Monoclonal Mouse Anti-Human B-Cell-Specific Activator Protein Clone DAK-Pax5

Total Page:16

File Type:pdf, Size:1020Kb

Monoclonal Mouse Anti-Human B-Cell-Specific Activator Protein Clone DAK-Pax5 Monoclonal Mouse Anti-Human B-Cell-Specific Activator Protein Clone DAK-Pax5 Codice M7307 Uso previsto Per uso diagnostico in vitro. Monoclonal Mouse Anti-Human B-Cell-Specific Activator Protein, Clone DAK-Pax5, è previsto per l’utilizzo in immunoistochimica. Gli anticorpi contro la proteina attivatrice specifica delle cellule B (BSAP) possono essere utili per identificare i linfociti B pro-, pre- e maturi e per classificare i linfomi (1 –4). Insieme a un gruppo di anticorpi, è particolarmente utile nell’identificazione differenziale del morbo di Hodgkin paragonato al linfoma a grandi cellule anaplastico di tipo T e delle cellule null (1, 3). L’interpretazione clinica di un’eventuale colorazione o della sua assenza deve essere integrata mediante studi morfologici avvalendosi di controlli adeguati e deve essere valutata nell’ambito dell’anamnesi del paziente e di altri test diagnostici da parte di un patologo qualificato. Sinonimi per BSAP, Pax5, NF-HB, S α-BP, NFS µ-B1, LR1 e EBB-1 (2, 4). l’antigene Riepilogo BSAP, nota anche come paired box protein 5 (Pax5), è un fattore di trascrizione espresso nelle cellule B. BSAP e spiegazioni appartiene alla famiglia dei geni PAX , che codifica i fattori di trascrizione coinvolti nello sviluppo delle cellule B. BSAP è espressa anche nei linfociti B pro-, pre- e maturi, ma non nelle cellule plasmatiche (3, 4). La scissione mirata del gene BSAP nei topi blocca lo sviluppo delle cellule B allo stadio pro-cellula B, suggerendo che la BSAP assuma un ruolo nel controllo dello sviluppo delle cellule B (2). Durante l’embriogenesi, l’espressione della BSAP è transitoriamente espressa nello sviluppo del sistema nervoso centrale. In seguito, l’espressione della BSAP è rilevata nel fegato fetale, dove è collegata alla comparsa di linfopoiesi B. Quindi, la BSAP potrebbe non solo avere un ruolo importante nello sviluppo delle cellule B, ma anche nello sviluppo neurale (1, 3, 5). In immunoistochimica, può essere difficile distinguere il linfoma di Hodgkin (CHL) dal linfoma a cellule grandi anaplastico di tipo T e delle cellule null (1). Nel CHL, le cellule di Hodgkin e Reed-Sternberg (celule HRS) esprimono BSAP, mentre le cellule HRS nella maggior parte dei casi non mostrano antigeni delle cellule B come CD19 o CD20 (6). La BSAP è un marker utile per la diagnosi del linfoma non Hodgkin delle cellule B e del linfoma di Hodgkin e dei tumori neuroendocrini (1-4, 6-8), nonostante la sua espressione nei sottogruppi dei tumori maligni epiteliali (7). Fare riferimento alle General Instructions for Immunohistochemical Staining della Dako o alle istruzioni sul sistema di rilevazione per le procedure IHC per: (1) Principio della procedura, (2) Materiali necessari ma non forniti, (3) Conservazione, (4) Preparazione dei campioni, (5) Procedura per la colorazione, (6) Controllo della qualità, (7) Risoluzione dei problemi, (8) Interpretazione della colorazione, (9) Limiti generali. Reagente fornito Anticorpo monoclonale murino fornito sotto forma di liquido sopranatante per colture cellulari dializzato contro tampone Tris/HCl 0,05 mol/L a pH 7,2 e sodio azide 0,015 mol/L. Clone: DAK-Pax5. Isotipo: IgG1, kappa. Concentrazione di IgG murine (mg/l): vedere l’etichetta stampata sulla fiala. La concentrazione della proteina tra i lotti potrebbe variare senza influenzare la diluizione ottimale. La titolazione di ogni lotto è confrontata e regolata in base a un lotto di riferimento, per garantire la prestazione della procedura di colorazione immunoistochimica da lotto a lotto. Immunogeno Peptide 17-merico sintetico dal dominio inibitore C-terminale della proteina. Specificità Nei test Western blotting del lisato delle cellule della milza murina, l’anticorpo marca una banda da 55 kDa corrispondente alla BSAP. Precauzioni 1. Per uso professionale. 