Cucurbitaceae”
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Music Initiative Jka Peer - Reviewed Journal of Music
VOL. 01 NO. 01 APRIL 2018 MUSIC INITIATIVE JKA PEER - REVIEWED JOURNAL OF MUSIC PUBLISHED,PRINTED & OWNED BY HIGHER EDUCATION DEPARTMENT, J&K CIVIL SECRETARIAT, JAMMU/SRINAGAR,J&K CONTACT NO.S: 01912542880,01942506062 www.jkhighereducation.nic.in EDITOR DR. ASGAR HASSAN SAMOON (IAS) PRINCIPAL SECRETARY HIGHER EDUCATION GOVT. OF JAMMU & KASHMIR YOOR HIGHER EDUCATION,J&K NOT FOR SALE COVER DESIGN: NAUSHAD H GA JK MUSIC INITIATIVE A PEER - REVIEWED JOURNAL OF MUSIC INSTRUCTION TO CONTRIBUTORS A soft copy of the manuscript should be submitted to the Editor of the journal in Microsoft Word le format. All the manuscripts will be blindly reviewed and published after referee's comments and nally after Editor's acceptance. To avoid delay in publication process, the papers will not be sent back to the corresponding author for proof reading. It is therefore the responsibility of the authors to send good quality papers in strict compliance with the journal guidelines. JK Music Initiative is a quarterly publication of MANUSCRIPT GUIDELINES Higher Education Department, Authors preparing submissions are asked to read and follow these guidelines strictly: Govt. of Jammu and Kashmir (JKHED). Length All manuscripts published herein represent Research papers should be between 3000- 6000 words long including notes, bibliography and captions to the opinion of the authors and do not reect the ofcial policy illustrations. Manuscripts must be typed in double space throughout including abstract, text, references, tables, and gures. of JKHED or institution with which the authors are afliated unless this is clearly specied. Individual authors Format are responsible for the originality and genuineness of the work Documents should be produced in MS Word, using a single font for text and headings, left hand justication only and no embedded formatting of capitals, spacing etc. -
E-Content-Januaray (2021)
K.N.G.Arts College for women Department of Botany I B.SC ALLIED BOTANY E-content-Januaray (2021) S.NO E-CONENT 1 UNIT-I 2 UNIT-III 3 UNITIV 18K2ZAB3 ALLIED BOTANY: TAXONOMY, ANATOMY, EMBRYOLOGY, HORTICULTURE AND ECOLOGY UNIT-I: TAXONOMY General outline of Bentham and Hooker’s classification. Detailed study and economic importance of the families: Rutaceae, Leguminosae, Cucurbitaceae, Euphorbiaceae and Poaceae. UNIT-III: EMBRYOLOGY Structure of mature anther and Ovule, Types of ovule. Double fertilization. Development of dicot embryo. UNIT-IV: HORTICULTURE Scope and Importance of Horticulture. Propagation method: Cutting, layering and grafting. Bonsai technique UNIT – I Dr.A.Pauline Fathima Mary, Guest lecturer in Botany, K.N.G.Arts College for Women (A). Thanjavur. UNIT III & IV Dr.S.Gandhimathi & Dr.A.Pauline Fathima Mary , Guest lecturer in Botany, K.N.G.Arts College for Women (A). Thanjavur. REFERENCES 1. Pandey B.P., 2001, Taxonomy. Of Angiosperms,S.Chand & company.Ltd.Newdelhi. 2. Pandey B.P., 2015(Edn), Plant Taxonomy. New central Book Agency,pvt Lit,New Delhi. 3. Rajaram,P.allied Botany 1983.CollegeBook Center.Thanjavur. 4. Kumar,K.N.,1999.Introduction of Horticulture ,Rajalakshmi Publication,Nagerkoil. UNIT – I BENTHAM AND HOOKER'S CLASSIFICATION OF PLANTS The outline of Bentham and Hooker's classification of plants is given below. The seeded plants are divided into three classes ' Dicotyledonae,Gymnospermae and Monocotyledonae Bentham and Hooker's classification of plants t is a natural system of classification and is based on important characters of the plants. Even today this system is being followed in India, United Kingdom and several other Commonwealth countries. -
Morphological and Histo-Anatomical Study of Bryonia Alba L
