1. Introduction 2. Hyades Supercluster

Total Page:16

File Type:pdf, Size:1020Kb

1. Introduction 2. Hyades Supercluster THE ASTRONOMICAL JOURNAL, 116:284È292, 1998 July ( 1998. The American Astronomical Society. All rights reserved. Printed in the U.S.A. THE AGE RANGE OF HYADES STARS OLIN J. EGGEN Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatories,1 Casilla 603, La Serena, Chile; oeggen=noao.edu Received 1997 December 29; revised 1998 March 12 ABSTRACT On the basis of canonical models, the age of Hyades supercluster stars, whether in the Hyades and Praesepe clusters or the noncluster Ðeld, ranges from (5È6) ] 108 to 109 yr. The di†erence between the parallax derived from the supercluster motion and that obtained from Hipparcos observations has a dis- persion only twice that of the mean dispersion of the individual Hipparcos values. The supercluster appears not to contain red giants on the Ðrst ascent of the red giant branch, but only asymptotic giant branch (““ clump ÏÏ) stars. The masses obtained for individual components of binary stars in the super- cluster show a dispersion of less than 10% when compared with model predictions. Key words: open clusters and associations: individual (Hyades) È stars: evolution 1. INTRODUCTION where (t, q) are the components of the proper motion in the direction of the convergent point (a, d) and perpendicular to The Hyades cluster, because of its depth-to-distance that direction, respectively; and ratio, has become the basis for the universal metric. The lowest mass cluster members form a cluster halo, and the n \ 4.74t/(V sin j) , (3) cluster itself, together with its near-twin the Praesepe clus- clus tot whereV is total space motion of the supercluster relative ter, is part of the Hyades supercluster. This supercluster, to the Suntot and j is the angular distance between the star together with another, the NGC 1901 supercluster, forms and (a, d). The photometric luminosities have been derived the main constituent of star stream I, for which the apex of from the photometric calibrations listed in Eggen (1996). the proper motions is (a,d) \ (6h.4, 6¡.5) (B1950.0). Previous investigations of the cluster and superclusters have shown a 2. HYADES SUPERCLUSTER wider range of agesÈ8 ] 108 to 2 ] 109 yrÈthan can be 2.1. Upper Main Sequence easily explained as one, prolonged star birth event. The present discussion will be divided into two parts, The parameters for upperÈmain-sequence members of the with the upper main sequence of the supercluster discussed Hyades supercluster are listed inTable 1, where the stars in° 2.1 and red giants in° 2.2. The b photometry is mainly are identiÐed by HR, HD, and Hipparcos (ESA 1997) from the compilation byHauck & Mermilliod (1980), and numbers. Only stars not known to have photometrically the RI photometry is on the system deÐned in Eggen unresolved companions from 0.2 to 3.2 mag fainter are con- (1979). The proper motions are on the FK5 system and are sidered. The total space motion is from the references in the notes toTable 1. The observed V \ 43.5 ] 0.045X (4) radial velocities are mainly fromAbt & Biggs (1972) and tot (Eggen 1992b), where X is the distance in parsecs of the star Barbier-Brossat,Petit, & Figon (1994). For the upperÈ from