2. Questo prodotto contiene sodio azide (NaN 3), una sostanza chimica fortemente tossica in forma pura. Sebbene non sia classificata come prodotto pericoloso, la sodio azide alle concentrazioni indicate può reagire con il rame e il piombo delle tubature formando azidi metalliche fortemente esplosive. Durante lo smaltimento, sciacquare le tubature con abbondante acqua per prevenire l’eventuale accumulo di azide metallica. 3. Adottare le normali procedure previste per il trattamento dei prodotti di origine biologica. 4. Indossare indumenti di protezione personale adeguati, per evitare il contatto con gli occhi e la pelle. 5. Smaltire la soluzione inutilizzata nel rispetto delle disposizioni locali, regionali e nazionali in materia. Conservazione Conservare a 2–8 °C. Non utilizzare dopo la data di scadenza stampata sulla fiala. Se i reagenti sono conservati in condizioni diverse da quelle specificate, le loro condizioni dovranno essere verificate dall’utente. Non sono stati osservati segni evidenti che suggeriscano l’instabilità di questo prodotto, pertanto è opportuno analizzare un controllo positivo e un controllo negativo insieme ai campioni dei pazienti. Qualora si ottenga una colorazione imprevista, che non sia cioè giustificata da un cambiamento delle procedure di laboratorio ma sia dovuta ad un probabile problema dell’anticorpo, contattare l’Assistenza Tecnica di Dako. (119102-001) M7307/IT/KDH/2008.10.07 p. 1/3 Dako Denmark A/S | Produktionsvej 42 | DK-2600 Glostrup | Denmark | Tel. +45 44 85 95 00 | Fax +45 44 85 95 95 | CVR No. 33 21 13 17 Specimen preparation Sezioni incluse in paraffina: (Allestimento tessuto) L’anticorpo può essere utilizzato per marcare sezioni di tessuto incluse in paraffina, fissate in formalina. compresi i materiali È necessario il pretrattamento di sezioni di tessuto deparaffinate con la tecnica del recupero termoindotto di epitopi necessari ma non (HIER). Si ottengono ottimi risultati pretrattando i tessuti con HIER utilizzando Dako EnVision™ FLEX Target forniti Retrieval Solution, Low pH (Codici K8005/K8015) oppure Dako Target Retrieval Solution (Codici S1700/S1699). Si consiglia il pretrattamento di sezioni di tessuto deparaffinate fissate in formalina, incluse in paraffina, utilizzando Dako PT Link (codici PT100/PT101). Per i dettagli, vedere la Guida Utente PT Link. Per PT Link, bisogna attenersi ai seguenti parametri: Temperatura di preriscaldamento: 65°C, temperatura e tempo di recupero dell’epitop o: 97 °C per 20 (±1) minuti; lasciare raffreddare a 65 °C. Rimuo vere ogni rack per vetrini dal serbatoio PT e immergere immediatamente i vetrini in un vaso/serbatoio (ad es. PT Link Rinse Station, codice PT109) contenente EnVision™ FLEX Wash Buffer (10X) diluito a temperatura ambiente (codice K8002/8012). Lasciare i vetrini nel Wash Buffer per 1–5 minuti. Le sezioni di tessuto non devono mai asciugarsi durante il pretrattamento o la procedura di colorazione immunoistochimica. Per una maggiore aderenza delle sezioni di tessuto ai vetrini, si consiglia l’utilizzo di Dako Silanized Slides (codice S3003). Sezioni congelate e strisci cellulari: L’anticorpo è consigliato per l’uso con per sezioni congelate, fissate in acetone oppure su strisci cellulari fissati. Procedura per la Diluizione: Monoclonal Mouse Anti-Human B-Cell-Specific Activator Protein, codice M7307, può essere utilizzato con colorazione compresi rapporti di diluizione di 1:15–1:30 quando lo si applica sulle sezioni pretrattate, fissate in formalina, incluse in i materiali necessari paraffina con un’incubazione di 20 minuti a temperatura ambiente. Si consiglia di diluire l’anticorpo in EnVision™ ma non forniti FLEX Antibody Diluent (codici K8006/K8016), in Dako Antibody Diluent (codice S0809) oppure Dako Real™ Antibody Diluent (codice