Cryosphere Water Resources Simulation and Service Function Evaluation in the Shiyang River Basin of Northwest China

Total Page:16

File Type:pdf, Size:1020Kb

Cryosphere Water Resources Simulation and Service Function Evaluation in the Shiyang River Basin of Northwest China water Article Cryosphere Water Resources Simulation and Service Function Evaluation in the Shiyang River Basin of Northwest China Kailu Li 1,2, Rensheng Chen 1,* and Guohua Liu 1,2 1 Qilian Alpine Ecology and Hydrology Research Station, Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; [email protected] (K.L.); [email protected] (G.L.) 2 University of Chinese Academy of Sciences, Beijing 100049, China * Correspondence: [email protected] Abstract: Water is the most critical factor that restricts the economic and social development of arid regions. It is urgent to understand the impact on cryospheric changes of water resources in arid regions in western China under the background of global warming. A cryospheric basin hydrological model (CBHM) was used to simulate the runoff, especially for glaciers and snowmelt water supply, in the Shiyang River Basin (SRB). A cryosphere water resources service function model was proposed to evaluate the value of cryosphere water resources. The annual average temperature increased significantly (p > 0.05) from 1961 to 2016. The runoff of glacier and snowmelt water in the SRB decreased significantly. This reduction undoubtedly greatly weakens the runoff regulation function. The calculation and value evaluation of the amount of water resources in the cryosphere of Shiyang River Basin is helpful to the government for adjusting water structure to realize sustainable development. Keywords: climate change; the Shiyang River Basin; glacial runoff; snowmelt water; cryosphere; value evaluation Citation: Li, K.; Chen, R.; Liu, G. Cryosphere Water Resources Simulation and Service Function 1. Introduction Evaluation in the Shiyang River Basin Cryosphere science is an emerging science. The cryosphere elements consist of glacial of Northwest China. Water 2021, 13, ice, sea ice, ice shelves, ice caps, continental glaciers, valley glaciers, permafrost, as well 114. https://doi.org/10.3390/ as snow and ice in rivers and lakes [1]. Studies on the cryosphere have accelerated since w13020114 1972 when, at the Stockholm Human Environment Conference, the World Meteorologi- Received: 10 December 2020 cal Organization (WMO) proposed the cryosphere as a fifth earth sphere alongside the Accepted: 29 December 2020 atmosphere, hydrosphere, lithosphere, and biosphere [2]. Subsequently, the World Cli- Published: 6 January 2021 mate Research Programmer (WCRP) launched its core “climate and cryosphere” (CliC) plans in 2000. Then, the International Union of Geodesy and Geophysics (IUGG) made Publisher’s Note: MDPI stays neu- the decision to add the International Cryospheric Science Association (IACS) as a new tral with regard to jurisdictional clai- association in 2007. Since the start of the twenty-first century, cryosphere research has seen ms in published maps and institutio- unprecedented development around the world [2]. The Fifth Assessment Report of the nal affiliations. Intergovernmental Panel on Climate Change (IPCC) confirmed the fact of global warming in the past 100 years and pointed out that the impact of human activities has been the main cause of climate warming since the mid-20th century [3]. Much of this frozen world, the cryosphere, has been melting as a result of global warming [1]. In the western cold regions Copyright: © 2021 by the authors. Li- of China (WCRC), many changes have taken place in the cryosphere. The glacier area censee MDPI, Basel, Switzerland. has decreased by 12.9% from 1960 (59,425 km2) to 2012 (51,766 km2)[4,5]. The permafrost This article is an open access article has experienced widespread degradation [6]. Snow cover has shown a small increase distributed under the terms and con- ditions of the Creative Commons At- trend in the WCRC between 1951 and 1997 [7]. These changes will definitely affect the tribution (CC BY) license (https:// water cycle and yearly runoff variation in the cold alpine watershed [8–12]. An increase or creativecommons.org/licenses/by/ decrease in river basin runoff will have an important impact on river basin water resources 4.0/). planning, management, and sustainable use. With the proposal and development of the Water 2021, 13, 114. https://doi.org/10.3390/w13020114 https://www.mdpi.com/journal/water Water 2021, 13, 114 2 of 22 concept of cryosphere service function [13–16], and the establishment of a scientific system of cryospheric science, cryospheric changes and their impacts have received increasing concern [2]. The impact of changes in the cryosphere on the socioeconomic field is now a research hotspot. Its research route is change, impact, adaptation, and service. Quantifying the effect of cryospheric changes on runoff in the WCRC has been the basis of research. Much work has been performed on climate and streamflow changes for