Download Preprint

Total Page:16

File Type:pdf, Size:1020Kb

Download Preprint Report on Socio-Economic Impact Assessment of Improved Samba Mahsuri (ISM) National Institute of Agricultural Extension Management (MANAGE) Rajendranagar, Hyderabad-30 (TS) Citation: Reddy A Amarender (2018) Report on Socio-Economic Impact Assessment of Improved Samba Mahsuri (ISM), National Institute of Agricultural Extension Management (MANAGE), Rajendranagar, Hyderabad – 500030, Telangana State, India. 68 pp. Report on Socio-Economic Impact Assessment of Improved Samba Mahsuri (ISM) A Study Report by the National Institute of Agricultural Extension Management (MANAGE) for CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad National Institute of Agricultural Extension Management (MANAGE) Rajendranagar, Hyderabad-30 (TS) i Preface ice is an important food crop all over the world. India is a major producer of rice accounting for 42.50 million ha and production of 110 million MT accounting for 28.33 percent of Rarea and 22.13 percent of production. The major problems faced in cultivation of rice are low yield and lack of improved varieties resistant to pests and diseases. One of the major problems in rice cultivation is its susceptibility to Bacterial Leaf Blight (BLB). Hence, researchers made efforts to develop improved varieties to overcome the problem of BLB and developed resistant varieties of rice accordingly. However, the diffusion of these varieties slowed down in the recent years, resulting in stagnation of yields. Samba Mahsuri is one such variety which has got fine grain quality and is preferred among large section of consumers. However, this variety is susceptible to BLB. Keeping this in view, CSIR-Centre for Cellular and Molecular Biology (CCMB) in collaboration with Indian Institute of Rice Research (IIRR), developed Improved Samba Mahsuri which is resistant to BLB. Cultivation of ISM variety was popularized by National Seeds Corporation (NSC) and State Seed Corporations (SSCs). This variety is cultivated in many states across the country. As a result, over a period of time area under ISM increased substantially due to its resistance to BLB. Due to its resistance to BLB, use of pesticides reduced leading to lower cost of cultivation and hence became popular among the farming community in the country. However, in few of the states in India, there is a scope to increase area under ISM variety. In order to know the impact of ISM, CSIR-Centre for Cellular and Molecular Biology (CCMB) requested MANAGE to conduct a study to know the impact of ISM on socio-economic condition of the farmers. I appreciate the efforts of Dr. Amarender Reddy, Director (Monitoring & Evaluation) and Principal Investigator and his team in conducting the study. I hope, findings of the study will go a long way in popularizing cultivation of Samba Mahsuri and help the farming community in realising higher yields and thus leading to higher incomes. Hence, it is recommended that efforts should be made to popularize this variety across the States. (V. Usha Rani, IAS) Director General Acknowledgements he study on “Socio-Economic Impact Assessment of Improved Samba Mahsuri (ISM)”was carried out at the National Institute of Agricultural Extension Management T(MANAGE), Rajendranagar, Hyderabad, and was sponsored by the CSIR-Centre for Cellular and Molecular Biology (CCMB) Habsiguda, Hyderabad. In carrying out this study, we have benefited immensely from the guidance of various scholars and officials from different government departments. At the outset, we would like to thank Smt. V Usha Rani, IAS, Director General of our institute as well as Dr. Rakesh K Mishra, Director, CSIR-CCMB and Dr. Ramesh V Sonti, Chief Scientist, CSIR-CCMB, for their constant encouragement and support throughout the study. Special thanks to Dr. Muthuraman, Dr. Sundaram and Dr. Subha Rao from ICAR-IIRR. We also thank Dr. M. R. Vishnupriya and Dr. Hitendra Kumar Patel from CSIR - CCMB. We are grateful to Directors, Joint Directors and other officials from state departments of agriculture for their cooperation during the field survey as well as for their help in conducting Focus Group interactions and sharing their valuable suggestions. We thank Dr. Ratna Reddy, LNRMI, Hyderabad; Dr. Padma Raju, ex Vice Chancellor, PJTSAU, Rajendranagar; Dr. C.P. Chandrashekar, former