the Sun in the direction opposite that of the Galactic main-sequence stars, the values oflog T are based on b. center. The computed values of the radial velocity are given A previous discussion(Eggen 1995) foundeff that by log T \ 3.881 ] 0.53(b [ 2.800) , (1) eff o \ V cos j . (5) derived from spectrophotometry(Smalley & Dworetsky comp tot The mean di†erence,, omitting the variable- 1993) for a range of Am, ultraÈshort-period Cepheid o [ o velocity stars, is 0.3 obs2.4 (1 compp)kms ,or 0.35 2.50 (USPC; d Scuti), and normal AF stars, as well as fundamen- [ ^ ~1 [ ^ km s if we include those with variable velocity. The dis- tal values ofT (Andersen 1991) derived from eclipsing ~1 persion in the mean peculiar velocity is higher, as expected, binaries. The meaneff dispersion of the di†erence between the from the supercluster members, 0.27 2.50 km s , than spectrophotometric values and those from equation (1) is [ ^ ~1 it is for the members of the Hyades cluster, 0.26 0.66 100 K. The temperatures for the red giants are from ] ^ ^ km s . BessellÏs (1979)calibration of the [(R I) , log T ] rela- ~1 [ The mean modulus for the Hyades cluster members in tion. C eff Table 1 is 3.29 mag from the cluster motion and 3.37 mag The convergent point of the proper motion of stars in from the Hipparcos parallaxes. The motion parallaxes from stream I is at (a,d) (6.4, 6¡.5) (Eggen 1996). The stars \ h the Hipparcos convergent point(Perryman et al. 1998) yield discussed here are mainly of magnitude V \ 7 and peculiar a mean modulus of 3.33 mag, andSchwan (1991) found 3.40 velocityP.V. ¹ 0.1V , with M (clus) M (phot) \ 0.25 V [ V mag. The comparison between the cluster parallaxes in mag. Here tot Table 1 and the Hipparcos results is almost identical to that P.V. \ 4.74qD(pc) , (2) discussed by Perryman et al. The overall comparison for the supercluster stars in Table 1 yields n n 0.13 1.84 mas. Four stars are omitted from ÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈ [ \ ^ thisclus comparison,Hip listed inTable 2. The convergent point of 1 The National Optical Astronomy Observatories are operated by the Association of Universities for Research in Astronomy, Inc., under co- the proper motions of a critically selected 20 cluster operative agreement with the National Science Foundation. members(Perryman et al. 1998) is (a,d) \ (6h.52, 6¡.66), com- 284 TABLE 1 MEMBERS OF THE HYADES SUPERCLUSTER o (km s~1) n (mas) k XV P.V. SPECTRAL tot HR (HD) REFERENCEa (pc) (km s~1) Obs. Comp. (km s~1) M log T Cluster Hip. p TYPE NOTES HIP V eff 125.......... 1 [15 42.8 [2V [2.9 ]1.2 ]0.79 3.936 16.0 18.97 0.64 A1 E 2472 238.......... 2 30 45.1 ]2.3 ]1.4 ]0.8 ]2.15 3.865 14.9 15.00 0.72 F3 IV 1 3865 343.......... 2 23 44.55 ]9.4 ]9.1 ]0.5 ]1.28 3.905 24.8 23.73 0.68 A7 V 2 5542 (8391) ....... 2 [5 43.25 ]4.2 ]4.2 ]1.4 ]2.83 3.843 14.4 12.70 0.80 F1 V 2 6418 403.......... 1 18 44.3 ]7V ]10.0 ]0.2 ]0.28 3.896 33.1 32.81 0.41 A5 IV 3 6686 520.......... 3 [8 43.1 ]8.0 ]4.6 ]2.9 ]0.97 3.934 15.3 17.54 0.62 A1 V 8241 607.......... 3 54 45.95 ]15.0 ]18.5 ]4.0 ]0.30 3.902 9.1 11.31 0.85 A5 III 9589 733.......... 2 31 44.9 ]24V ]18.4 ]1.3 ]2.27 3.859 10.0 9.39 0.92 F0 III 4 11644 878.......... 1 25 44.55 ]28.5 ]27.0 ]0.2 ]3.28 3.820 31.2 31.40 0.84 F5 IV 13834 1036 ........ 