Simulated Single-Layer Forest Canopies Delay Northern Hemisphere Snowmelt

Total Page:16

File Type:pdf, Size:1020Kb

Simulated Single-Layer Forest Canopies Delay Northern Hemisphere Snowmelt The Cryosphere, 13, 3077–3091, 2019 https://doi.org/10.5194/tc-13-3077-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. Simulated single-layer forest canopies delay Northern Hemisphere snowmelt Markus Todt1,a, Nick Rutter1, Christopher G. Fletcher2, and Leanne M. Wake1 1Department of Geography, Northumbria University, Newcastle upon Tyne, UK 2Department of Geography and Environmental Management, University of Waterloo, Waterloo, Ontario, Canada anow at: National Centre for Atmospheric Science, Department of Meteorology, University of Reading, Reading, UK Correspondence: Markus Todt ([email protected]) Received: 7 December 2018 – Discussion started: 3 January 2019 Revised: 30 August 2019 – Accepted: 30 September 2019 – Published: 25 November 2019 Abstract. Single-layer vegetation schemes in modern land (Webster et al., 2016). In contrast, net longwave radiation surface models have been found to overestimate diurnal cy- fluxes are typically negative for snow under clear-sky condi- cles in longwave radiation beneath forest canopies. This tions in unforested areas, as has been observed for evergreen study introduces an empirical correction, based on forest- Canadian boreal forests (Harding and Pomeroy, 1996; Ellis stand-scale simulations, which reduces diurnal cycles of sub- et al., 2010). Moreover, forest cover has been reported to en- canopy longwave radiation. The correction is subsequently hance snowmelt for subarctic open woodland during overcast implemented in land-only simulations of the Community days and early in the snowmelt season (Woo and Giesbrecht, Land Model version 4.5 (CLM4.5) in order to assess the 2000). However, the impact of forest coverage on snowmelt impact on snow cover. Nighttime underestimations of sub- varies regionally as a function of forest density and meteo- canopy longwave radiation outweigh daytime overestima- rological conditions, with the importance of shortwave and tions, which leads to underestimated averages over the snow longwave radiation changing throughout the snowmelt sea- cover season. As a result, snow temperatures are underes- son (Sicart et al., 2004; Lundquist et al., 2013). timated and snowmelt is delayed in CLM4.5 across ever- Meteorological conditions control longwave enhance- green boreal forests. Comparison with global observations ment, as clear skies increase insolation and thereby vegeta- confirms this delay and its reduction by correction of sub- tion temperature while radiative temperature of the sky is re- canopy longwave radiation. Increasing insolation and day duced (Sicart et al., 2004; Lundquist et al., 2013; Todt et al., length change the impact of overestimated diurnal cycles on 2018). Therefore, values for longwave enhancement, i.e. the daily average sub-canopy longwave radiation throughout the ratio of below-canopy to above-canopy longwave radiation, snowmelt season. Consequently, delay of snowmelt in land- are higher under clear skies but close to 1 or even smaller for only simulations is more substantial where snowmelt occurs overcast conditions due to similar vegetation temperature and early. radiative temperature of the sky. Vegetation density impacts longwave enhancement by scaling the respective contribu- tions of vegetation and atmosphere to sub-canopy longwave radiation as well as by governing the impact of meteorolog- 1 Introduction ical forcing on vegetation temperatures (Todt et al., 2018). While observations have shown trunks heating up due to in- Forest canopy cover modulates longwave radiation received solation and emission of longwave radiation consequently in- by the ground, which consequently differs from atmospheric creasing (Rowlands et al., 2002; Pomeroy et al., 2009), di- longwave radiation. This process is called longwave en- urnal variations in tree temperatures depend on exposure to hancement and has been shown to result in substantial posi- insolation and thus vegetation density (Webster et al., 2016). tive net longwave radiation of the surface when snow cover is prevalent, especially under clear skies and during snowmelt Published by Copernicus Publications on behalf of the European Geosciences Union. 