individual basins in the WCRC. Chen et al. [17] investigated the hydrological response to climate change in the Tarim River Basin. In the same year, Li et al. [18] analyzed the influence of climatic change on the flow over the upper Hei River Basin (UHR). Later, Ma et al. [19] studied eight catchments in the Shiyang River Basin (SRB) and investigated changes in annual streamflow in the WCRC. Wang et al. [20] investigated the effects of climate change on streamflow of the Xiying and Zamu rivers in the SRB, based on the Soil and Water Assessment Tool (SWAT). These studies lack an analysis of climate change on glacial and snowmelt water. Melt modeling is a crucial element in any attempt to predict runoff from snow-covered or glacierized areas, as well as to assess changes in the cryosphere associated with climate change [21]. Singh et al. [22] developed a conceptual snowmelt model (SNOWMOD) based on the temperature index model and applied it to the study of the contribution of glaciers and snowmelt to the runoff in the Himalayas. Konz et al. [23] used the TAC (D) model to simulate runoff in a poorly gauged, highly glacierized Himalayan head- water. Chen et al. [24] constructed several models to simulate Koxkar glacial meltwater runoff. Zhao et al. [25] coupled energy balance and a mass balance algorithm to the variable infiltration capacity (VIC) model, and used it to simulate the glacial runoff in Aksu River Basin. Luo et al. [26] coupled the glacier module with the SWAT model to simulate the glacier runoff process in the Manas River Basin in the Tianshan Mountains. Model simulation is the main method for a comprehensive analysis of watershed hy- drological elements. Distributed hydrological model coupled with glaciers, snow cover, and frozen soil modules can output these results. Creatively, Chen et al. [27] proposed a new distributed cryospheric basin hydrological model (CBHM) to evaluate the effects of cryospheric changes on streamflow in the UHR, and they studied and discussed the comprehensive effects of cryospheric changes on river runoff, including glaciers, snow cover, and permafrost, in the past and future. The study of cryosphere service (CS) function and its value evaluation is still in the infancy stage. Xiao et al. [28] defined CS as the benefit that the cryosphere provides to human society, and classified the different services of CS as supply, accommodation, social culture, and living environment service. Later, some scholars [13,29–32] also studied the service function of the cryosphere. However, these studies were mainly theoretical studies on CS and lacked further practical research. Cryosphere water resources service (CWRS) is the most significant CS to directly affect human societies [30], which is the important breakthrough of the research of service function in cryosphere [33]. We aim to make a breakthrough in this area. A CBHM applied to the upper Hei River Basin has achieved very good results, which have formed the basis for research on CWRS. However, research on CWRS cannot only involve a small watershed. Whether the model can be applied in more watersheds and a larger scale is a problem that needs to be solved. Further studies are still necessary. The purpose of this paper is to apply a CBHM to the scale of a water system. Furthermore, we aim to propose an evaluation system of CWRS function and also study the current status of CWRS functions. In this study, we applied a CBHM to seven catchments in the SRB, an important arid region in northwest China. The monthly runoff and its components were simulated from 1961 to 2016. Using the model output of cryosphere water resources and the socioeconomic data, we evaluated and divided the functions of CWRS in the study area. Our research expanded the research scale from a single watershed to the scale of a water system containing multiple watersheds and provided ideas and methods for studying the service function of the cryosphere water resources. Water 2021, 13, 114 3 of 22 2. Study Area and Methods 2.1. Study Area The Shiyang River Basin is located in the east part of the Hexi Corridor in Gansu Province in northwest China [19]. It is on the west of the Wushaoling Mountains and north of the Qilian Mountains at longitude of 100◦570–104◦120 E and latitude of 37◦020–39◦170 N, occupying an area of 41,600 km2 (Figure1). The administrative divisions of the watershed include the four prefecture-level cities of Jinchang, Wuwei, Zhangye, and Baiyin, and nine counties of Liangzhou, Gulang, Minqin, Tianzhu, Yongchang, Jinchuan, Sunan, Shandan, and Jintai. The Shiyang River Basin is one of the three inland river basins of the Hexi Corridor, and the headwater rivers from east to west are the Dajing, Gulang, Huangyang, Zamu, Jinta, Xiying, Dongda, and Xida Rivers. The flow characteristics of the river and the control station information are shown in Table1. The sources of river supply are atmospheric precipitation in mountainous areas and melting snow and ice in the high mountains. The mean annual runoff is 1.50 billion m3.