Dean, PJTSAU, for their guidance and active involvement. We thank our colleagues at MANAGE for their constant support and encouragement in carrying out the study. We are also thankful to the field supervisors and surveyors for carrying out the field surveys and Focus Group interactions in different states and districts selected for the study across India. The study would not have reached this stage without the cooperation of cluster group leaders, who provided all the data required for the study without any hesitation and expectations. We thank each one of them for their invaluable support. Principal Investigator CONTENTS Executive Summary ..... xv Chapter 1 - Introduction 1.1. Rice Production Scenario ..... 1 1.2. The context ..... 6 1.3. Development of Improved Samba Mahsuri (ISM) ..... 8 1.4 Scope of Study ..... 10 Chapter 2 - Review of Literature 2.1. Varietal diffusion and adoption process ..... 11 2.2. Determinants of varietal diffusion ..... 12 2.3. Varietal diffusion of risk-reducing improved varieties ..... 13 (insect resistant, flood resistant) 2.4. Impacts of varietal diffusion ..... 14 Chapter 3 - Methodology 3.1. Sampling and data collection ..... 17 3.1.1 Survey Instrument ..... 18 3.1.2 Approach of data collection ..... 18 3.2. Data consolidation, compilation and analysis ..... 18 Chapter 4 - Results and Discussions 4.1. BLB endemic areas and ISM perspective ..... 22 4.2. An overview of stakeholders’ opinion ..... 27 4.3. Field-level results ..... 27 4.3.1. Varietal diffusion models ..... 28 4.3.2. Occupation profile ..... 31 4.3.3. Livestock and machinery ..... 31 4.3.4. Operational holding ..... 31 4.3.5. Frequency of seed replacement ..... 32 4.3.6. Comparison of yield harvests ..... 33 4.3.7. Frequency of BLB occurrence – diffusion strategy ..... 34 4.3.8. Existing mechanisms to combat the disease ..... 36 4.3.9. ISM replacement pattern ..... 36 4.3.10. Consistency in adoption ..... 37 4.3.11. Innovation attributes ..... 37 4.3.12. Communication channels ..... 38 4.3.13. Crop insurance ..... 39 4.3.14. Results from non-endemicareas ..... 40 4.3.15. Seed purchase behaviour ..... 40 4.4. Case Study: Varietal diffusion of ISM ..... 41 4.5. Diffusion of ISM in terms of area ..... 43 4.6. Value of produce in farmers’ hand ..... 45 Chapter 5 - Recommendations ..... 47 References ..... 48 Annexure 1: Review of Literature .... 50 Annexure 2: Village level observations (East Godavari) .... 56 Annexure 3: Adoption and Impact of ISM in 4 Districts In Telangana (General Observations) .... 57 Annexure 4: Expert opinion .... 60 Annexure 5: Estimation of area based on breeder seed indent .... 66 x Abbreviations AICRIP : All India Coordinated Rice Improvement Program BLB : Bacterial Leaf Blight CCMB : Centre for Cellular and Molecular Biology CSISA : Cereal Systems Initiative for South Asia FS : False Smut FTF : Feed the Future IIRR : Indian Institute of Rice Research IRR : Internal Rate of return ISM : Improved Samba Mahsuri KVK : Krishi Vigyan Kendra NFSM : National Food Security Mission NGO : Non-Governmental Organization NSC : National seed Corporation PJTSAU : Professor Jayashankar Telangana State Agricultural University PMFBY : Prime Minister Fasal Bhima Yojana SAU : State Agriculture University SDA : State Department of Agriculture ShB : Sheath Blight SHG : Self Help Group ShR : Sheath Rot SM : Samba Mahsuri StR : Stem Rot STRASA : Stress-Tolerant Rice for Africa and South Asia xi List of Tables Sl. No: Particulars Pg. Nos. Table 1 : Changes in area, production, yield and area under irrigation 2 Table 2 : Rice Varieties and hybrids released as central & state releases 5 (1965 – 2014) Table 3 : Important rice varieties released for AP/Telangana 6 Table 4 : Control of Bacterial leaf blight through chemical and adoption of 8 tolerant varieties Table 5 : District wise total samples and percentage 17 Table 6 : Bacterial Leaf Blight Vulnerable districts (as measured by the frequency 23 of occurrence) 1980- 2000 Table 7 : Bacterial Leaf Blight Vulnerable districts (as measured by the frequency 25 of occurrence) 2000-2016 Table 8 : Mandals and villages in the study areas 28 Table 9 : Occupation of the population (per cent) 31 Table 10 : Number of livestock and tractors per household 31 Table 11 : Size of operational holdings (acre /household) 32 Table 12 : Frequency of seed replacement 32 Table 13 : Average yield harvest by the households (bags/acre) 33 Table 14 : Pest and disease resistance 33 Table 15 : Frequency of occurrence (% of the total sample farmers) of BLB in last 34 five years variety wise Table 16 : Loss percentage because of Bacterial Leaf Blight (2012-16) 35 Table 17 : Reasons for bacterial leaf blight occurring in paddy 35 Table 18 : Precautionary measures taken by the farmers to prevent BLB 36 Table 19 : Rice Varieties replaced by the ISM 36 Table 20 : Adoption of ISM variety in last five years among the respondent 37 farmers Table 21 : Average Aggregate rank of popular paddy cultivars grown by the 37 farmers Table 22 : Benefits from Improved Samba Mahsuri 38 Table 23 Important Traits Farmers look for in New Rice Varieties 38 Table 24 : Type of networks available in the village 39 Table 25 : Crop Insurance Awareness 40 Table 26A : Patterns of varietal replacement related to ISM
Recommended publications
  • 添付資料 3 Post-Harvest Losses and Pre-Seeding Treatments of Rice
    添付資料 3 Post-harvest losses and Contents pre-seeding treatments of rice 1. Morphology of rice 2. Rice in Myanmar 3. Post-harvest loss 4. Pre-seeding treatments 27 Nov. 2014 5. Weedy rice (red rice) at Tatkon T/S Office Ryoichi Ikeda (JAICAF) Seed and germination 1. Morphology of rice Growth of seedling 1 Growth of seedling 2 93 Leaves Panicle Spikelets Cross section of central part of paddy Structure of rice seed 94 Top 10 countries of 2. Rice in Myanmar Rice area harvested (1,000 ha) Rice production (1,000,000 t) 1 India 43,038 1 China 182.4 2 China 28,880 2 India 134.3 3 Indonesia 11,932 3 Indonesia 55.4 Bangladesh 4 Bangladesh 10,746 4 40.7 5 Thailand 10,334 5 Viet Nam 35.8 6 Viet Nam 7,401 6 Thailand 29.3 7 Myanmar 7,267 7 Myanmar 27.5 8 Philippines 4,193 8 Philippines 14.8 9 Brazil 3,189 9 Brazil 11.6 10 Pakistan 2,542 10 Japan 10.8 13 Japan 1,675 FAOSTAT (Aver. 2001-2009) Distribution of rice crop area (000 ha), by environment, 2004-2006 Distribution of rice area (%) Food supply quantity (kg/capita/yr) Rice area Rainfed Deep Country 2004 2005 2006 2007 Country (000 ha) Irrigated lowland Upland water Asia 135,026 58.6 32.1 6.7 2.6 1 Brunei Darussalam 253.2 262.7 246.7 244.9 Bangladesh 10,657 40 42 7 11 2 Viet Nam 167.8 167.1 164.7 165.6 Cambodia 2,347 16 75 1 8 3 Lao People's D R 160.9 160.6 161.5 162.6 China 29,037 93 5 2 0 India 43,089 53 32 12 3 4 Bangladesh 161.1 156.0 156.3 159.7 Indonesia 11,708 60 25 0 15 5 Myanmar 157.2 156.6 158.5 156.9 Japan 1,698 100 0 0 0 Korea, DPR 583 67 20 13 0 6 Cambodia 145.6 151.4 152.1 152.2 Korea, Rep.
    [Show full text]
  • Increases in Genetic Diversity of Weedy Rice Associated with Ambient Temperatures and Limited Gene Flow
    biology Article Increases in Genetic Diversity of Weedy Rice Associated with Ambient Temperatures and Limited Gene Flow Hua Kong 1,†, Zhi Wang 2,†, Jing-Yuan Guo 1, Qi-Yu Xia 1, Hui Zhao 1, Yu-Liang Zhang 1, An-Ping Guo 1,* and Bao-Rong Lu 2,* 1 Key Laboratory of Biology and Genetic Resources of Tropical Crops, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou 571101, China; [email protected] (H.K.); [email protected] (J.-Y.G.); [email protected] (Q.-Y.X.); [email protected] (H.Z.); [email protected] (Y.-L.Z.) 2 Ministry of Education, Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Ecology and Evolutionary Biology, Fudan University, Songhu Road 2005, Shanghai 200438, China; [email protected] * Correspondence: [email protected] (A.-P.G.); [email protected] (B.-R.L.) † These authors are equally contributed to the work. Simple Summary: Increased genetic diversity in plants is probably associated with greater ambient temperatures. To test this hypothesis, we studied genetic diversity and differentiation of weedy rice populations occurring in the early- and late-season rice cultivation fields in Leizhou of southern China. Data collected from 10-year climatic records showed a higher average temperature in the late rice-cultivation seasons than in the early rice-cultivation seasons. Results obtained based on 27 SSR (simple sequence repeat) loci indicated greater genetic diversity in the late-season weedy rice populations, in addition to the considerable genetic differentiation between the early- and late-season weedy rice populations.