Available online: www.notulaebotanicae.ro Print ISSN 0255-965X; Electronic 1842-4309 Not Bot Horti Agrobo , 2015, 43(1):47-52. DOI:10.15835/nbha4319713 Morphological and Histo-Anatomical Study of Bryonia alba L. (Cucurbitaceae) Lavinia M. RUS 1, Irina IELCIU 1*, Ramona PĂLTINEAN 1, Laurian VLASE 2, Cristina ŞTEFĂNESCU 1, Gianina CRIŞAN 1 1“Iuliu Ha ţieganu” University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Botany, 23 Gheorghe Marinescu, Cluj-Napoca, Romania; [email protected] ; [email protected] (*corresponding author); [email protected] ; [email protected] ; [email protected] 2“Iuliu Ha ţieganu” University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, 12 Ion Creangă, Cluj-Napoca, Romania; [email protected] Abstract The purpose of this study consisted in the identification of the macroscopic and microscopic characters of the vegetative and reproductive organs of Bryonia alba L., by the analysis of vegetal material, both integral and as powder. Optical microscopy was used to reveal the anatomical structure of the vegetative (root, stem, tendrils, leaves) and reproductive (ovary, male flower petals) organs. Histo-anatomical details were highlighted by coloration with an original combination of reagents for the double coloration of cellulose and lignin. Scanning electronic microscopy (SEM) and stereomicroscopy led to the elucidation of the structure of tector and secretory trichomes on the inferior epidermis of the leaf. -
The Heirloom Gardener's Seed-Saving Primer Seed Saving Is Fun and Interesting
The Heirloom Gardener's Seed-Saving Primer Seed saving is fun and interesting. It tells the story of human survival, creativity, and community life. Once you learn the basics of saving seeds you can even breed your own variety of crop! Share your interesting seeds and stories with other gardeners and farmers while helping to prevent heirloom varieties from going extinct forever. Contact The Foodshed Project to find out about local seed saving events! 1. Food “as a system”...........................................................................................................................5 2. Why are heirloom seeds important?.................................................................................................6 3. How are plants grouped and named?...............................................................................................8 4. Why is pollination important?... ......................................................................................................11 5. What is a monoecious or a dioecious plant?....................................................................................12 6. How do you know if a plant will cross-breed?.................................................................................14 7. What types of seeds are easiest to save?........................................................................................18 8. What about harvesting and storing seeds?.....................................................................................20 9. What do I need to know -
MF847 Ornamental Gourds
Ornamental Gourds MF847 Gourds of all types have been used for centuries. Fertilizer helps to promote vigorous growth. Mix in 1 Remains of gourds have been found in the tombs of Egypt. pound of 11-15-11 or similar fertilizer for each 100 square During ancient times, most gourds were used as utensils feet of area before the seeds are sown. Sidedress an and storage containers. additional 1 pound of 11-15-11 or similar fertilizer on More recently, gourds have been selected for their the area and work into the soil around the plants about a ornamental value to be used in arrangements with other month after planting. decorative materials. Smaller gourds in yellow, white and Water the plants adequately during dry weather. green are popular. The most common shapes are pear, However, a reduced water supply during late summer and round, egg-shaped, Turk’s turban, penguin and finger. The early fall will promote ripening of the fruit. Because gourds sponge gourd and larger gourds in the shape of dippers or have a shallow root system, care should be taken when bottles also have practical uses. cultivating around the plants to control weeds. A 1-inch Gourds commonly grown for ornamental uses and mulch of wood chips, peat moss, bark chips or similar utensils include species of the genera Cucurbita, Lagenaria material applied around the plants helps to conserve and Luffa. Smaller ornamental gourds are mainly Cucurbita moisture and control weeds. Ornamental gourds have the pepo, variety ovifera; turban squashes are Cucurbita maxima, same disease and insect problems as pumpkin and winter variety turbaniformis; large dipper gourds and bottle squash. -