Recommended publications
  • Annex I Supplementary Information of 2018 UNCCD Reporting, China
    Annex I Supplementary Information of 2018 UNCCD Reporting, China SO4 Voluntary targets .............................................................................................................................. 2 SO 5-1 – Table1 ........................................................................................................................................ 3 SO 5-2 - Table 1 ........................................................................................................................................ 5 SO 5-3 - Table 1 ...................................................................................................................................... 12 SO 5-4 - Table 1 ...................................................................................................................................... 16 Implementation Framework - Table 1 .................................................................................................... 19 SO4 Voluntary targets Objectives Year Level applied Forest coverage rate By 2020 National Forest stock volume By 2020 National Area of new desertified land to be controlled By 2020 National SO 5-1 – Table1 Unit:RMB 10,000 Name or content of assistance program 2012 2013 2014 2015 2016 Source of information Assisting Republic of Mongolia in building three 5 5 5 5 5 CMA sandstorm observatories Sino-Arab League cooperative research on 289 CAS desertification control technology China-Kazakhstan cooperative research on ecological barrier construction technology of 120 CAS emerging cities
    [Show full text]
  • Of the World Bank-Financed Gansu Rural-Urban Integration Infrastructure Project
    Gulang Subproject of the World Bank-financed Gansu Rural-Urban Integration Infrastructure Project Public Disclosure Authorized Resettlement Action Plan of the Gulang Subproject (Mid-term Adjustment) of the Public Disclosure Authorized World Bank-financed Gansu Rural-Urban Integration Infrastructure Project Public Disclosure Authorized Public Disclosure Authorized Gulang County Government (GCG) Gulang PMO December 2019 Gulang Subproject (Mid-term Adjustment) of the World Bank-financed Gansu Rural-Urban Integration Infrastructure Project Letter of Commitment The Gulang Subproject (Mid-term Adjustment) of the World Bank-financed Gansu Rural-Urban Integration Infrastructure Project (hereinafter, the “Subproject”) involves land acquisition (LA), house demolition (HD) and resettlement. Therefore, this Resettlement Action Plan (RAP) has been prepared as the basis for LA, HD and resettlement in accordance with the Bank policy on involuntary resettlement (OP4.12), and the applicable state and local regulations and policies to protect the basic rights and interests of the affected persons (APs), and restore or even improve their production level and living standard after resettlement. GCG has reviewed this RAP, and agrees to implement resettlement, make resettlement funds available fully and timely, and compensate and resettle the APs properly in light of this RAP. The subproject management office (PMO) of Gulang County is hereby instructed to implement and manage the resettlement of the Subproject in coordination with the agencies concerned. GCG
    [Show full text]
  • Population Distribution Evolution Characteristics and Shift Growth Analysis in Shiyang River Basin