3 144 50.0 ]34.5 ]31.3 ]0.9 ]1.06 3.889 5.8 7.78 1.66 A3 Vp 5, 6 16077 1125 ........ 2 30 45.75 ]30.0 ]32.2 [1.0 ]2.06 3.830 12.7 10.98 0.90 F2 V 17214 1201 ........ 1 35 45.1 ]35.0 ]35.1 [0.3 ]2.92 3.836 24.3 24.14 0.90 F4 V 7 18170 1233 ........ 2 37 45.15 ]36: ]34.6 ]0.5 ]3.30 3.812 23.6 25.42 1.05 F5 V 7 18658 1279 ........ 2 38 45.2 ]36.4 ]36.7 [0.1 ]2.84 3.824 23.2 21.27 1.03 F3 V 7 19261 (26345) ...... 2 40 45.3 ]35.0 ]36.8 ]0.1 ]3.44 3.815 22.7 23.22 0.92 F6 V 7 19504 1292 ........ 3 30 44.85 ]36.8 ]37.4 [0.6 ]3.07 3.829 28.5 25.89 0.95 F4 V 7 19554 1319 ........ 2 43 45.45 ]36.4 ]37.5 ]2.2 ]3.06 3.827 22.4 22.51 0.82 F5 V 7 19877 (26737) ...... 2 51 45.8 ]3.75 ]38.4 ]0.8 ]3.42 3.814 18.0 18.12 0.82 F5 V 7 19789 1351 ........ 2 40 45.3 ]42.0 ]38.4 ]0.1 ]2.48 3.864 23.9 22.31 0.92 F0 V 7, 8 20219 1354 ........ 4 41 45.35 ]42.0 ]38.0 [0.8 ]2.97 3.824 22.7 21.12 0.77 F2 V 7 20255 1356 ........ 2 41 45.35 ]36.2 ]38.4 [0.6 ]2.07 3.887 22.4 21.20 0.99 F0 IV 7, 9 20261 (27534) ...... 2 43 45.45 ]3.1 ]37.8 ]0.4 ]3.55 3.815 21.6 19.83 0.89 F5 V 7 20350 1368 ........ 2 40 45.3 ]41.2 ]38.5 [0.6 ]2.54 3.858 22.4 21.87 0.66 Am 7, 10 20400 1380 ........ 2 41 45.35 ]37.5 ]38.1 [0.3 ]1.62 3.910 22.7 22.36 0.88 A8 V 7 20542 (27848) ...... 2 43 45.45 ]37.1 ]37.8 ]0.4 ]3.54 3.804 20.3 18.74 1.17 F6 V 7 20567 1385 .......
Recommended publications
  • Radio and IR Interferometry of Sio Maser Stars
    Cosmic Masers - from OH to H0 Proceedings IAU Symposium No. 287, 2012 c International Astronomical Union 2012 R.S. Booth, E.M.L. Humphreys & W.H.T. Vlemmings, eds. doi:10.1017/S1743921312006989 Radio and IR interferometry of SiO maser stars Markus Wittkowski1, David A. Boboltz2,MalcolmD.Gray3, Elizabeth M. L. Humphreys1 Iva Karovicova4, and Michael Scholz5,6 1 ESO, Karl-Schwarzschild-Str. 2, 85748 Garching bei M¨unchen, Germany 2 US Naval Observatory, 3450 Massachusetts Avenue, NW, Washington, DC 20392-5420, USA 3 Jodrell Bank Centre for Astrophysics, Alan Turing Building, University of Manchester, Manchester M13 9PL, UK 4 Max-Planck-Institut f¨ur Astronomie, K¨onigstuhl 17, 69117 Heidelberg, Germany 5 Zentrum f¨ur Astronomie der Universit¨at Heidelberg (ZAH), Institut f¨ur Theoretische Astrophysik, Albert-Ueberle-Str. 2, 69120 Heidelberg, Germany 6 Sydney Institute for Astronomy, School of Physics, University of Sydney, Sydney NSW 2006, Australia Abstract. Radio and infrared interferometry of SiO maser stars provide complementary infor- mation on the atmosphere and circumstellar environment at comparable spatial resolution. Here, we present the latest results on the atmospheric structure and the dust condensation region of AGB stars based on our recent infrared spectro-interferometric observations, which represent the environment of SiO masers. We discuss, as an example, new results from simultaneous VLTI and VLBA observations of the Mira variable AGB star R Cnc, including VLTI near- and mid- infrared interferometry, as well as VLBA observations of the SiO maser emission toward this source. We present preliminary results from a monitoring campaign of high-frequency SiO maser emission toward evolved stars obtained with the APEX telescope, which also serves as a pre- cursor of ALMA images of the SiO emitting region.