S2022). Queste informazioni sono fornite esclusivamente come linee guida. La condizione ottimale può variare a seconda del tipo di campione e del metodo di preparazione adottato, pertanto dovrà essere definita autonomamente da ogni laboratorio. Il reagente di controllo negativo consigliato è Dako Negative Control, Mouse IgG1 (codice X0931), diluito alla stessa concentrazione di IgG1 dell’anticorpo primario. A meno che la stabilità dell’anticorpo e del controllo negativo diluiti non sia stata determinata nella procedura effettiva di colorazione, è opportuno diluire tali reagenti immediatamente prima dell’uso. I controlli positivi e negativi devono essere analizzati insieme ai campioni dei pazienti. I controlli positivi e negativi con i tessuti devono essere analizzati contemporaneamente, utilizzando lo stesso protocollo dei campioni dei pazienti. Il tessuto di controllo positivo deve comprendere cellule di tonsille e le cellule/strutture devono evidenziare gli schemi di reazione descritti per il tessuto in questione in “Caratteristiche prestazionali” in tutti i campioni positivi. Visualizzazione: EnVision FLEX+, Mouse, High pH, (codice K8002/K8012), che sostituisce il High pH Target Retrieval Solution di questo kit con EnVision FLEX Target Retrieval Solution, Low pH (10x), (codice K8005/K8015) utilizzando un’incubazione di 20 minuti a temperatura ambiente. Seguire la procedura fornita con i sistemi di visualizzazione selezionati. Automatizzazione: l’anticorpo è idoneo per le procedure di colorazione immunoistochimica su piattaforme automatizzate, come ad esempio Dako Autostainer, Autostainer Plus e Autostainer Link. Interpretazione Nelle cellule marcate dall’anticorpo è visibile una colorazione nucleare. dei risultati della colorazione Caratteristiche Tessuti normali: I tessuti linfoidi normali (linfonodo, milza e tonsilla) mostrano una colorazione della BSAP nucleare prestazionali forte nelle cellule B del centro follicolare e delle cellule B nella
Recommended publications
  • Radio and IR Interferometry of Sio Maser Stars
    Cosmic Masers - from OH to H0 Proceedings IAU Symposium No. 287, 2012 c International Astronomical Union 2012 R.S. Booth, E.M.L. Humphreys & W.H.T. Vlemmings, eds. doi:10.1017/S1743921312006989 Radio and IR interferometry of SiO maser stars Markus Wittkowski1, David A. Boboltz2,MalcolmD.Gray3, Elizabeth M. L. Humphreys1 Iva Karovicova4, and Michael Scholz5,6 1 ESO, Karl-Schwarzschild-Str. 2, 85748 Garching bei M¨unchen, Germany 2 US Naval Observatory, 3450 Massachusetts Avenue, NW, Washington, DC 20392-5420, USA 3 Jodrell Bank Centre for Astrophysics, Alan Turing Building, University of Manchester, Manchester M13 9PL, UK 4 Max-Planck-Institut f¨ur Astronomie, K¨onigstuhl 17, 69117 Heidelberg, Germany 5 Zentrum f¨ur Astronomie der Universit¨at Heidelberg (ZAH), Institut f¨ur Theoretische Astrophysik, Albert-Ueberle-Str. 2, 69120 Heidelberg, Germany 6 Sydney Institute for Astronomy, School of Physics, University of Sydney, Sydney NSW 2006, Australia Abstract. Radio and infrared interferometry of SiO maser stars provide complementary infor- mation on the atmosphere and circumstellar environment at comparable spatial resolution. Here, we present the latest results on the atmospheric structure and the dust condensation region of AGB stars based on our recent infrared spectro-interferometric observations, which represent the environment of SiO masers. We discuss, as an example, new results from simultaneous VLTI and VLBA observations of the Mira variable AGB star R Cnc, including VLTI near- and mid- infrared interferometry, as well as VLBA observations of the SiO maser emission toward this source. We present preliminary results from a monitoring campaign of high-frequency SiO maser emission toward evolved stars obtained with the APEX telescope, which also serves as a pre- cursor of ALMA images of the SiO emitting region.