    International Journal of Geosciences, 2014, 5, 1395-1403 Published Online October 2014 in SciRes. http://www.scirp.org/journal/ijg http://dx.doi.org/10.4236/ijg.2014.511113 Population Distribution Evolution Characteristics and Shift Growth Analysis in Shiyang River Basin Minzhi Chen1, Peizhen Wang2, Li Chen3 1Institute of Urban Planning and Design, Nanjing University, Nanjing, China 2The School of Architecture and Urban Planning, Nanjing University, Nanjing, China 3The High School Attached to Northwest Normal University, Nanjing, China Email: [email protected], [email protected] Received 1 August 2014; revised 27 August 2014; accepted 16 September 2014 Copyright © 2014 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract In recent years, the population size and scale of the Shiyang River Basin unceasingly expanding lead to a series of ecological environment: surface water reducing, land desertification and Ground water levels fall, etc. Research evolution characteristics of population distribution and migration growth of Shiyang River Basin contribute to river water resources and the industrial development of the comprehensive management. The article using the distribution of population structure index, population distribution center of gravity model and the population migration growth analysis model analyzes the distribution of the population evolution characteristics and population migration growth characteristics of Shiyang River Basin in 2000 to 2010. The results show that: 1) Considering Shiyang River Basin, population density is generally low, population distribution difference is bigger and concentration distribution in the middle corridor plain and three big population distribution center of Minqin oasis area, presenting a “point-areas-ribbon” structure characteristics.
    [Show full text]
  • Precipitation
    Definitions • Hydrologic Cycle - s a conceptual model that describes the storage and movement of water on earth • Water Budget P = ET + RO + GW + ΔS • Drainage basin is an extent or an area of land where surface water from rain, melting snow, or ice converges to a single point at a lower elevation, usually the exit of the basin, where the waters join another waterbody, such as a river, lake, reservoir, estuary, wetland, sea, or ocean. Precipitation • Precipitation - is any product of the condensation of atmospheric water vapor that falls under gravity. The main forms of precipitation include drizzle, rain, snow and hail. • Hyetograph: is a graph of cumulative precipitation through time • Intensity: precipitation over time • Frequency: Probability of occurrence of a determined rainfall event • Return Period: how frequent (in year) a determined rainfall event happen • Interception: Part of the precipitation which wets or adheres to above ground objects until return to the atmosphere through evaporation or sublimation Evapotranspiration • Evaporation: Transfer of water from land and water masses to the atmosphere • Transpiration: The process by which the plant extract water from the soil, utilize it, and expel it to the atmosphere • Evapo-transpiration (ET): Combined process of evaporation and transpiration. It is dependent upon many factors including: soil cover, vegetation, solar radiation, humidity, wind, etc. • Reference Evapotranspiration “ET0”: The reference crop evapotranspiration represents the evapotranspiration from a standardized vegetated surface. Runoff • Infiltration: Process by which precipitation moves downwards through the surface and replenishes soil moisture, recharges aquifers and supports steamflows during dry periods • Runoff: is often defined as the portion of rainfall, snowmelt, and/or irrigation water that runs over the soil surface toward the stream rather than infiltrating into the soil.