3078 M. Todt et al.: Simulated single-layer forest canopies delay Northern Hemisphere snowmelt About a fifth of seasonally snow-covered land over the iii. to quantify the impact of corrected sub-canopy long- Northern Hemisphere is covered by boreal forests (Rutter wave radiation on snow cover and snowmelt across the et al., 2009), indicating that the process of longwave en- Northern Hemisphere. hancement affects a substantial fraction of global snow cover. Considerable challenges persist in the representation of snow Section2 presents methodological details about the treat- cover and snowmelt in the current generation of climate mod- ment of sub-canopy longwave radiation in CLM4.5, the els, as historical simulations from Climate Model Intercom- physical basis for the empirical correction, configuration of parison Project Phase 5 (CMIP5) underestimate observed global land-only simulations, and calculation of the snow- trends and interannual variability of the spring snow cover off date from SWE observations. Calculation of correction extent (SCE; Derksen and Brown, 2012; Brutel-Vuilmet factors is detailed in Sect.3, and their impacts on the sim- et al., 2013; Rupp et al., 2013; Mudryk et al., 2014; Thack- ulated energy balance and seasonal cycle of snow cover are eray et al., 2016). Snow Model Intercomparison Project’s presented in Sect.4. We conclude with a brief discussion in second phase (SnowMIP2) identified less skill in modelling Sect.5. snow for forested than for open sites, which was attributed to complex processes between atmosphere, snow, and vege- 2 Methods tation (Essery et al., 2009; Rutter et al., 2009). Among models displaying deficiencies in simulating snow 2.1 Sub-canopy longwave radiation in CLM4.5 cover evolution across boreal forests is the Community Land Model (CLM) version 4 and its parent, the Community Cli- Vegetation in CLM4.5 is parameterized as a single layer us- mate System Model version 4 (Thackeray et al., 2014, 2015). ing a “big-leaf” approach (Oleson et al., 2013). Sub-canopy CLM uses a one-layer vegetation scheme, and CLM version longwave radiation is calculated as the sum of atmospheric 4.5 (CLM4.5) has been found to show deficiencies in sim- longwave radiation LWatm and longwave radiation emitted ulation of sub-canopy longwave radiation and longwave en- by vegetation LWveg, weighted by vegetation emissivity "v: hancement with overestimated diurnal cycles under clear-sky D − C 4 conditions (Todt et al., 2018). Similar issues have been mit- LWsub .1 "v/LWatm "vσ Tv ; (1) igated in CLM4.5 by subdividing the roughness layer (Bo- using the Stefan–Boltzmann law with the Stefan–Boltzmann nan et al., 2018) and in SNOWPACK, a one-dimensional constant σ D 5:67 × 10−8 W m−2 K−4 and vegetation tem- snow cover model, by partitioning the canopy into two lay- perature T . Vegetation temperature is calculated based on ers with separate energy balances and consequently separate v an energy balance, net radiation minus turbulent heat fluxes. vegetation temperatures (Gouttevin et al., 2015), which re- Radiative transfer of direct and diffuse shortwave radiation sults in different longwave radiation fluxes emitted upward is calculated via a two-stream approximation (Sellers, 1985) and downward from the vegetation. considering one reflection from ground to canopy. Net long- In order to avoid implementing multiple canopy layers in wave radiation is calculated from atmospheric longwave ra- a global land model and associated computational costs, this diation, vegetation temperature, and (ground) surface tem- study presents an alternative guided by the effect of sepa- perature and determined by vegetation emissivity and emis- rate vegetation layers on sub-canopy longwave radiation. A sivity of the ground. Calculation of turbulent heat fluxes in correction to sub-canopy longwave radiation is implemented CLM4.5 is based on Monin–Obukhov similarity theory and in CLM4.5 to reduce overestimated diurnal cycles, damping described by Oleson et al.