    [Show full text]
  • Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
    Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born.
    [Show full text]
  • Evidence for Very Extended Gaseous Layers Around O-Rich Mira Variables and M Giants B
    The Astrophysical Journal, 579:446–454, 2002 November 1 # 2002. The American Astronomical Society. All rights reserved. Printed in U.S.A. EVIDENCE FOR VERY EXTENDED GASEOUS LAYERS AROUND O-RICH MIRA VARIABLES AND M GIANTS B. Mennesson,1 G. Perrin,2 G. Chagnon,2 V. Coude du Foresto,2 S. Ridgway,3 A. Merand,2 P. Salome,2 P. Borde,2 W. Cotton,4 S. Morel,5 P. Kervella,5 W. Traub,6 and M. Lacasse6 Received 2002 March 15; accepted 2002 July 3 ABSTRACT Nine bright O-rich Mira stars and five semiregular variable cool M giants have been observed with the Infrared and Optical Telescope Array (IOTA) interferometer in both K0 (2.15 lm) and L0 (3.8 lm) broad- band filters, in most cases at very close variability phases. All of the sample Mira stars and four of the semire- gular M giants show strong increases, from ’20% to ’100%, in measured uniform-disk (UD) diameters between the K0 and L0 bands. (A selection of hotter M stars does not show such a large increase.) There is no evidence that K0 and L0 broadband visibility measurements should be dominated by strong molecular bands, and cool expanding dust shells already detected around some of these objects are also found to be poor candi- dates for producing these large apparent diameter increases. Therefore, we propose that this must be a con- tinuum or pseudocontinuum opacity effect. Such an apparent enlargement can be reproduced using a simple two-component model consisting of a warm (1500–2000 K), extended (up to ’3 stellar radii), optically thin ( ’ 0:5) layer located above the classical photosphere.
    [Show full text]
  • The Stellar Group NGC 1901 in Front of the Large Magellanic Cloud,
    A&A 466, 931–941 (2007) Astronomy DOI: 10.1051/0004-6361:20066687 & c ESO 2007 Astrophysics Observational templates of star cluster disruption The stellar group NGC 1901 in front of the Large Magellanic Cloud, G. Carraro1,2, R. de la Fuente Marcos3, S. Villanova1, C. Moni Bidin2, C. de la Fuente Marcos3,H.Baumgardt4, and G. Solivella5 1 Dipartimento di Astronomia, Università di Padova, Vicolo Osservatorio 2, 35122 Padova, Italy e-mail: [email protected] 2 Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago, Chile 3 Suffolk University Madrid Campus, C/ Viña 3, 28003 Madrid, Spain 4 AIfA, University of Bonn, Auf dem Hügel 71, 53121 Bonn, Germany 5 Facultad de Ciencias Astronómicas y Geofísicas de la UNLP, IALP-CONICET, Paseo del Bosque s/n, La Plata, Argentina Received 3 November 2006 / Accepted 23 January 2007 ABSTRACT Context. Observations indicate that present-day star formation in the Milky Way disk takes place in stellar ensembles or clusters rather than in isolation. Bound, long-lived stellar groups are known as open clusters. They gradually lose stars and are severely disrupted in their final evolutionary stages, leaving an open cluster remnant made up of a few stars. Aims. In this paper, we study in detail the stellar content and kinematics of the poorly populated star cluster NGC 1901. This object appears projected against the Large Magellanic Cloud. The aim of the present work is to derive the current evolutionary status, binary fraction, age, and mass of this stellar group. These are fundamental quantities to compare with those from N-body models in order to study the most general topic of star cluster evolution and dissolution.