    [Show full text]
  • Gansu Internet-Plus Agriculture Development Project
    Gansu Internet-Plus Agriculture Development Project (RRP PRC 50393) Project Administration Manual Project Number: 50393-002 Loan Number: LXXXX September 2019 People’s Republic of China: Gansu Internet-Plus Agriculture Development Project ii ABBREVIATIONS ADB – Asian Development Bank COL – collective-owned land CNY – Chinese Yuan EMP – environmental management plan FSR – feasibility study report FY – Fiscal year GAP – gender action plan GPG – Gansu Provincial Government GRM – grievance redress mechanism GSSMCU – Gansu Supply and Marketing Cooperatives Union ICT – information and communication technology IEE – Initial Environmental Examination IOT – internet-of-things LIBOR – London interbank offered rate LURT – land use rights transfer mu – Chinese unit of measurement (1 mu = 666.67 square meters or 0.067 hectares) OCB – open competitive bidding PFD – Provincial Finance Department PIU – project implementation unit PMO – project management office PPE – participating private enterprise PPMS – project performance management system PRC – People’s Republic of China SDAP – social development action plan SOE – state-owned enterprise SOL – state-owned land TA – Technical assistance iii CONTENTS I. PROJECT DESCRIPTION 1 A. Rationale 1 B. Impact and Outcome 3 C. Outputs 3 II. IMPLEMENTATION PLANS 9 A. Project Readiness Activities 9 B. Overall Project Implementation Plan 10 III. PROJECT MANAGEMENT ARRANGEMENTS 12 A. Project Implementation Organizations: Roles and Responsibilities 12 B. Key Persons Involved in Implementation 14 C. Project Organization Structure 16 IV. COSTS AND FINANCING 17 A. Cost Estimates Preparation and Revisions 17 B. Key Assumptions 17 C. Detailed Cost Estimates by Expenditure Category 18 D. Allocation and Withdrawal of Loan Proceeds 20 E. Detailed Cost Estimates by Financier 21 F. Detailed Cost Estimates by Outputs and/or Components 23 G.
    [Show full text]
  • Modelling Snowmelt in Ungauged Catchments
    water Article Modelling Snowmelt in Ungauged Catchments Carolina Massmann 1,2 1 Institute for Hydrology and Water Management (HyWa), University of Natural Resources and Life Sciences, 1190 Vienna, Austria; [email protected] 2 Department of Civil Engineering, University of Bristol, Bristol BS8 1TR, UK Received: 20 December 2018; Accepted: 29 January 2019; Published: 11 February 2019 Abstract: Temperature-based snowmelt models are simple to implement and tend to give good results in gauged basins. The situation is, however, different in ungauged basins, as the lack of discharge data precludes the calibration of the snowmelt parameters. The main objective of this study was therefore to assess alternative approaches. This study compares the performance of two temperature-based snowmelt models (with and without an additional radiation term) and two energy-balance models with different data requirements in 312 catchments in the US. It considers the impact of: (i) the meteorological forcing, by using two gridded datasets (Livneh and MERRA-2), (ii) different approaches for calibrating the snowmelt parameters (an a priori approach and one based on Snow Data Assimilation System (SNODAS), a remote sensing-based product) and (iii) the parameterization and structure of the hydrological model used for transforming the snowmelt signal into streamflow at the basin outlet. The results show that energy-balance-based approaches achieve the best results, closely followed by the temperature-based model including a radiation term and calibrated with SNODAS data. It is also seen that data availability and quality influence the ranking of the snowmelt models. Keywords: snowmelt; day-degree approach; SNODAS; hydrological model; a priori parameter estimation; ungauged basins; model performance; data quality 1.
    [Show full text]
  • Contribution of Snow-Melt Water to the Streamflow Over the Three-River
    remote sensing Article Contribution of Snow-Melt Water to the Streamflow over the Three-River Headwater Region, China Sisi Li 1, Mingliang Liu 2 , Jennifer C. Adam 2,*,† , Huawei Pi 1,†, Fengge Su 3, Dongyue Li 4 , Zhaofei Liu 5 and Zhijun Yao 5 1 Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization Jointly Built by Henan Province and Ministry of Education, Henan University, Kaifeng 475001, China; [email protected] (S.L.); [email protected] (H.P.) 2 Department of Civil and Environmental Engineering, Washington State University, Pullman, WA 99164, USA; [email protected] 3 Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; [email protected] 4 Department of Geography, University of California, Los Angeles, CA 90095, USA; [email protected] 5 Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; zfl[email protected] (Z.L.); [email protected] (Z.Y.) * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Snowmelt water is essential to the water resources management over the Three-River Headwater Region (TRHR), where hydrological processes are influenced by snowmelt runoff and sensitive to climate change. The objectives of this study were to analyse the contribution of snowmelt water to the total streamflow (fQ,snow) in the TRHR by applying a snowmelt tracking algorithm and Variable Infiltration Capacity (VIC) model. The ratio of snowfall to precipitation, and the variation of Citation: Li, S.; Liu, M.; Adam, J.C.; the April 1 snow water equivalent (SWE) associated with fQ,snow, were identified to analyse the role Pi, H.; Su, F.; Li, D.; Liu, Z.; Yao, Z.
