectants and fatty acid content in oil is 78-86% predominantly linoleic acid moisturising properties. It is easily absorbed by skin and (45-73%). This oil is effective for skin care as it is light, easily helps in restoring the elasticity of skin. Due to these absorbable and has humectants properties. Our study is about attributes this oil can be used in cosmetic industry for extraction of watermelon seed oil by solvent extraction process production of skin care products. The watermelon seed oil with the use of different solvents, its analysis and application can also be used as an anti inflammatory agent [4]. -
Correlating Sensory Attributes, Textural Parameters and Volatile Organic
CORRELATING SENSORY ATTRIBUTES, TEXTURAL PARAMETERS AND VOLATILE ORGANIC COMPOUNDS FOR THE ASSESSMENT OF DISTINCTIVE QUALITY TRAITS OF MELON AND PEACH FRUIT CULTIVARS Tiago Luís Cardoso Ferreira Pinhanços de Bianchi Per citar o enllaçar aquest document: Para citar o enlazar este documento: Use this url to cite or link to this publication: http://hdl.handle.net/10803/671744 ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs. ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de investigación y docencia en los términos establecidos en el art. -
Level of Xanthophyll, Lutein and Zeaxanthin in Selected Thai Fruits Determined by HPLC
2012 International Conference on Nutrition and Food Sciences IPCBEE vol. 39 (2012) © (2012) IACSIT Press, Singapore Level of Xanthophyll, Lutein and Zeaxanthin in Selected Thai Fruits Determined by HPLC Nittaya Khonsarn 1 and Siriporn Lawan 2 1Department of biotechnology, Faculty of Technology, Mahasarakham University, Thailand 2 Department of Food technology, Faculty of Technology, Mahasarakham University, Thailand Abstract. In this study 12 selected Thai summer fruits were determined xanthophyll, lutein and zeaxanthin content by high performance liquid chromatography (HPLC). The result shown that there were xanthophyll in 11 kinds of selected fruits except banana. The highest of average xanthophyll level was found in cantaloupe (1.31±0.07 mg/100g edible portion), meanwhile barbados cherry was the second (1.18±0.03 mg/100g edible portion). Among fruits analysed, lutein content was the highest in papaya (23.74±0.46 mg/100g edible portion), follow by cantaloupe (21.82±1.60 mg/100g edible portion). Whereas lutein was not detected in star gooseberry, java apple, dragon fruit, guava, salak plum, water melon, banana and satol. Cantaloupe was the highest source of zeaxanthin (1.72±0.07 mg/100g edible portion), zeaxanthin was not however detected in star gooseberry, java apple, dragon fruit, salak plum, banana and satol. These results are suggested that some kinds of summer fruits including papaya and cantaloupe, have potential as rich sources of xanthophyll, lutein and zeaxanthin for consumer health. Keywords: Xanthophyll, Lutein, Zeaxanthin, Thai Fruit, HPLC. 1. Introduction Xanthophyll, lutein and zeaxanthin are some kinds of carotenoid that not only play important role in organic pigments in fruits and vegetables but also important in the prevention of various diseases associated with oxidative stress. -
Catalogue.Pdf
INTERNATIONAL SEEDS CATALOGUE The Seed of Discovery™ 2 Dear Customer, Origene Seeds is an innovative International Seed Company, active in Plant Breeding, in Seed Production, in Seed Processing; and in Marketing and Sales of hybrid vegetable varieties for the professional sectors. Origene Seeds is an industry leader in Research and Development of new, improved vegetable varieties. The Company’s strategic focus is to develop hybrids with novel traits that have a high added- value and that meet the present and future demands of our customers. Over the last fifteen years, we have marketed the seeds of our Cucurbit varieties worldwide and we maintain the highest standards of genetic quality, integrity and professionalism. Research is the heart of ORIGENE SEEDS and its future. It is with pride that I introduce the new series of advanced watermelon varieties tolerant to Powdery Mildew disease. The development of these new hybrids has been a long process taking several years of effort and using unique methods to introducing the wild genes with tolerance into cultured genetic material. This line of products is both innovative and revolutionary. This is an example of environmentally-friendly products released by Origene Seeds. Another such example is drought-tolerant seedless watermelon varieties that need 25-30 % less water. We are also introducing Honey Dew and Yellow Canary type melons that combine a strong plant and fruit of excellent eating quality. Origene Seeds is committed to creating and developing new varieties with a significant contribution to the fresh produce value chain, satisfying the customers’ needs for quality, taste, flavor, uniformity and high nutritional values, combined with high yields and environmental friendliness Sought by the growers. -