Basil Dolce Fresca
BASIL DOLCE FRESCA Ocimum basilicum BASIL PERSIAN Ocimum basilicum BEAN MASCOTTE Phaseolus vulgaris BEAN SEYCHELLES Phaseolus vulgaris BEET AVALANCHE Beta vulgaris BROCCOLI ARTWORK F1 Brassica oleracea Italica BRUSSELS SPROUTS HESTIA F1 Brassica oleracea CABBAGE KATARINA F1 Brassica oleracea (Capitata group) CHIVES, GARLIC GEISHA Allium tuberosum CUCUMBER PARISIAN GHERKIN F1 Cucumis sativus CUCUMBER PICK A BUSHEL F1 Cucumis sativus CUCUMBER SALADMORE BUSH F1 Cucumis sativus EGGPLANT PATIO BABY F1 Solanum melongena FENNEL ANTARES F1 Foeniculum vulgare KALE PRIZM F1 Brassica oleracea (Acephala Group) KOHLRABI KONAN F1 Brassica oleracea LETTUCE SANDY Lactuca sativa MELON MELEMON F1 Cucumis melo L. MIZUNA RED KINGDOM F1 Brassica juncea OKRA CANDLE FIRE F1 Abelmoschus esculentus ONION, BUNCHING WARRIOR Allium fistulosusm OREGANO CLEOPATRA Origanum syriaca PAK CHOI BOPAK F1 Brassica rapa chinensis PEA PATIO PRIDE Pisum sativum PEPPER AJI RICO F1 Capsicum baccatum PEPPER CHILI PIE F1 Capsicum annuum PEPPER CORNITO GIALLO F1 Capsicum annuum PEPPER EMERALD FIRE F1 Capsicum annuum PEPPER ESCAMILLO F1 Capsicum annuum PEPPER FLAMING FLARE F1 Capsicum annuum PEPPER GIANT RISTRA F1 Capsicum annuum PEPPER HOT SUNSET F1 Capsicum annuum PEPPER MAD HATTER F1 Capsicum baccatum PEPPER MAMA MIA GIALLO F1 Capsicum annuum PEPPER PRETTY N SWEET F1 Capsicum annuum PEPPER SWEET SUNSET F1 Capsicum annuum PEPPER SWEETIE PIE F1 Capsicum annuum PEPPER SERRANO FLAMING JADE F1 Capsicum annuum PUMPKIN CINDERELLA'S CARRIAGE F1 Cucurbita maxima PUMPKIN PEPITAS F1 Cucurbita pepo PUMPKIN SUPER MOON F1 Cucurbita maxima RADISH RIVOLI Raphanus sativus RADISH ROXANNE F1 Raphanus sativus RADISH SWEET BABY F1 Raphanus sativus SQUASH BOSSA NOVA F1 Cucurbita pepo SQUASH BUTTERSCOTCH F1 Cucurbita moschata SQUASH HONEYBABY F1 Cucurbita moschata SQUASH SUGARETTI F1 Cucurbita pepo STRAWBERRY DELIZZ F1 Fragaria F. -
Growing Dudi (Bottle Gourd) Lagenaria Siceraria
Growing dudi (bottle gourd) Lagenaria siceraria The plant Dudi or bottle gourd (Lagenaria siceraria) is one of the oldest cultivated crops, having been used by humans for over 14,000 years and has been transported to every part of the tropics in this time. It is a vigorous trailing or climbing vine with white flowers which open at night and hard-skinned fruits, which are edible when young. When they are mature the fruits or calabashes are hardwearing, decorative and waterproof. They can be made into light, hardwearing cooking or water-carrying utensils, musical instruments, bird-houses or other items. Similar to pumpkins in cultivation, they require a sunny, sheltered site, and only a moderately fertile soil. They need plenty of water in the growing season but hate wet feet so avoid very damp soil. A thriving dudi plant can climb to over 12ft, so they need plenty of room and a solid support! Varieties and plant material In the West, dudi is cultivated as an ornamental gourd, and Ideally fill a trench with half-decayed leafmould or coarse so attention is given to cultivars with spectacular necked or municipal compost where you plan to grow dudi, during the swollen fruit shapes, rather than eating qualities and although early spring, in the same way as you would prepare a trench all cultivars are non–toxic, some are better flavoured than for runner beans. You could also use the old potting compost others. In the East and in parts of Africa, dudi is a valuable from last season’s container plants or hanging baskets. -
Phylogeny and Biogeorgraphy Of