    [Show full text]
  • 10. Scientific Programme 10.1
    10. SCIENTIFIC PROGRAMME 10.1. OVERVIEW (a) Invited Discourses Plenary Hall B 18:00-19:30 ID1 “The Zoo of Galaxies” Karen Masters, University of Portsmouth, UK Monday, 20 August ID2 “Supernovae, the Accelerating Cosmos, and Dark Energy” Brian Schmidt, ANU, Australia Wednesday, 22 August ID3 “The Herschel View of Star Formation” Philippe André, CEA Saclay, France Wednesday, 29 August ID4 “Past, Present and Future of Chinese Astronomy” Cheng Fang, Nanjing University, China Nanjing Thursday, 30 August (b) Plenary Symposium Review Talks Plenary Hall B (B) 8:30-10:00 Or Rooms 309A+B (3) IAUS 288 Astrophysics from Antarctica John Storey (3) Mon. 20 IAUS 289 The Cosmic Distance Scale: Past, Present and Future Wendy Freedman (3) Mon. 27 IAUS 290 Probing General Relativity using Accreting Black Holes Andy Fabian (B) Wed. 22 IAUS 291 Pulsars are Cool – seriously Scott Ransom (3) Thu. 23 Magnetars: neutron stars with magnetic storms Nanda Rea (3) Thu. 23 Probing Gravitation with Pulsars Michael Kremer (3) Thu. 23 IAUS 292 From Gas to Stars over Cosmic Time Mordacai-Mark Mac Low (B) Tue. 21 IAUS 293 The Kepler Mission: NASA’s ExoEarth Census Natalie Batalha (3) Tue. 28 IAUS 294 The Origin and Evolution of Cosmic Magnetism Bryan Gaensler (B) Wed. 29 IAUS 295 Black Holes in Galaxies John Kormendy (B) Thu. 30 (c) Symposia - Week 1 IAUS 288 Astrophysics from Antartica IAUS 290 Accretion on all scales IAUS 291 Neutron Stars and Pulsars IAUS 292 Molecular gas, Dust, and Star Formation in Galaxies (d) Symposia –Week 2 IAUS 289 Advancing the Physics of Cosmic
    [Show full text]
  • FY13 High-Level Deliverables
    National Optical Astronomy Observatory Fiscal Year Annual Report for FY 2013 (1 October 2012 – 30 September 2013) Submitted to the National Science Foundation Pursuant to Cooperative Support Agreement No. AST-0950945 13 December 2013 Revised 18 September 2014 Contents NOAO MISSION PROFILE .................................................................................................... 1 1 EXECUTIVE SUMMARY ................................................................................................ 2 2 NOAO ACCOMPLISHMENTS ....................................................................................... 4 2.1 Achievements ..................................................................................................... 4 2.2 Status of Vision and Goals ................................................................................. 5 2.2.1 Status of FY13 High-Level Deliverables ............................................ 5 2.2.2 FY13 Planned vs. Actual Spending and Revenues .............................. 8 2.3 Challenges and Their Impacts ............................................................................ 9 3 SCIENTIFIC ACTIVITIES AND FINDINGS .............................................................. 11 3.1 Cerro Tololo Inter-American Observatory ....................................................... 11 3.2 Kitt Peak National Observatory ....................................................................... 14 3.3 Gemini Observatory ........................................................................................