2018-01-26 Langual Proposal from Foodex2 – Plants in Facet B
2018-01-26 LanguaL proposal from FoodEx2 – plants in facet B The following are proposals to update LanguaL Facet B, after having indexed EFSA FoodEx2 Exposure hierarchy 20170919. To these, I have added previously-submitted 2017 proposals based on GS1 that have not (yet) been included in LanguaL facet B. GS1 terms and FoodEx2 terms in the following tables are just given to indicate the origin of the proposal. Comments are given in red. First, some simple additions of terms to the SYNONYM field, to make it easier to find descriptors in the LanguaL Food Product Indexer: descriptor synonyms FoodEx2 term FoodEx2 def WORMWOOD [B3433] Add SYN: artemisia vulgaris LITTLE RADISH [B2960] Add SYN: raphanus sativus BLACK RADISH [B2959] Add SYN: raphanus sativus niger PARSNIP [B1483] Add SYN: pastinaca sativa ARRACACHA [B3439] Add SYN: arracacia xanthorrhiza CHAYOTE [B1730] Add SYN: GS1 10006356 - Squash Squash, Choko, grown from Sechium edule (Choko) choko NEW ZEALAND SPINACH Add SYN: GS1 10006427 - New- Tetragonia tetragonoides Zealand Spinach [B1732] tetragonia tetragonoides JAPANESE MILLET Add : barnyard millet; A000Z Barnyard millet Echinochloa esculenta (A. Braun) H. Scholz, Barnyard millet or Japanese Millet. [B4320] echinochloa esculenta INDIAN LONG PEPPER Add SYN! A019B Long pepper fruit Piper longum [B2956] piper longum EUROPEAN ELDER Modify SYN: [B1403] sambucus spp. (which refers to broader term) Should be sambucus nigra DOG ROSE [B2961] ADD SYN: rosa canina LOOSE LEAF LETTUCE Add SYN: [B2087] lactusa sativa L. var. crispa LOLLO ROSSO [B2088] Add SYN: GS1 10006425 - Lollo Lactuca sativa L. var. crispa Rosso red coral lettuce JAVA APPLE [B3395] Add syn! syzygium samarangense Some existing descriptors would also greatly benefit from updated AI (and synonyms): FoodEx2 FoodEx2 def descriptor AI synonyms term ENDIVE [B1314] Add to AI: A00LD Escaroles There are two main varieties of cultivated C. -
KALAHARI MELON SEED Cold Pressed
Tel: +27(0)83 303 8253 ADDRESS: Vlakbult Tel: +27(0)827893035 PO Box 35 Clocolan [email protected] 9735 South Africa KALAHARI MELON SEED Cold pressed oil LATIN NAME: Citrullus lanatus INCI NAME: Citrullus lanatus (watermelon) seed oil OTHER NAMES: Karkoer, Mankataan, Tshamma, Ootanga White Watermelon, Wild Melon, Wild Watermelon CAS Nr: 90063-94-8 SOURCE: Cold pressed from the seed. COLOUR Colourless to very light yellow-green colour AROMA Very subtle neutral odour CULTIVATION: Commercially grown ORIGEN: South Africa It is the biological ancestor of the watermelon, which is now found all over the world, but which originated in the Kalahari region of Southern Africa. Unlike the common watermelon, whose flesh is sweet and red, the Kalahari melon’s flesh is pale yellow or green, and tastes OVERVIEW bitter. It is a creeping annual herb. The Kalahari melon has hairy stems, forked tendrils and three-lobed hairy leaves. Its flowers are bright yellow. The fruits vary significantly, from small and round in the wild, to larger and more oblong- shaped under cultivation. The surface is smooth, pale green with irregular bands of mottled darker green radiating from the stalk. The flesh is a pale green or yellow, and contains numerous brown seeds. In its wild form, the fruit is bitter to bland in taste, and largely inedible when fresh. The Kalahari melon or edible tsamma is ‘sweet' and highly adapted to surviving drought and the harsh light of the desert environment. Although found all over Southern Africa, it is most closely associated with the Kalahari sands of Namibia, Botswana, south-western Zambia and Bushmans eating Kalahari western Zimbabwe. -
Reimer Seeds Catalog