PHYLOGENY AND BIOGEOGRAPHY OF WATERMELON [CITRULLUS LANATUS (THUNB.) MATSUM. & NAKAI] BASED ON CHLOROPLAST, NUCLEAR SEQUENCE AND AFLP MOLECULAR MARKER DATA Jiarong Liu A thesis submitted to the Graduate Faculty of Auburn University in Partial Fulfillment of the Requirements for the Degree of Master in Science Auburn, Alabama August 8, 2005 PHYLOGENY AND BIOGEOGRAPHY OF WATERMELON [CITRULLUS LANATUS (THUNB.) MATSUM. & NAKAI] BASED ON CHLOROPLAST, NUCLEAR SEQUENCE AND AFLP MARKER DATA Jiarong Liu Permission is granted to Auburn University to make copies of this thesis at its discretion, upon request of individuals or institutions and at their expense. The author reserves all the publication rights. Signature of Author Date of Graduation iii VITA Jiarong (Rona) Liu, daughter of Maosheng Liu and Hongmei Ye, was born on November 7, 1981 in Suzhou, Jiangsu Province, the People’s Republic of China. She graduated in June 1999 from Suzhou No.3 High School. She attended Yangzhou University, Yangzhou, Jiangsu Province, P. R. China in 1999 and graduated in June, 2003 with a Bachelor of Science in Horticulture. In August 2003, she entered Graduate school at Auburn University, Auburn, Alabama to pursue a Master of science degree in Horticulture. She was employed as a Graduate Research Assistant and Teaching Assistant during her graduate studies. iv THESIS ABSTRACT PHYLOGENY AND BIOGEOGRAPHY OF WATERMELON [CITRULLUS LANATUS (THUNB.) MATSUM. & NAKAI] BASED ON CHLOROPLAST, NUCLEAR SEQUENCE AND AFLP MARKER DATA Jiarong Liu Master of Science, July 12, 2005 (B.S., Yangzhou University, 2003) 75 Typed pages Directed by Fenny Dane Watermelons [Citrullus lanatus (Thunb.) Matsum. & Nakai], together with cucumbers, melons of various sorts, summer squashes, winter squashes and pumpkins are the principal food plants of the gourd family (Cucurbitaceae). -
Red Pumpkin Beetle on Cucurbits Aulacophora Foveicollis, Syn
PEST MANAGEMENT DECISION GUIDE: GREEN LIST Red pumpkin beetle on cucurbits Aulacophora foveicollis, syn. Raphidopalpa foveicollis Prevention Monitoring Direct Control l The red pumpkin beetle is a small insect which adults l Relevant crops: gourd, melon, watermelon, cucumber, l For small infestations, collect beetles cause damage to leaves, flowers and fruits, while the pumpkin, marrow, squash using hand nets in the early hours of larvae damage the roots. l Examine the leaves, flowers and fruits for feeding damage the morning when beetles are l Use fast growing varieties if possible since they are more by adults. They feed between leaf veins, often cutting and sluggish. Kill them in kerosene oil likely to outgrow the damage caused by the beetles removing circles of leaf, and fly between plants l Spray wood ash onto crop. Add half a Adult red pumpkin beetle l Avoid planting new crops next to those which are already l Several beetles may cluster on a single leaf, leaving other cup of wood ash and half a cup of (photo by Merle Shepard, infested with the beetle - the adults can easily fly between leaves untouched lime to 4 L water. Test the strength on Gerald R.Carner, and P.A.C a few infested plants before spraying Ooi, Bugwood.org) plants and fields l Adults: Reddish-yellow, oval-shaped, 3.5-3.75 mm in the whole crop l If possible, don't plant in a previously infested field. width, 6-8 mm in length, antennae about half of body Otherwise wait at least 1-2 months after harvesting and length l Spray crop with neem seed oil and destroying previous crop remains (bury or burn) before detergent (see label for dosage) at a l Check roots and fruits for larvae feeding damage. -
2018-01-26 Langual Proposal from Foodex2 – Plants in Facet B
2018-01-26 LanguaL proposal from FoodEx2 – plants in facet B The following are proposals to update LanguaL Facet B, after having indexed EFSA FoodEx2 Exposure hierarchy 20170919. To these, I have added previously-submitted 2017 proposals based on GS1 that have not (yet) been included in LanguaL facet B. GS1 terms and FoodEx2 terms in the following tables are just given to indicate the origin of the proposal. Comments are given in red. First, some simple additions of terms to the SYNONYM field, to make it easier to find descriptors in the LanguaL Food Product Indexer: descriptor synonyms FoodEx2 term FoodEx2 def WORMWOOD [B3433] Add SYN: artemisia vulgaris LITTLE RADISH [B2960] Add SYN: raphanus sativus BLACK RADISH [B2959] Add SYN: raphanus sativus niger PARSNIP [B1483] Add SYN: pastinaca sativa ARRACACHA [B3439] Add SYN: arracacia xanthorrhiza CHAYOTE [B1730] Add SYN: GS1 10006356 - Squash Squash, Choko, grown from Sechium edule (Choko) choko NEW ZEALAND SPINACH