    [Show full text]
  • Download This Article in PDF Format
    A&A 515, A112 (2010) Astronomy DOI: 10.1051/0004-6361/200912731 & c ESO 2010 Astrophysics H i and CO in the circumstellar environment of the S-type star RS Cancri Y. L ibert 1,2, J. M. Winters2, T. Le Bertre1,E.Gérard3, and L. D. Matthews4 1 LERMA, UMR 8112, Observatoire de Paris, 61 Av. de l’Observatoire, 75014 Paris, France e-mail: [email protected] 2 IRAM, 300 rue de la Piscine, 38406 Saint-Martin d’Hères, France 3 GEPI, UMR 8111, Observatoire de Paris, 5 place J. Janssen, 92195 Meudon Cedex, France 4 MIT Haystack Observatory Off Route 40 Westford, Massachusetts, USA Received 19 June 2009 / Accepted 25 February 2010 ABSTRACT Context. The history of mass loss during the AGB phase is key to understanding the stellar evolution and the gas and dust replenish- ment of the interstellar medium. The mass-loss phenomenon presents fluctuations with a wide variety of timescales and spatial scales and requires combining data from multiple tracers. Aims. We study the respective contributions of the central source and of the external medium to the complex geometry of circumstellar ejecta. Methods. This paper presents Plateau de Bure Interferometer and IRAM 30-m telescope CO rotational line observations, along with H i data obtained with the Nançay Radio Telescope for the oxygen-rich semi-regular variable RS Cnc, in order to probe its circum- stellar environment on different scales. Results. We detect both the CO(1–0) and the CO(2–1) rotational lines from RS Cnc. The line profiles are composite, comprising two components of half-width ∼2kms−1 and ∼8kms−1, respectively.
    [Show full text]
  • Astronomy General Information
    ASTRONOMY GENERAL INFORMATION HERTZSPRUNG-RUSSELL (H-R) DIAGRAMS -A scatter graph of stars showing the relationship between the stars’ absolute magnitude or luminosities versus their spectral types or classifications and effective temperatures. -Can be used to measure distance to a star cluster by comparing apparent magnitude of stars with abs. magnitudes of stars with known distances (AKA model stars). Observed group plotted and then overlapped via shift in vertical direction. Difference in magnitude bridge equals distance modulus. Known as Spectroscopic Parallax. SPECTRA HARVARD SPECTRAL CLASSIFICATION (1-D) -Groups stars by surface atmospheric temp. Used in H-R diag. vs. Luminosity/Abs. Mag. Class* Color Descr. Actual Color Mass (M☉) Radius(R☉) Lumin.(L☉) O Blue Blue B Blue-white Deep B-W 2.1-16 1.8-6.6 25-30,000 A White Blue-white 1.4-2.1 1.4-1.8 5-25 F Yellow-white White 1.04-1.4 1.15-1.4 1.5-5 G Yellow Yellowish-W 0.8-1.04 0.96-1.15 0.6-1.5 K Orange Pale Y-O 0.45-0.8 0.7-0.96 0.08-0.6 M Red Lt. Orange-Red 0.08-0.45 *Very weak stars of classes L, T, and Y are not included. -Classes are further divided by Arabic numerals (0-9), and then even further by half subtypes. The lower the number, the hotter (e.g. A0 is hotter than an A7 star) YERKES/MK SPECTRAL CLASSIFICATION (2-D!) -Groups stars based on both temperature and luminosity based on spectral lines.