    [Show full text]
  • Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
    Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born.
    [Show full text]
  • Evidence for Very Extended Gaseous Layers Around O-Rich Mira Variables and M Giants B
    The Astrophysical Journal, 579:446–454, 2002 November 1 # 2002. The American Astronomical Society. All rights reserved. Printed in U.S.A. EVIDENCE FOR VERY EXTENDED GASEOUS LAYERS AROUND O-RICH MIRA VARIABLES AND M GIANTS B. Mennesson,1 G. Perrin,2 G. Chagnon,2 V. Coude du Foresto,2 S. Ridgway,3 A. Merand,2 P. Salome,2 P. Borde,2 W. Cotton,4 S. Morel,5 P. Kervella,5 W. Traub,6 and M. Lacasse6 Received 2002 March 15; accepted 2002 July 3 ABSTRACT Nine bright O-rich Mira stars and five semiregular variable cool M giants have been observed with the Infrared and Optical Telescope Array (IOTA) interferometer in both K0 (2.15 lm) and L0 (3.8 lm) broad- band filters, in most cases at very close variability phases. All of the sample Mira stars and four of the semire- gular M giants show strong increases, from ’20% to ’100%, in measured uniform-disk (UD) diameters between the K0 and L0 bands. (A selection of hotter M stars does not show such a large increase.) There is no evidence that K0 and L0 broadband visibility measurements should be dominated by strong molecular bands, and cool expanding dust shells already detected around some of these objects are also found to be poor candi- dates for producing these large apparent diameter increases. Therefore, we propose that this must be a con- tinuum or pseudocontinuum opacity effect. Such an apparent enlargement can be reproduced using a simple two-component model consisting of a warm (1500–2000 K), extended (up to ’3 stellar radii), optically thin ( ’ 0:5) layer located above the classical photosphere.