Add SYN: GS1 10006427 - New- Tetragonia tetragonoides Zealand Spinach [B1732] tetragonia tetragonoides JAPANESE MILLET Add : barnyard millet; A000Z Barnyard millet Echinochloa esculenta (A. Braun) H. Scholz, Barnyard millet or Japanese Millet. [B4320] echinochloa esculenta INDIAN LONG PEPPER Add SYN! A019B Long pepper fruit Piper longum [B2956] piper longum EUROPEAN ELDER Modify SYN: [B1403] sambucus spp. (which refers to broader term) Should be sambucus nigra DOG ROSE [B2961] ADD SYN: rosa canina LOOSE LEAF LETTUCE Add SYN: [B2087] lactusa sativa L. var. crispa LOLLO ROSSO [B2088] Add SYN: GS1 10006425 - Lollo Lactuca sativa L. var. crispa Rosso red coral lettuce JAVA APPLE [B3395] Add syn! syzygium samarangense Some existing descriptors would also greatly benefit from updated AI (and synonyms): FoodEx2 FoodEx2 def descriptor AI synonyms term ENDIVE [B1314] Add to AI: A00LD Escaroles There are two main varieties of cultivated C. -
Buffalo Gourd (Family Cucurbitaceae, Cucurbita Foetidissima)
Buffalo Gourd (Family Cucurbitaceae, Cucurbita foetidissima) By Gerald R Noonan PhD May 2013 © May 2013 Buffalo Gourds are a common sight along the trails near the San Pedro House and in many other parts of SPRNCA. They grow as a prostate vine that spreads along the ground and may grow up to 20 feet long. The leaves are relatively large, up to approximately a foot in length, grayish green above and whitish beneath. The triangular shaped leaves have fine teeth along the margins and are born on relatively long stalks. During approximately May to August, yellow flowers appear. They are funnel shaped, five-lobed, about 4 inches long, and have the basic ribbed and with veins. The flowers open very early in the day and are pollinated by bees. Pollinated flowers each produce a gourd that is approximately 4 inches long, round, and predominantly dark green but with light stripes. The gourds eventually mature to an even yellow color and with continued exposure to the sun become whitish in appearance. Buffalo Gourds are perennial, die back in the winter, and then grow back from the large root when weather becomes warmer. The triangular shaped leaves distinguish this plant from the other two gourd producing species of vines that occur in SPRNCA. Finger-leaved Gourds differ by having central silvery white markings on the tops of the five narrow fingerlike segments of each leaf. Melon Loco plants differ by having leaves that are roundish or kidney shaped, approximately 2-6 inches wide, and with irregular jagged edges or pleats. Buffalo Gourds occur in roadsides and in dry or sandy areas. -
University of Florida Thesis Or Dissertation Formatting
GENETICS AND EVOLUTION OF MULTIPLE DOMESTICATED SQUASHES AND PUMPKINS (Cucurbita, Cucurbitaceae) By HEATHER ROSE KATES A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2017 © 2017 Heather Rose Kates To Patrick and Tomás ACKNOWLEDGMENTS I am grateful to my advisors Douglas E. Soltis and Pamela S. Soltis for their encouragement, enthusiasm for discovery, and generosity. I thank the members of my committee, Nico Cellinese, Matias Kirst, and Brad Barbazuk, for their valuable feedback and support of my dissertation work. I thank my first mentor Michael J. Moore for his continued support and for introducing me to botany and to hard work. I am thankful to Matt Johnson, Norman Wickett, Elliot Gardner, Fernando Lopez, Guillermo Sanchez, Annette Fahrenkrog, Colin Khoury, and Daniel Barrerra for their collaborative efforts on the dissertation work presented here. I am also thankful to my lab mates and colleagues at the University of Florida, especially Mathew A. Gitzendanner for his patient helpfulness. Finally, I thank Rebecca L. Stubbs, Andrew A. Crowl, Gregory W. Stull, Richard Hodel, and Kelly Speer for everything. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS .................................................................................................. 4 LIST OF TABLES ............................................................................................................ 9 LIST OF FIGURES .......................................................................................................