(2013). Vegetation emissivity de- variations in longwave radiation emitted downward and, con- pends on the leaf area index (LAI) and stem area index (SAI) sequently, increasing variations in longwave radiation emit- and is calculated as ted upward. While simulation of sub-canopy longwave ra- −.LAICSAI/ diation and longwave enhancement by land surface mod- "v D 1 − e : (2) els has so far been assessed using forest-stand-scale forc- ing and evaluation data, this study uses land-only simulations This parameter is a combination of emissivity in the physical of CLM4.5 and snow-off dates derived from global observa- sense and a weighing parameter based on vegetation density; tions of snow water equivalent (SWE) to assess the impact of however, we will stick to this denomination here for consis- overestimated diurnal cycles in sub-canopy longwave radia- tency with the nomenclature of the technical description of tion on simulated global snow cover and snowmelt. There- CLM4.5 (Oleson et al., 2013). fore, this study has three objectives: CLM4.5 subdivides grid cells based on land units, e.g. vegetated, glacier, or urban, and vegetated land units based i. to develop a correction of sub-canopy longwave radia- on plant functional types (PFTs), with up to 16 possible PFTs tion simulated by single-layer vegetation in CLM4.5, as well as bare soil. Sub-canopy longwave
Recommended publications
  • Overview of Sensors for Applications
    OVERVIEW OF SENSORS FOR APPLICATIONS Deepak Putrevu Head, MTDD/AMHTDG EM SPECTRUM Visible 0.4-0.7μm Near infrared (NIR) 0.7-1.5μm Optical Infrared Shortwave infrared (SWIR) 1.5-3.0μm Mid-wave infrared (MWIR) 3.0-8.0μm (OIR) Region Longwave IR(LWIR)/Thermal IR(TIR) 8.0-15μm Far infrared (FIR) Beyond15μm Gamma Rays X Rays UV Visible NIR SWIR Thermal IR Microwave P-band: ~0.25 – 1 GHz Microwave Region L-band: 1 -2 GHz S-band: 2-4 GHz •Sensors are 24x365 C-band: 4-8 GHz •Signal data characteristics X-band: 8-12 GHz unique to the microwave region of the EM spectrum Ku-band: 12-18 GHz K-band: 18-26 GHz •Response is primarily governed by geometric Ka-band: 26-40 GHz structures and hence V-band: 40 - 75 GHz complementary to optical W-band: 75-110 GHz imaging mm-wave: 110 – 300GHz Basic Interactions between Electromagnetic Energy and the Earth’s Surface Incident Power reflected, ρP Reflectivity: The fractional part of the radiation, P incident radiation that is reflected by the surface. Power absorbed, αP Absorptivity: the fractional part of the = Power emitted, εP incident radiation that is absorbed by the surface. Power transmitted, τP Emissivity: The ratio of the observed flux emitted by a body or surface to that of a P= Pr + Pt + Pa blackbody under the same condition. 푃 푃 푃 푟 + 푡 + 푎 = 1 푃 푃 푃 Transmissivity: The fractional part of the ρ + τ + α =1 radiation transmitted through the medium. At thermal equilibrium, absorption and emission are the same.
    [Show full text]
  • Digital Radio Broadcasting Network in the Arctic Region
    ______________________________________________________PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION Digital Radio Broadcasting Network in the Arctic Region Oleg Varlamov, Vladimir Varlamov, Anna Dolgopyatova Moscow Technical University of Communications and Informatics Moscow, Russia [email protected], [email protected], [email protected] Abstract—Successful economic development of the Arctic 81°), where the geostationary orbit (GEO) is observed very low zone is impossible without creating a continuous information field above the horizon and only a small portion of it is visible, that covers its entire territory and is available not only at where the satellites of the required operator are not always stationary objects, but primarily in moving vehicles - ships, cars, present, providing information fields using satellites located on airplanes, etc. This information field must consist from the GEO is not possible. Approximately from 81 ° to the poles transmission of audio information (broadcasting programs), data (weather maps, ice conditions, etc.), navigation signals, alerts and GEO from the surface of the Earth is not visible even information about emergencies, and must be reserved from theoretically. different sources. As a backup system (and in the coming years, The most promising for the formation of the main the main one) it is advisable to use single-frequency digital information field in the Arctic zone can be considered satellite broadcasting networks of the Digital Radio Mondiale standard in the low frequency range. This is the most economical system for systems in highly elliptical (HEO) or low Earth (LEO) orbits. covering remote areas. For the use of these systems, have all the At the same time, the high cost of such systems, the long period necessary regulatory framework and standard high-efficiency of infrastructure deployment and the limited lifespan, combined radio transmitters.