LCTRONICLCTRONIC CATALOGCATALOG Cantaloupes & Melons CA52‐20 ‐ Amarillo Oro Melons CA24‐10 ‐ Ambrosia Melons 100 days. Cucumis melo. Open Pollinated. 86 days. Cucumis melo. (F1) The plant The plant produces good yields of 3 ½ to 5 lb produces high yields of 4 ½ to 5 lb round golden yellow oblong melons and can reach cantaloupes. These eastern type melons 15 lbs. It has a creamy white flesh that is have a terrific extra sweet flavor and peach‐ sweet. A winter‐type melon that is a good colored flesh. It has a nectarous aroma and shipper. An excellent choice for home is very juicy. Melons have small seed gardens and market growers. A pre‐1870 cavities. Ambrosia is recognized as one of heirloom variety from Spain. the best‐tasting melons. An excellent choice for home gardens and market growers. Disease Resistant: DM, PM. CA48‐20 ‐ Amish Melons CA31‐20 ‐ Casaba Golden Beauty Melons 90 days. Cucumis melo. Open Pollinated. 90 days. Cucumis melo. Open Pollinated. The plant produces high yields of 4 to 7 lb Plant produces good yields of 6 to 8 lb cantaloupes. The sweet orange flesh is very golden cantaloupes with dark green juicy and has a muskmelon flavor. It does mottling. The melon has white flesh that is well in most regions of the United States, very sweet. Stores well. Does well in hot dry even in extreme heat. An excellent choice climates. Excellent choice for home gardens for home gardens. An heirloom variety from and market growers. A heirloom variety the Amish community. dating back to the 1920s. -
Effects of Watermelon (Citrullus Lanatus) Seed on Blood Glucose and Electrolyte Parameters in Diabetic Wistar Rats
JASEM ISSN 1119-8362 Full-text Available Online at J. Appl. Sci. Environ. Manage. June 2014 JOURNAL OF APPLIED SCIENCE AND ENVIRONVol.ME N18T (A2)L 2M31A-233NA GEMENT. All rights reserved www.ajol.info and www.bioline.org.br/ja Effects of Watermelon (Citrullus Lanatus) Seed on Blood Glucose and Electrolyte Parameters in Diabetic Wistar Rats *1OMIGIE IO; AGOREYO FO Department of Physiology, School of Basic Medical Sciences, University of Benin, Benin City Correspondence Address: Dr Mrs) Magdalene Omigie, Department of Physiology, School of Basic Medical Sciences, University of Benin, Benin City, Email address: [email protected] KEY WORDS: Watermelon, Diabetes, blood glucose, electrolyte, Wistar rats ABSTRACT: Given the prevalence of diabetes worldwide, with its associated complications, this study is aimed at investigating the effect of citrullus lanatus seed extract on blood glucose concentration and electrolyte parameters. Citrullus lanatus is an antioxidant and has been shown to reduce oxidative stress (Khaki et al., 2013). Effects of phytochemicals (flavonoids) on pancreatic β-cells leading to their proliferation and secretion of more insulin have been proposed by Mahesh and Menon (2004), as the mechanism by which medicinal plants used in the treatment of diabetes mellitus reduce hyperglycaemia in streptozotocin-induced diabetic rats. Fifteen female wistar rats were used in the study, they were divided into three groups of five rats each, namely; the control group, diabetes control group administered distilled water, and diabetes group administered watermelon seed extract. The diabetic groups were made diabetic by single intraperitoneal injection of streptozotocin (60 mg/kg). Daily watermelon seed extract was administered orally (200 mg per kilogram body weight), one week post streptozotocin injection. -
Plant Inventory No.233
JSX Plant Inventory No. 233 •UNITED STATES DEPARTMENT OF AGRICULTURE Washington, D. C. June 1948 PLANT MATERIAL INTRODUCED BY THE DIVISION OF PLANT EX- PLORATION AND INTRODUCTION, BUREAU OF PLANT INDUSTRY,1 OCTOBER 1 TO DECEMBER 31, 1937 (Nos. 124969 to 126493) CONTENTS < Page Introductory statement — ._— . 1 Inventory _ '. ___ 3 Index of common and scientific names 81 INTRODUCTORY STATEMENT This inventory, No. 133, records the plant material (Nos. 124969 to 126493) received by the Division of Plant Exploration and Introduc- tion during the period October 1 to December 31,1937. With the definite purpose of studying wild tomato material in the .field and of collecting whatever was available, particularly from plants ibelieved to be truly wild, Dr. H. L. Blood, of the Utah Agricultural Experiment Station, and cooperating with the Division of Fruit and Vegetable Crops and Diseases, Bureau of Plant Industry, spent the last 2 months of 1937 in Peru, Bolivia, northern