    [Show full text]
  • 10. Scientific Programme 10.1
    10. SCIENTIFIC PROGRAMME 10.1. OVERVIEW (a) Invited Discourses Plenary Hall B 18:00-19:30 ID1 “The Zoo of Galaxies” Karen Masters, University of Portsmouth, UK Monday, 20 August ID2 “Supernovae, the Accelerating Cosmos, and Dark Energy” Brian Schmidt, ANU, Australia Wednesday, 22 August ID3 “The Herschel View of Star Formation” Philippe André, CEA Saclay, France Wednesday, 29 August ID4 “Past, Present and Future of Chinese Astronomy” Cheng Fang, Nanjing University, China Nanjing Thursday, 30 August (b) Plenary Symposium Review Talks Plenary Hall B (B) 8:30-10:00 Or Rooms 309A+B (3) IAUS 288 Astrophysics from Antarctica John Storey (3) Mon. 20 IAUS 289 The Cosmic Distance Scale: Past, Present and Future Wendy Freedman (3) Mon. 27 IAUS 290 Probing General Relativity using Accreting Black Holes Andy Fabian (B) Wed. 22 IAUS 291 Pulsars are Cool – seriously Scott Ransom (3) Thu. 23 Magnetars: neutron stars with magnetic storms Nanda Rea (3) Thu. 23 Probing Gravitation with Pulsars Michael Kremer (3) Thu. 23 IAUS 292 From Gas to Stars over Cosmic Time Mordacai-Mark Mac Low (B) Tue. 21 IAUS 293 The Kepler Mission: NASA’s ExoEarth Census Natalie Batalha (3) Tue. 28 IAUS 294 The Origin and Evolution of Cosmic Magnetism Bryan Gaensler (B) Wed. 29 IAUS 295 Black Holes in Galaxies John Kormendy (B) Thu. 30 (c) Symposia - Week 1 IAUS 288 Astrophysics from Antartica IAUS 290 Accretion on all scales IAUS 291 Neutron Stars and Pulsars IAUS 292 Molecular gas, Dust, and Star Formation in Galaxies (d) Symposia –Week 2 IAUS 289 Advancing the Physics of Cosmic
    [Show full text]
  • GTO Keypad Manual, V5.001
    ASTRO-PHYSICS GTO KEYPAD Version v5.xxx Please read the manual even if you are familiar with previous keypad versions Flash RAM Updates Keypad Java updates can be accomplished through the Internet. Check our web site www.astro-physics.com/software-updates/ November 11, 2020 ASTRO-PHYSICS KEYPAD MANUAL FOR MACH2GTO Version 5.xxx November 11, 2020 ABOUT THIS MANUAL 4 REQUIREMENTS 5 What Mount Control Box Do I Need? 5 Can I Upgrade My Present Keypad? 5 GTO KEYPAD 6 Layout and Buttons of the Keypad 6 Vacuum Fluorescent Display 6 N-S-E-W Directional Buttons 6 STOP Button 6 <PREV and NEXT> Buttons 7 Number Buttons 7 GOTO Button 7 ± Button 7 MENU / ESC Button 7 RECAL and NEXT> Buttons Pressed Simultaneously 7 ENT Button 7 Retractable Hanger 7 Keypad Protector 8 Keypad Care and Warranty 8 Warranty 8 Keypad Battery for 512K Memory Boards 8 Cleaning Red Keypad Display 8 Temperature Ratings 8 Environmental Recommendation 8 GETTING STARTED – DO THIS AT HOME, IF POSSIBLE 9 Set Up your Mount and Cable Connections 9 Gather Basic Information 9 Enter Your Location, Time and Date 9 Set Up Your Mount in the Field 10 Polar Alignment 10 Mach2GTO Daytime Alignment Routine 10 KEYPAD START UP SEQUENCE FOR NEW SETUPS OR SETUP IN NEW LOCATION 11 Assemble Your Mount 11 Startup Sequence 11 Location 11 Select Existing Location 11 Set Up New Location 11 Date and Time 12 Additional Information 12 KEYPAD START UP SEQUENCE FOR MOUNTS USED AT THE SAME LOCATION WITHOUT A COMPUTER 13 KEYPAD START UP SEQUENCE FOR COMPUTER CONTROLLED MOUNTS 14 1 OBJECTS MENU – HAVE SOME FUN!
    [Show full text]
  • FY13 High-Level Deliverables
    National Optical Astronomy Observatory Fiscal Year Annual Report for FY 2013 (1 October 2012 – 30 September 2013) Submitted to the National Science Foundation Pursuant to Cooperative Support Agreement No. AST-0950945 13 December 2013 Revised 18 September 2014 Contents NOAO MISSION PROFILE .................................................................................................... 1 1 EXECUTIVE SUMMARY ................................................................................................ 2 2 NOAO ACCOMPLISHMENTS ....................................................................................... 4 2.1 Achievements ..................................................................................................... 4 2.2 Status of Vision and Goals ................................................................................. 5 2.2.1 Status of FY13 High-Level Deliverables ............................................ 5 2.2.2 FY13 Planned vs. Actual Spending and Revenues .............................. 8 2.3 Challenges and Their Impacts ............................................................................ 9 3 SCIENTIFIC ACTIVITIES AND FINDINGS .............................................................. 11 3.1 Cerro Tololo Inter-American Observatory ....................................................... 11 3.2 Kitt Peak National Observatory ....................................................................... 14 3.3 Gemini Observatory ........................................................................................