    [Show full text]
  • High-Frequency Radiowa Ve Probing of the High-Latitude Ionosphere
    RAYMOND A. GREENWALD HIGH-FREQUENCY RADIOWAVE PROBING OF THE HIGH-LATITUDE IONOSPHERE During the past several years, a program of high-frequency radiowave studies of the high-latitude ionosphere has been developed in the APL Space Department. Studies are now being conducted on the formation and motion of high-latitude ionospheric electron density irregularities, using a sophisti­ cated high-frequency radar system installed at Goose Bay, .Labrador. The radar antenna is also being used to receive signals from a beacon transmitter located at Thule, Greenland. This information is providing a better understanding of the spatial and temporal variability of high-latitude propagation channels and their relationship to disturbances in the magnetosphere-ionosphere system . INTRODUCTION turbances prior to their impingement on the magneto­ At altitudes above 100 kilometers, the atmosphere sphere is quite limited. Therefore, we still have only of the earth gradually changes from a predominantly limited success in forecasting sudden changes in the neutral medium to an increasingly ionized gas or plas­ high-latitude ionosphere and consequently in high­ ma. The ionization is caused chiefly by a combination latitude radiowave propagation. of solar extreme ultraviolet radiation and, at high lati­ In order for space scientists to obtain a better un­ tudes, particle precipitation from the earth's magne­ derstanding of the various interactions occurring tosphere. Because of its ionized nature between 100 among the solar wind, the magnetosphere, and the ion­ and 1000 kilometers, this part of the atmosphere is osphere, active measurement programs are conduct­ commonly referred to as the ionosphere. In this re­ ed in all three regions.
    [Show full text]
  • Portable Shortwave Receivers
    Portable Shortwave Receivers ● Longwave, AM, FM and Shortwave ELITE SATELLIT ● VHF Air Band ● HD Radio Reception ● RDS Display ● Superior Sensitivity and Selectivity ● Dual Conversion Design ● Huge 5.7 Inch Backlit Display ● Drift-free Digital Phase Lock Loop ● Direct Frequency and Band Entry ● Single Sideband Synchronous Detector ● Selectable Bandwidths ● High Dynamic Range ● Dual Programmable Clocks ● Dual Event Programmable Timers ● Stereo Line Level Input ● Stereo Line Level Output ● Earphone Jack ● Separate Bass and Treble Controls ● Adjustable AGC: Fast or Slow ● Telescopic Antenna AM/FM/SW ● Battery (4xD) or Included AC Adapter ● Scan and Search ● 1700 Total Memories (500 alphanumeric) ● Deluxe Carry Bag The Elite Satellit is simply the finest full-sized portable in the world. The Elite Satellit is an elegant confluence of performance, features and capabilities. The look, feel and finish of this radio is superb. The solid, quality feel is second to none. The digitally synthesized, dual conversion shortwave tuner covers all long wave, mediums wave (AM) and shortwave frequencies. HD Radio improves audio fidelity and adds additional programming without a subscription fee. Adjacent frequency interference can be minimized or eliminated with a choice of three bandwidths [7.0, 4.0, 2.5 kHz]. The sideband selectable Synchronous AM Detector further minimizes adjacent frequency interference and reduces fading distortion of AM signals. IF Passband Tuning is yet another advanced feature that functions in AM and SSB modes to reject interference. AGC is selectable at fast or slow. High dynamic range permits the detection of weak signals in the presence of strong signals. All this coupled with great sensitivity will bring in stations from every part of the globe.
    [Show full text]
  • Hans Knot International Radio Report April 2016 Welcome to Another
    Hans Knot International Radio Report April 2016 Welcome to another edition of the International Radio Report. Thanks all for your e mails, memories, photos, questions and more. Part of the report is what was left after the March edition was totally filled and so let’s go with this edition in which first there’s space for a story I wrote last months after again doing some research: ‘Ronan O’Rahilly, Georgie Fame and the Blue Fames. Where it really went wrong!’ On this subject I’ve written before but let’s go back in time and also add some new facts to it: ‘Was Ronan O’Rahilly the manager of Georgie Fame?’ I can tell you there was a problem with an important instrument. When in April 1964 Granada Television came with an edition of the ‘World in action’ series, which was a production from Michael Hodges, they informed the television public about a new form of Piracy, the watery pirates. Two radio ships bringing music and entertainment under the names of Radio Caroline and Radio Atlanta. Radio Caroline was the first 20th century Pirate off the British coast with programs, at that stage, for 12 hours a day. Interviews with the Caroline people were made in the offices of Queen Magazine in the city of London and included – among others – Jocelyn Stevens and the then 23-year old Irish Ronan O’Rahilly. During this documentary it became known, which we would also read in several newspapers in the then following weeks, that Ronan O’Rahilly had started his radiostation Caroline as he couldn’t get his artists played on stations like Radio Luxembourg.