Argentina, and Chile, collecting not only this type of material but also cultivated tomatoes from native markets. In addition to true tomatoes, he gathered seeds of various other non- tuberous solanaceous plants, including species of Cyphomandra, Jficandra, Physalis, and Solanwm^ which have been added to the work- ing material of Department pathologists. Since that time, many of his collections have been studied taxo- nomically and reported by C* H. Muller (Miscellaneous Publication No. 382, A Revision of the Genus Lyeopersicon^ July 1940); these include one new species, one new variety, and three new forms. Pathologists have already published on the unusual characteristics of one of the wild tomatoes, Lyeopersicon hirsutwm, found by Dr. -
Genetic Resources of the Genus Cucumis and Their Morphological Description (English-Czech Version)
Genetic resources of the genus Cucumis and their morphological description (English-Czech version) E. KŘÍSTKOVÁ1, A. LEBEDA2, V. VINTER2, O. BLAHOUŠEK3 1Research Institute of Crop Production, Praha-Ruzyně, Division of Genetics and Plant Breeding, Department of Gene Bank, Workplace Olomouc, Olomouc-Holice, Czech Republic 2Palacký University, Faculty of Science, Department of Botany, Olomouc-Holice, Czech Republic 3Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany Academy of Sciences of the Czech Republic, Olomouc-Holice, Czech Republic ABSTRACT: Czech collections of Cucumis spp. genetic resources includes 895 accessions of cultivated C. sativus and C. melo species and 89 accessions of wild species. Knowledge of their morphological and biological features and a correct taxonomical ranging serve a base for successful use of germplasm in modern breeding. List of morphological descriptors consists of 65 descriptors and 20 of them are elucidated by figures. It provides a tool for Cucumis species determination and characterization and for a discrimination of an infraspecific variation. Obtained data can be used for description of genetic resources and also for research purposes. Keywords: Cucurbitaceae; cucumber; melon; germplasm; data; descriptors; infraspecific variation; Cucumis spp.; wild Cucumis species Collections of Cucumis genetic resources include pollen grains and ovules, there are clear relation of this not only cultivated species C. sativus (cucumbers) taxon with the order Passiflorales (NOVÁK 1961). Based and C. melo (melons) but also wild Cucumis species. on latest knowledge of cytology, cytogenetics, phyto- Knowledge of their morphological and biological fea- chemistry and molecular genetics (PERL-TREVES et al. tures and a correct taxonomical ranging serve a base for 1985; RAAMSDONK et al. -
Watermelon in the Garden Rick Heflebower and Dan Drost Vegetable Specialists
Revised April 2020 Watermelon in the Garden Rick Heflebower and Dan Drost Vegetable Specialists Summary Soil Preparation: Choose a site in your garden that Watermelons grow best in sunny locations and in receives full sun. Before planting, determine fertilizer fertile, well-drained soils. Incorporate organic needs with a soil test and then follow the matter and a complete fertilizer into the area before recommendations given with the test report. If planting. Plant 4-6 watermelon seeds directly in the fertilizer applications are warranted, work the garden when soils are 65°F. Seeds should be fertilizer into the top 6 inches of soil. If you fertilize planted 1-2 inches deep, in mounds 4 feet apart. with compost, apply no more than 1 inch of well- Thin the mounds after emergence to two plants. composted organic matter per 100 square feet of Transplant watermelon 2 feet apart through black garden area. plastic for early maturity. Use row covers or hot Plants: Watermelon can be grown from seed or caps to protect the plants when planting before the transplants. Seed should be planted 1-2 inches deep. frost-free period. After the vines develop runners, Transplants should have 2-3 mature leaves and a side dress with additional nitrogen fertilizer. well-developed root system. Allow 6 weeks to grow Irrigation should be deep and infrequent. Plastic and transplants. Transplants mature about 2 weeks before organic mulches help conserve water and reduce seeded melons and are recommended in short weeding; however, do not apply organic mulches growing areas of Utah. until soils have warmed to 75°F.