    [Show full text]
  • Download This Article in PDF Format
    A&A 515, A112 (2010) Astronomy DOI: 10.1051/0004-6361/200912731 & c ESO 2010 Astrophysics H i and CO in the circumstellar environment of the S-type star RS Cancri Y. L ibert 1,2, J. M. Winters2, T. Le Bertre1,E.Gérard3, and L. D. Matthews4 1 LERMA, UMR 8112, Observatoire de Paris, 61 Av. de l’Observatoire, 75014 Paris, France e-mail: [email protected] 2 IRAM, 300 rue de la Piscine, 38406 Saint-Martin d’Hères, France 3 GEPI, UMR 8111, Observatoire de Paris, 5 place J. Janssen, 92195 Meudon Cedex, France 4 MIT Haystack Observatory Off Route 40 Westford, Massachusetts, USA Received 19 June 2009 / Accepted 25 February 2010 ABSTRACT Context. The history of mass loss during the AGB phase is key to understanding the stellar evolution and the gas and dust replenish- ment of the interstellar medium. The mass-loss phenomenon presents fluctuations with a wide variety of timescales and spatial scales and requires combining data from multiple tracers. Aims. We study the respective contributions of the central source and of the external medium to the complex geometry of circumstellar ejecta. Methods. This paper presents Plateau de Bure Interferometer and IRAM 30-m telescope CO rotational line observations, along with H i data obtained with the Nançay Radio Telescope for the oxygen-rich semi-regular variable RS Cnc, in order to probe its circum- stellar environment on different scales. Results. We detect both the CO(1–0) and the CO(2–1) rotational lines from RS Cnc. The line profiles are composite, comprising two components of half-width ∼2kms−1 and ∼8kms−1, respectively.
    [Show full text]
  • Astronomy General Information
    ASTRONOMY GENERAL INFORMATION HERTZSPRUNG-RUSSELL (H-R) DIAGRAMS -A scatter graph of stars showing the relationship between the stars’ absolute magnitude or luminosities versus their spectral types or classifications and effective temperatures. -Can be used to measure distance to a star cluster by comparing apparent magnitude of stars with abs. magnitudes of stars with known distances (AKA model stars). Observed group plotted and then overlapped via shift in vertical direction. Difference in magnitude bridge equals distance modulus. Known as Spectroscopic Parallax. SPECTRA HARVARD SPECTRAL CLASSIFICATION (1-D) -Groups stars by surface atmospheric temp. Used in H-R diag. vs. Luminosity/Abs. Mag. Class* Color Descr. Actual Color Mass (M☉) Radius(R☉) Lumin.(L☉) O Blue Blue B Blue-white Deep B-W 2.1-16 1.8-6.6 25-30,000 A White Blue-white 1.4-2.1 1.4-1.8 5-25 F Yellow-white White 1.04-1.4 1.15-1.4 1.5-5 G Yellow Yellowish-W 0.8-1.04 0.96-1.15 0.6-1.5 K Orange Pale Y-O 0.45-0.8 0.7-0.96 0.08-0.6 M Red Lt. Orange-Red 0.08-0.45 *Very weak stars of classes L, T, and Y are not included. -Classes are further divided by Arabic numerals (0-9), and then even further by half subtypes. The lower the number, the hotter (e.g. A0 is hotter than an A7 star) YERKES/MK SPECTRAL CLASSIFICATION (2-D!) -Groups stars based on both temperature and luminosity based on spectral lines.