    [Show full text]
  • LCSH Section H
    H (The sound) H.P. 15 (Bomber) Giha (African people) [P235.5] USE Handley Page V/1500 (Bomber) Ikiha (African people) BT Consonants H.P. 42 (Transport plane) Kiha (African people) Phonetics USE Handley Page H.P. 42 (Transport plane) Waha (African people) H-2 locus H.P. 80 (Jet bomber) BT Ethnology—Tanzania UF H-2 system USE Victor (Jet bomber) Hāʾ (The Arabic letter) BT Immunogenetics H.P. 115 (Supersonic plane) BT Arabic alphabet H 2 regions (Astrophysics) USE Handley Page 115 (Supersonic plane) HA 132 Site (Niederzier, Germany) USE H II regions (Astrophysics) H.P.11 (Bomber) USE Hambach 132 Site (Niederzier, Germany) H-2 system USE Handley Page Type O (Bomber) HA 500 Site (Niederzier, Germany) USE H-2 locus H.P.12 (Bomber) USE Hambach 500 Site (Niederzier, Germany) H-8 (Computer) USE Handley Page Type O (Bomber) HA 512 Site (Niederzier, Germany) USE Heathkit H-8 (Computer) H.P.50 (Bomber) USE Hambach 512 Site (Niederzier, Germany) H-19 (Military transport helicopter) USE Handley Page Heyford (Bomber) HA 516 Site (Niederzier, Germany) USE Chickasaw (Military transport helicopter) H.P. Sutton House (McCook, Neb.) USE Hambach 516 Site (Niederzier, Germany) H-34 Choctaw (Military transport helicopter) USE Sutton House (McCook, Neb.) Ha-erh-pin chih Tʻung-chiang kung lu (China) USE Choctaw (Military transport helicopter) H.R. 10 plans USE Ha Tʻung kung lu (China) H-43 (Military transport helicopter) (Not Subd Geog) USE Keogh plans Ha family (Not Subd Geog) UF Huskie (Military transport helicopter) H.R.D. motorcycle Here are entered works on families with the Kaman H-43 Huskie (Military transport USE Vincent H.R.D.
    [Show full text]
  • Arxiv:1802.01597V1 [Astro-Ph.GA] 5 Feb 2018 Born 1991)
    Astronomy & Astrophysics manuscript no. AA_2017_32084 c ESO 2018 February 7, 2018 Mapping the core of the Tarantula Nebula with VLT-MUSE? I. Spectral and nebular content around R136 N. Castro1, P. A. Crowther2, C. J. Evans3, J. Mackey4, N. Castro-Rodriguez5; 6; 7, J. S. Vink8, J. Melnick9 and F. Selman9 1 Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109-1107, USA e-mail: [email protected] 2 Department of Physics & Astronomy, University of Sheffield, Hounsfield Road, Sheffield, S3 7RH, UK 3 UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ, UK 4 Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin, Ireland 5 GRANTECAN S. A., E-38712, Breña Baja, La Palma, Spain 6 Instituto de Astrofísica de Canarias, E-38205 La Laguna, Spain 7 Departamento de Astrofísica, Universidad de La Laguna, E-38205 La Laguna, Spain 8 Armagh Observatory and Planetarium, College Hill, Armagh BT61 9DG, Northern Ireland, UK 9 European Southern Observatory, Alonso de Cordova 3107, Santiago, Chile February 7, 2018 ABSTRACT We introduce VLT-MUSE observations of the central 20 × 20 (30 × 30 pc) of the Tarantula Nebula in the Large Magellanic Cloud. The observations provide an unprecedented spectroscopic census of the massive stars and ionised gas in the vicinity of R136, the young, dense star cluster located in NGC 2070, at the heart of the richest star-forming region in the Local Group. Spectrophotometry and radial-velocity estimates of the nebular gas (superimposed on the stellar spectra) are provided for 2255 point sources extracted from the MUSE datacubes, and we present estimates of stellar radial velocities for 270 early-type stars (finding an average systemic velocity of 271 ± 41 km s−1).