    [Show full text]
  • Downloaded 09/25/21 09:30 PM UTC
    1434 JOURNAL OF HYDROMETEOROLOGY VOLUME 9 NASA Cold Land Processes Experiment (CLPX 2002/03): Local Scale Observation Site ϩ JANET HARDY,* ROBERT DAVIS,* YEOHOON KOH,* DON CLINE, KELLY ELDER,# RICHARD ARMSTRONG,@ HANS-PETER MARSHALL,@ THOMAS PAINTER,& ϩϩ GILLES CASTRES SAINT-MARTIN,** ROGER DEROO,** KAMAL SARABANDI,** TOBIAS GRAF, ϩϩ TOSHIO KOIKE, AND KYLE MCDONALD## *Cold Regions Research and Engineering Laboratory, Engineer Research and Development Center, U.S. Army Corps of Engineers, Hanover, New Hampshire ϩNOAA/NWS/National Operational Hydrologic Remote Sensing Center, Chanhassen, Minnesota #USDA Forest Service, Fort Collins, Colorado @University of Colorado, Boulder, Colorado &University of Utah, Salt Lake City, Utah **University of Michigan, Ann Arbor, Michigan ϩϩUniversity of Tokyo, Tokyo, Japan ##NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California (Manuscript received 12 January 2007, in final form 19 March 2008) ABSTRACT The local scale observation site (LSOS) is the smallest study site (0.8 ha) of the 2002/03 Cold Land Processes Experiment (CLPX) and is located within the Fraser mesocell study area. It was the most intensively measured site of the CLPX, and measurements here had the greatest temporal component of all CLPX sites. Measurements made at the LSOS were designed to produce a comprehensive assessment of the snow, soil, and vegetation characteristics viewed by the ground-based remote sensing instruments. The objective of the ground-based microwave remote sensing was to collect time series of active and passive microwave spectral signatures over snow, soil, and forest, which is coincident with the intensive physical characterization of these features. Ground-based remote sensing instruments included frequency modulated continuous wave (FMCW) radars operating over multiple microwave bandwidths; the Ground-Based Mi- crowave Radiometer (GBMR-7) operating at channels 18.7, 23.8, 36.5, and 89 GHz; and in 2003, an L-, C-, X- and Ku-band scatterometer radar system.
    [Show full text]
  • AN1597 Longwave Radio Data Decoding Using an HC11 and an MC3371
    Freescale Semiconductor, Inc... microprocessor used for decoding is the MC68HC(7)11 while microprocessor usedfordecodingisthe MC68HC(7)11 2023. and 1995 between distinguish Itisnotpossible to 2022. and thiscanbeusedtocalculate ayearintherange1995to beworked out cyclecan,however, leap–year/year–start–day data.Thepositioninthe28–year available andcannotbeuniquelydeterminedfromthe transmitted and yeartype)intoday–of–monthmonth.Theisnot dateinformation(day–of–week,weeknumber transmitted the form.Themicroprocessorconverts hexadecimal displayed whilst allincomingdatacanbedisplayedin In thisapplication,timeanddatecanbepermanently standards. Localtimevariation(e.g.BST)isalsotransmitted. provides averyaccurateclock,traceabletonational Freescale AMCU ApplicationsEngineering Topping Prepared by:P. This documentcontains informationonaproductunder development. This to thecompanyleasingitforuseinaspecificapplication. available blocks areusedcommerciallywhereeachblockis other 0isusedfortimeanddate(andfillerdata)whilethe Type purpose.There are16datablocktypes. used foradifferent countriesbuthasamuchlowerdatarateandis European with theRDSdataincludedinVHFradiosignalsmany aswelltheaudiosignal.Thishassomesimilarities data using an HC11 and Longwave an Radio MC3371 Data Decoding Figure 1showsablock diagramoftheapplication; Figure data is transmitted every minuteontheand Time The BBC’s Radio4198kHzLongwave transmittercarries The BBC’s Ltd.,EastKilbride RF AMPLIFIERDEMODULATOR FM BF199 FILTER/INT.: LM358 FILTER/INT.: AMP/DEMOD.: MC3371 LOCAL OSC.:MC74HC4060