    [Show full text]
  • Advanced Topics in Dynamics of the Cryosphere Spring 2016
    Faculty of Social Sciences Department of Geography Geography 491 A02 ADVANCED TOPICS IN DYNAMICS OF THE CRYOSPHERE SPRING 2016 Instructor: Dr. Randy Scharien Office: David Turpin Building B122 Office Hours: Monday 13:30-15:30 or by appointment E-mail: [email protected] Course Description Snow and ice dominate the Canadian landscape. There is virtually no area in Canada which escapes the influence of snow and ice. We skate on frozen ponds, ski down snow laden mountains, drive through snow blizzards and watch how ice jams in rivers cause rivers to swell and floods to occur. The duration and the thickness of snow and ice increase rapidly northwards, and glaciers are found in mountainous areas and in large parts of the Arctic region. Given that snow and ice impact heavily on the Canadian way of life, this course seeks to understand the dynamics of snow and ice in physical, climatological, and hydrological contexts. This course will examine snow properties, snowcover distribution, glacier hydrology, melt runoff, and ice in its many forms (lake ice, river ice, sea ice, and ground ice). The application of remote sensing and other remote observing systems to understanding the cryosphere will be examined. This course will also examine the implications of climate change on the cryosphere in Canada and beyond. Class Meetings Monday and Thursday 08:30-09:50 CLE B415 Text and Readings There is no required text for this course. Assigned readings will be posted on CourseSpaces (http://CourseSpaces.uvic.ca). If necessary, readings may be made available on the course reserve in the main library.
    [Show full text]
  • Snowmelt and Peak Streamflow Relationships for the Big Wood River in Southeast Idaho Mike Huston NOAA/NWS Forecast Office Pocatello, Idaho
    Snowmelt and Peak Streamflow Relationships for the Big Wood River in Southeast Idaho Mike Huston NOAA/NWS Forecast Office Pocatello, Idaho 1. INTRODUCTION Peak streamflow within southeast Idaho generally occurs as a result of spring snowmelt (see unpublished Natural Resource Conservation Service (NRCS) document). Although rain-on-snow events have been known to produce some of the largest peak flows on record, their frequency of occurrence is considerably lower. Numerous researchers have exploited similar knowledge in developing statistical snowmelt and peak streamflow relationships for river basins across the West (Farnes, 1984; Sarantitis and Palmer, 1988; Ferguson et al., 2015). In an effort to provide stakeholders with predictive tools to estimate peak streamflow and timing as a result of snowmelt, the NRCS routinely generates Snow-Stream Comparison charts for a number of select basins within Idaho (https://www.nrcs.usda.gov). Unfortunately, relationships for many of the basins within southeast Idaho have not been developed. The primary objective of this study was to develop the programs and methodologies needed to establish snowmelt and peak streamflow relationships for the Big Wood River basin. These tools would then be used at a later date to produce similar relationships in the remaining headwater basins within southeast Idaho as well as provide stakeholders with additional decision support information well in advance of potential flood events. 2. METHODOLOGY and RESULTS Historical daily snow water equivalent (SWE) values along with supplemental meteorological data were obtained for six automated snow telemetry (SNOTEL) sites within the Big Wood River basin (Chocolate Gulch, Dollarhide Summit, Galena, Galena Summit, Hyndman, and Lost Wood Divide) (Fig.