    [Show full text]
  • Monoclonal Mouse Anti-Human B-Cell-Specific Activator Protein Clone DAK-Pax5
    Monoclonal Mouse Anti-Human B-Cell-Specific Activator Protein Clone DAK-Pax5 Codice M7307 Uso previsto Per uso diagnostico in vitro. Monoclonal Mouse Anti-Human B-Cell-Specific Activator Protein, Clone DAK-Pax5, è previsto per l’utilizzo in immunoistochimica. Gli anticorpi contro la proteina attivatrice specifica delle cellule B (BSAP) possono essere utili per identificare i linfociti B pro-, pre- e maturi e per classificare i linfomi (1 –4). Insieme a un gruppo di anticorpi, è particolarmente utile nell’identificazione differenziale del morbo di Hodgkin paragonato al linfoma a grandi cellule anaplastico di tipo T e delle cellule null (1, 3). L’interpretazione clinica di un’eventuale colorazione o della sua assenza deve essere integrata mediante studi morfologici avvalendosi di controlli adeguati e deve essere valutata nell’ambito dell’anamnesi del paziente e di altri test diagnostici da parte di un patologo qualificato. Sinonimi per BSAP, Pax5, NF-HB, S α-BP, NFS µ-B1, LR1 e EBB-1 (2, 4). l’antigene Riepilogo BSAP, nota anche come paired box protein 5 (Pax5), è un fattore di trascrizione espresso nelle cellule B. BSAP e spiegazioni appartiene alla famiglia dei geni PAX , che codifica i fattori di trascrizione coinvolti nello sviluppo delle cellule B. BSAP è espressa anche nei linfociti B pro-, pre- e maturi, ma non nelle cellule plasmatiche (3, 4). La scissione mirata del gene BSAP nei topi blocca lo sviluppo delle cellule B allo stadio pro-cellula B, suggerendo che la BSAP assuma un ruolo nel controllo dello sviluppo delle cellule B (2). Durante l’embriogenesi, l’espressione della BSAP è transitoriamente espressa nello sviluppo del sistema nervoso centrale.
    [Show full text]
  • Fixed Stars Report
    FIXED STARS A Solar Writer Report for Andy Gibb Written by Diana K Rosenberg Compliments of:- Cornerstone Astrology http://www.cornerstone-astrology.com/astrology-shop/ Table of Contents · Chart Wheel · Introduction · Fixed Stars · The Tropical And Sidereal Zodiacs · About this Report · Abbreviations · Sources · Your Starsets · Conclusion http://www.cornerstone-astrology.com/astrology-shop/ Page 1 Chart Wheel Andy Gibb 49' 44' 29°‡ Male 18°ˆ 00° 5 Mar 1958 22' À ‡ 6:30 am UT +0:00 ‰ ¾ ɽ 44' Manchester 05° 04°02° 24° 01° ‡ ‡ 53°N30' 46' ˆ ‡ 33'16' 002°W15' ‰ 56' Œ 10' Tropical ¼ Œ Œ 24° 21° 9 8 Placidus ‰ 10 » 13' 04° 11 Š ‘‘ 42' 7 ’ ¶ á ’ …07° 12 ” 05' ” ‘ 06° Ï 29° 29' … 29° Œ45' … 00° Á àà Š à „ 24' ‘ 24' 11' á 6 14°‹ á ¸ 28' Œ14' 15°‹ 1 “ „08° º 5 ¿ 4 2 3 Œ 46' 16' ƒ Ý 24° 02° 22' Ê ƒ 00° 05° Ý 44' 44' 18°‚ 29°Ý 49' http://www.cornerstone-astrology.com/astrology-shop/ Page 2 Astrological Summary Chart Point Positions: Andy Gibb Planet Sign Position House Comment The Moon Virgo 7°Vi05' 7th The Sun Pisces 14°Pi11' 1st Mercury Pisces 15°Pi28' 1st Venus Aquarius 4°Aq42' 12th Mars Capricorn 21°Cp13' 11th Jupiter Scorpio 1°Sc10' 8th Saturn Sagittarius 24°Sg56' 10th Uranus Leo 8°Le14' 6th Neptune Scorpio 4°Sc33' 8th Pluto Virgo 0°Vi45' 7th The North Node Scorpio 2°Sc16' 8th The South Node Taurus 2°Ta16' 2nd The Ascendant Aquarius 29°Aq24' 1st The Midheaven Sagittarius 18°Sg44' 10th The Part of Fortune Virgo 6°Vi29' 7th http://www.cornerstone-astrology.com/astrology-shop/ Page 3 Chart Point Aspects Planet Aspect Planet Orb App/Sep The Moon
    [Show full text]