    [Show full text]
  • World Receiver Yacht Boy 400 Pe Important Notice
    WORLD RECEIVER YACHT BOY 400 PE IMPORTANT NOTICE NEED HELP? QUICK SETUP CALL OUR SHORTWAVE HOTLINE (But please read the rest of the manual later!) 1. Insert batteries or connect the included AC adaptor. If, after reading this owner’s manual, you need help learning to operate your YACHT BOY 400 PROFESSIONAL EDITION, call us toll free, Monday through Friday, 8:30 a.m. to 4:30 p.m., 2. Set the DX/LOCAL switch to DX (left side of radio). PST at: 1-800-872-2228 from the U.S. 3. Turn the SSB switch OFF (right side of radio). 1-800-637-1648 from Canada OWNER’S RECORD 4. Fully extend the telescopic antenna. This model is the GRUNDIG YACHT BOY 400 PROFES- 5. With the radio off, press and release the AM button once. SIONAL EDITION, herin after referred to as the YB400PE. The serial number is located on the sticker inside the battery compartment. Refer to this number whenever you call GRUNDIG 6. Immediately press and release the STEP button. regarding this product. “10KHz” now appears in the right side of the display, and will disappear in a few seconds. (See page 4 for more information about this procedure. 7. Turn the radio on by pressing the ON/OFF button. 1 TABLE OF CONTENTS SUBJECT PAGE GRUNDIG TOLL-FREE PHONE NUMBER………………………………………………………….............................. 1 TABLE OF CONTENTS………………………………………………………….……………………............................ 2 YOUR RADIO AT-A-GLANCE………………………………………………….……………………............................. 3 INITIAL SETUP…………………………………………………………………..……………………............................ 4 SUPPLYING POWER…………………………………………………………….……………………............................ 5 GENERAL RADIO OPERATION………………………………………………..……………………............................. 6-8 SHORTWAVE RADIO OPERATION…………………………………………...……………………............................... 9-10 STORING STATIONS INTO MEMORY………………………………………..…………………….............................. 11-12 USING CLOCK, ALARM, AND SLEEP TIMER FEATURES..............................……………………............................
    [Show full text]
  • Quick Start Pl-990
    TECSUN PL-990 QUICK START FM-stereo / Longwave / Medium Wave / Shortwave-SSB Audio Player TIME Clock time User Manual Page 7 ANT. GAIN DX / Local Gain Selection User Manual Page 17 AUDIO PLAYBACK CONTROLS User Manual Page 20 SNOOZE DISPLAY (top side) User Manual Pages 19, 21, 24 and 25 ● Time setting (24-hour clock) DX: For distant or weak stations. This device supports 16bit / 44.1kHz audio files in FLAC / WAV / APE / ● Snooze: When the power on alarm time is reached (TIMER A / TIMER B), quick press the button to 1. Press and hold [ TIME ] until the clock flashes. NORM: Standard WMA and MP3 formats. temporarily turn off the device; it will turn on again after 5 minutes. 2. Use the numeric keys to enter the time (4 digits). LOCAL: For near or strong stations. [ ] Play/Pause: Quick press ● Display: While listening to radio, quick press to switch between Signal Strength/Signal-to-Noise Ratio, alarm time, ● With the device on, quick press to switch between clock and radio / audio player display. Repeat track: Press and hold clock time and memory location information. ● Display: While listening to the audio player, quick press to display the current album number and the total number of ANT. SWITCH Antenna Selection User Manual Page 8 [ ] Previous: Quick press twice Restart track: Quick press tracks within the album. Quick press again to display the total number of albums and audio tracks. INT.: Whip antenna TIMER A, TIMER B Auto Turn On (Alarm) User Manual Pages 22, 23 Rewind: Press and hold ● Keylock: Press and hold, causing the “ “ icon to appear on the display.