    [Show full text]
  • Fixed Stars Report
    FIXED STARS A Solar Writer Report for Andy Gibb Written by Diana K Rosenberg Compliments of:- Cornerstone Astrology http://www.cornerstone-astrology.com/astrology-shop/ Table of Contents · Chart Wheel · Introduction · Fixed Stars · The Tropical And Sidereal Zodiacs · About this Report · Abbreviations · Sources · Your Starsets · Conclusion http://www.cornerstone-astrology.com/astrology-shop/ Page 1 Chart Wheel Andy Gibb 49' 44' 29°‡ Male 18°ˆ 00° 5 Mar 1958 22' À ‡ 6:30 am UT +0:00 ‰ ¾ ɽ 44' Manchester 05° 04°02° 24° 01° ‡ ‡ 53°N30' 46' ˆ ‡ 33'16' 002°W15' ‰ 56' Œ 10' Tropical ¼ Œ Œ 24° 21° 9 8 Placidus ‰ 10 » 13' 04° 11 Š ‘‘ 42' 7 ’ ¶ á ’ …07° 12 ” 05' ” ‘ 06° Ï 29° 29' … 29° Œ45' … 00° Á àà Š à „ 24' ‘ 24' 11' á 6 14°‹ á ¸ 28' Œ14' 15°‹ 1 “ „08° º 5 ¿ 4 2 3 Œ 46' 16' ƒ Ý 24° 02° 22' Ê ƒ 00° 05° Ý 44' 44' 18°‚ 29°Ý 49' http://www.cornerstone-astrology.com/astrology-shop/ Page 2 Astrological Summary Chart Point Positions: Andy Gibb Planet Sign Position House Comment The Moon Virgo 7°Vi05' 7th The Sun Pisces 14°Pi11' 1st Mercury Pisces 15°Pi28' 1st Venus Aquarius 4°Aq42' 12th Mars Capricorn 21°Cp13' 11th Jupiter Scorpio 1°Sc10' 8th Saturn Sagittarius 24°Sg56' 10th Uranus Leo 8°Le14' 6th Neptune Scorpio 4°Sc33' 8th Pluto Virgo 0°Vi45' 7th The North Node Scorpio 2°Sc16' 8th The South Node Taurus 2°Ta16' 2nd The Ascendant Aquarius 29°Aq24' 1st The Midheaven Sagittarius 18°Sg44' 10th The Part of Fortune Virgo 6°Vi29' 7th http://www.cornerstone-astrology.com/astrology-shop/ Page 3 Chart Point Aspects Planet Aspect Planet Orb App/Sep The Moon
    [Show full text]
  • Zone Eight-Earth-Mass Planet K2-18 B
    LETTERS https://doi.org/10.1038/s41550-019-0878-9 Water vapour in the atmosphere of the habitable- zone eight-Earth-mass planet K2-18 b Angelos Tsiaras *, Ingo P. Waldmann *, Giovanna Tinetti , Jonathan Tennyson and Sergey N. Yurchenko In the past decade, observations from space and the ground planet within the star’s habitable zone (~0.12–0.25 au) (ref. 20), with have found water to be the most abundant molecular species, effective temperature between 200 K and 320 K, depending on the after hydrogen, in the atmospheres of hot, gaseous extrasolar albedo and the emissivity of its surface and/or its atmosphere. This planets1–5. Being the main molecular carrier of oxygen, water crude estimate accounts for neither possible tidal energy sources21 is a tracer of the origin and the evolution mechanisms of plan- nor atmospheric heat redistribution11,13, which might be relevant for ets. For temperate, terrestrial planets, the presence of water this planet. Measurements of the mass and the radius of K2-18 b 22 is of great importance as an indicator of habitable conditions. (planetary mass Mp = 7.96 ± 1.91 Earth masses (M⊕) (ref. ), plan- 19 Being small and relatively cold, these planets and their atmo- etary radius Rp = 2.279 ± 0.0026 R⊕ (ref. )) yield a bulk density of spheres are the most challenging to observe, and therefore no 3.3 ± 1.2 g cm−1 (ref. 22), suggesting either a silicate planet with an 6 atmospheric spectral signatures have so far been detected . extended atmosphere or an interior composition with a water (H2O) Super-Earths—planets lighter than ten Earth masses—around mass fraction lower than 50% (refs.