    [Show full text]
  • Duluth Metropolitan Area Streams Snowmelt Runoff Study
    Duluth Metropolitan Area Streams Snowmelt Runoff Study By: Jesse Anderson, Tom Estabrooks and Julie McDonnell Minnesota Pollution Control Agency March 2000 Table of Contents Executive Summary………………………………………………………………... 3 Introduction………………………………………………………………………… 4 Purpose and Scope…………………………………………………………………. 11 Methods……………………………………………………………………………. 12 Results……………………………………………………………………………… 14 Discussion………………………………………………………………………….. 15 Acknowledgments…………………………………………………………………. 25 Literature Cited……………………………………………………………….……. 25 Appendix 1. Water Quality Data…………………………………………………... 27 Appendix 2. QA/QC Data…………………………………………………………. 28 Appendix 3. Site Locations………………………………………………………… 29 List of Figures Figure 1. Location of the Study Area…………………………………………… 5 Figure 2. Duluth Metropolitan Area Stream Sampling Sites……………………. 6 Figure 3. Land Uses in Select Duluth Metropolitan Area Stream Watersheds…... 7 Figure 4. A Storm Hydrograph…………………………………………………… 12 Figure 5. Nutrient and Sediment Concentrations and Streamflow at Amity Creek Site #1………………………………………………………. 16 Figure 6. Total Suspended Sediment Yields During Snowmelt…………………… 17 Figure 7. Total Suspended Sediment Yields During Baseflow……………………..17 Figure 8. Total Phosphorus Yields During Snowmelt………………………………18 Figure 9. Total Phosphorus Yields During Baseflow……………………………….18 Figure 10. Total Nitrogen Yields During Snowmelt………………………………..19 Figure 11. Total Nitrogen Yields During Baseflow…………………………………19 Figure 12. Miller Creek Chloride Concentrations During Snowmelt at Site #1……………………………………………………………………….20
    [Show full text]
  • 10. Economic Profit and Loss Analysis of the Environmental Iv
    Environmental Impact Statement on Gulang County-Shuangta Industrial Park Road Project and Xingminxin Village of Xijing Town of Gulang County-S308 Route Road Project Public Disclosure Authorized GULANG COUNTY-SHUANGTA INDUSTRIAL PARK ROAD PROJECT AND Public Disclosure Authorized XINGMINXIN VILLAGE OF XIJING TOWN OF GULANG COUNTY-S308 ROUTE ROAD PROJECT ENVIRONMENTAL IMPACT Public Disclosure Authorized STATEMENT CONSTRUCTION INSTITUTION: TRANSPORTATION BUREAU OF GULANG COUNTY Public Disclosure Authorized ASSESSMENT INSTITUTION: NINGXIA ZHICHENG ANHUAN TECHNICAL CONSULTING CO., LTD. PREPARATION DATE: JULY 2017 I Environmental Impact Statement on Gulang County-Shuangta Industrial Park Road Project and Xingminxin Village of Xijing Town of Gulang County-S308 Route Road Project CONTENT FOREWORD ....................................................................................................................... 1 1. GENERAL OVERVIEW ................................................................................................. 7 1.1 BASIS FOR COMPILATION .............................................................................................. 7 1.2 COMPLIANCE OF INDUSTRIAL POLICIES AND COMPLIANCE OF PLANNING .................... 11 1.3 PURPOSE OF ASSESSMENT ........................................................................................... 12 1.4 IDENTIFICATION OF ENVIRONMENTAL IMPACT FACTORS AND SELECTION OF ASSESSMENT FACTORS ....................................................................................................
    [Show full text]
  • Minimum Wage Standards in China August 11, 2020
    Minimum Wage Standards in China August 11, 2020 Contents Heilongjiang ................................................................................................................................................. 3 Jilin ............................................................................................................................................................... 3 Liaoning ........................................................................................................................................................ 4 Inner Mongolia Autonomous Region ........................................................................................................... 7 Beijing......................................................................................................................................................... 10 Hebei ........................................................................................................................................................... 11 Henan .......................................................................................................................................................... 13 Shandong .................................................................................................................................................... 14 Shanxi ......................................................................................................................................................... 16 Shaanxi ......................................................................................................................................................
    [Show full text]