    [Show full text]
  • 750 Review Insert
    The Eton Elite 750 is much more than just a fancy-looking boom-box shortwave receiver, reports WB6NOA, who listened to all it has to offer, including longwave, shortwave, the AM and FM broadcast bands, and the VHF air band. CQ Reviews: Eton Elite 750 Shortwave Receiver BY GORDON WEST,* WB6NOA s ham operators, we know not to pre-judge a radio by just how it Alooks, or how many buttons and meters it may have on the face. Like many of you, I have a collection of no- name bargain mail-order portable shortwave (SW) receivers, but few can hold a candle to those from name-brand manufacturers. Now, this monster- sized Eton receiver is hitting the mar- ket in grand style. The Eton Elite 750 is major-sized multi-mode receiver, fun for a radio enthusiast wanting to tune in what’s out there from 100 kHz to 30 MHz, plus the AM and FM broadcast bands and AM air-band reception. The Eton name may be unfamiliar to you, and the 750 looks a lot like a pre- vious radio from Grundig. Actually, the two companies have a relationship that spans 35 years, as explained by Eton CEO and Chairman Esmail Amid- The large speaker makes the Eton Elite 750 a great poolside or beach enter- Hozour. “From our initial partnership tainment radio, too! Plenty of audio output, enough to also power a personal with Max Grundig in 1979, Eton has car- music player that can plug in. ried on Grundig’s 75+ year legacy in developing the best-in-class world band we bring new and exciting shortwave non-directional radio beacons (NDBs), radios.” Esmail continued, “Eton’s dedi- products to the market each year.” Navtex, 630-meter ham radio CW bea- cation to design and innovation spans cons, and various government stations partnerships with Drake to ensure high- Exploring the Elite 750 lurking down here.
    [Show full text]
  • Precipitation
    Definitions • Hydrologic Cycle - s a conceptual model that describes the storage and movement of water on earth • Water Budget P = ET + RO + GW + ΔS • Drainage basin is an extent or an area of land where surface water from rain, melting snow, or ice converges to a single point at a lower elevation, usually the exit of the basin, where the waters join another waterbody, such as a river, lake, reservoir, estuary, wetland, sea, or ocean. Precipitation • Precipitation - is any product of the condensation of atmospheric water vapor that falls under gravity. The main forms of precipitation include drizzle, rain, snow and hail. • Hyetograph: is a graph of cumulative precipitation through time • Intensity: precipitation over time • Frequency: Probability of occurrence of a determined rainfall event • Return Period: how frequent (in year) a determined rainfall event happen • Interception: Part of the precipitation which wets or adheres to above ground objects until return to the atmosphere through evaporation or sublimation Evapotranspiration • Evaporation: Transfer of water from land and water masses to the atmosphere • Transpiration: The process by which the plant extract water from the soil, utilize it, and expel it to the atmosphere • Evapo-transpiration (ET): Combined process of evaporation and transpiration. It is dependent upon many factors including: soil cover, vegetation, solar radiation, humidity, wind, etc. • Reference Evapotranspiration “ET0”: The reference crop evapotranspiration represents the evapotranspiration from a standardized vegetated surface. Runoff • Infiltration: Process by which precipitation moves downwards through the surface and replenishes soil moisture, recharges aquifers and supports steamflows during dry periods • Runoff: is often defined as the portion of rainfall, snowmelt, and/or irrigation water that runs over the soil surface toward the stream rather than infiltrating into the soil.
    [Show full text]
  • Modelling Snowmelt in Ungauged Catchments
    water Article Modelling Snowmelt in Ungauged Catchments Carolina Massmann 1,2 1 Institute for Hydrology and Water Management (HyWa), University of Natural Resources and Life Sciences, 1190 Vienna, Austria; [email protected] 2 Department of Civil Engineering, University of Bristol, Bristol BS8 1TR, UK Received: 20 December 2018; Accepted: 29 January 2019; Published: 11 February 2019 Abstract: Temperature-based snowmelt models are simple to implement and tend to give good results in gauged basins. The situation is, however, different in ungauged basins, as the lack of discharge data precludes the calibration of the snowmelt parameters. The main objective of this study was therefore to assess alternative approaches. This study compares the performance of two temperature-based snowmelt models (with and without an additional radiation term) and two energy-balance models with different data requirements in 312 catchments in the US. It considers the impact of: (i) the meteorological forcing, by using two gridded datasets (Livneh and MERRA-2), (ii) different approaches for calibrating the snowmelt parameters (an a priori approach and one based on Snow Data Assimilation System (SNODAS), a remote sensing-based product) and (iii) the parameterization and structure of the hydrological model used for transforming the snowmelt signal into streamflow at the basin outlet. The results show that energy-balance-based approaches achieve the best results, closely followed by the temperature-based model including a radiation term and calibrated with SNODAS data. It is also seen that data availability and quality influence the ranking of the snowmelt models. Keywords: snowmelt; day-degree approach; SNODAS; hydrological model; a priori parameter estimation; ungauged basins; model performance; data quality 1.
    [Show full text]