    [Show full text]
  • Elisa: Astrophysics and Cosmology in the Millihertz Regime Contents
    Doing science with eLISA: Astrophysics and cosmology in the millihertz regime Pau Amaro-Seoane1; 13, Sofiane Aoudia1, Stanislav Babak1, Pierre Binétruy2, Emanuele Berti3; 4, Alejandro Bohé5, Chiara Caprini6, Monica Colpi7, Neil J. Cornish8, Karsten Danzmann1, Jean-François Dufaux2, Jonathan Gair9, Oliver Jennrich10, Philippe Jetzer11, Antoine Klein11; 8, Ryan N. Lang12, Alberto Lobo13, Tyson Littenberg14; 15, Sean T. McWilliams16, Gijs Nelemans17; 18; 19, Antoine Petiteau2; 1, Edward K. Porter2, Bernard F. Schutz1, Alberto Sesana1, Robin Stebbins20, Tim Sumner21, Michele Vallisneri22, Stefano Vitale23, Marta Volonteri24; 25, and Henry Ward26 1Max Planck Institut für Gravitationsphysik (Albert-Einstein-Institut), Germany 2APC, Univ. Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs. de Paris, Sorbonne Paris Cité, France 3Department of Physics and Astronomy, The University of Mississippi, University, MS 38677, USA 4Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena CA 91125, USA 5UPMC-CNRS, UMR7095, Institut d’Astrophysique de Paris, F-75014, Paris, France 6Institut de Physique Théorique, CEA, IPhT, CNRS, URA 2306, F-91191Gif/Yvette Cedex, France 7University of Milano Bicocca, Milano, I-20100, Italy 8Department of Physics, Montana State University, Bozeman, MT 59717, USA 9Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, UK 10ESA, Keplerlaan 1, 2200 AG Noordwijk, The Netherlands 11Institute of Theoretical Physics University of Zürich, Winterthurerstr. 190, 8057 Zürich Switzerland
    [Show full text]
  • Central Coast Astronomy Virtual Star Party April 10Th 7Pm Pacific
    Central Coast Astronomy Virtual Star Party April 10th 7pm Pacific Welcome to our Virtual Star Gazing session! We’ll be focusing on objects you can see with binoculars or a small telescope, so after our session, you can simply walk outside, look up, and understand what you’re looking at. CCAS President Aurora Lipper and astronomer Kent Wallace will bring you a virtual “tour of the night sky” where you can discover, learn, and ask questions as we go along! All you need is an internet connection. You can use an iPad, laptop, computer or cell phone. When 7pm on Saturday night rolls around, click the link on our website to join our class. CentralCoastAstronomy.org/stargaze Before our session starts: Step 1: Download your free map of the night sky: SkyMaps.com They have it available for Northern and Southern hemispheres. Step 2: Print out this document and use it to take notes during our time on Saturday. This document highlights the objects we will focus on in our session together. Celestial Objects: Moon: The moon 2 days from new, which is excellent for star gazing! *Image credit: all astrophotography images are courtesy of NASA & ESO unless otherwise noted. All planetarium images are courtesy of Stellarium. Central Coast Astronomy CentralCoastAstronomy.org Page 1 Main Focus for the Session: 1. Cancer (the Crab) 2. Leo (the Lion) 3. Lynx (the Lynx) 4. Ursa Major (the Big Bear) Central Coast Astronomy CentralCoastAstronomy.org Page 2 Cancer (the Crab) Cancer, the crab, ancient Greek zodiacal constellation. M 44, open cluster, Praesepe or Beehive Large, open cluster 1.2 degrees across, with a visual magnitude of 3.1 and a distance of 610 light years.
    [Show full text]