    [Show full text]
  • Ecologically Sustainable Integrated Weed Management in Dry and Irrigated Direct-Seeded Rice
    Advances in Plants & Agriculture Research Research Article Open Access Ecologically sustainable integrated weed management in dry and irrigated direct-seeded rice Abstract Volume 8 Issue 4 - 2018 Weeds are one of the major biological constraints in direct seeded rice farmer’s field and cause a substantial rice yield loss owing to greater diversity in weed flora due to alternate Mona Nagargade, MK Singh, V Tyagi wetting and drying. Sometimes more than three flushes of weed infest the direct seeded Department of Agronomy, Banaras Hindu University, India rice (DSR) in whole life cycle of crop. In India, weeds are mainly controlled manually in rice. However, manual weeding is becoming less cost effective because of labour crisis at Correspondence: MK Singh, Department of Agronomy, critical times or increased labour costs. Herbicides are replacing manual weeding at a faster Institute of Agricultural Sciences, Banaras Hindu University, Varanasi -221005, Uttar Pradesh, India, rate in rice as they are easy to use but there are concerns about the sole and repeated use Email [email protected] of herbicides, such as evolution of resistance in weeds, shifts in weed flora, cost of weed management to farmers and concerns about the environment. Therefore, there is an urgent Received: June 17, 2017 | Published: August 01, 2018 need to effectively integrate different aspects of ecological weed management strategies especially preventive measures like stale seedbed technique, summer tillage, precession land leveling, crop rotation and sowing methods, cultural methods like competitive varieties, herbicide resistance varieties, seed rate, crop residues/straw mulching, cover crops and live mulching, brown manuring, water and nutrient management (specially organic amendments), manual and mechanical method, bio-control agent to achieve effective and sustainable weed control in DSR systems.
    [Show full text]
  • Traditional Rice Varieties of Tamil Nadu : a Source Book
    TRADITIONAL RICE VARIETIES OF TAMIL NADU - A SOURCE BOOK THE CENTRE FOR INDIAN KNOWLEDGE Since 1995, Centre for Indian Knowledge Namma Nellu is an initiative of Centre for Indian SYSTEMS Systems has been working towards Knowledge Systems to conserve indigenous enhancing livelihood security of small rice varieties in Tamil Nadu. The objectives of (CIKS) and marginal farmers in Tamil Nadu. Namma Nellu initiative are planting and replanting Our programmes in the areas of organic the varieties year after year in two locations for agriculture, biodiversity conservation and conservation purposes, conducting researches has been involved in work relating to various Vrkshayurveda (the ancient Indian plant to understand the characteristics of traditional aspects of Traditional Rice Varieties (TRV) since science) have helped farmers go organic in the formation of the organization in 1995. The varieties, initiating dialogues on the importance a sustainable, effective and profitable way. work started initially with the realization that of Agro biodiversity on society and ecology these varieties were important for sustainable Drawing from and building on indigenous and multiplying seeds to offer for large scale agriculture practices since they provide a range knowledge and practices, we develop production of traditional rice varieties. of seeds which are suited to various ecosystems, farming solutions relevant to the present soil types and in many cases have the resistance day context. Our activities include research, to various pests, diseases, drought and floods. Several individuals, associations, communities, During the last 25 years the work has progressed extension work and promoting farmer educational institutions, families and organisations extensively as well as deeply and it currently producer organizations.
    [Show full text]
  • The Weedy Rice Problem
    FAO Weedy rices – origin, PLANT PRODUCTION biology, ecology AND PROTECTION and control PAPER 188 by James C. Delouche Nilda R. Burgos David R. Gealy Gonzalo Zorrilla de San Martín and Ricardo Labrada with the collaboration of Michael Larinde and Cadmo Rosell FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2007 5IFNFOUJPOPSPNJTTJPOPGTQFDJmDDPNQBOJFT UIFJSQSPEVDUTPS CSBOEOBNFTEPFTOPUJNQMZBOZFOEPSTFNFOUPSKVEHFNFOUCZUIF 'PPEBOE"HSJDVMUVSF0SHBOJ[BUJPOPGUIF6OJUFE/BUJPOT 5IFEFTJHOBUJPOTFNQMPZFEBOEUIFQSFTFOUBUJPOPGNBUFSJBM JOUIJTJOGPSNBUJPOQSPEVDUEPOPUJNQMZUIFFYQSFTTJPOPGBOZ PQJOJPOXIBUTPFWFSPOUIFQBSUPGUIF'PPEBOE"HSJDVMUVSF 0SHBOJ[BUJPO PG UIF 6OJUFE /BUJPOT DPODFSOJOH UIF MFHBM PS EFWFMPQNFOUTUBUVTPGBOZDPVOUSZ UFSSJUPSZ DJUZPSBSFBPSPG JUTBVUIPSJUJFT PSDPODFSOJOHUIFEFMJNJUBUJPOPGJUTGSPOUJFSTPS CPVOEBSJFT *4#/ "MMSJHIUTSFTFSWFE3FQSPEVDUJPOBOEEJTTFNJOBUJPOPGNBUFSJBMJOUIJTJO GPSNBUJPOQSPEVDUGPSFEVDBUJPOBMPSPUIFSOPODPNNFSDJBMQVSQPTFTBSF BVUIPSJ[FEXJUIPVUBOZQSJPSXSJUUFOQFSNJTTJPOGSPNUIFDPQZSJHIUIPMEFST QSPWJEFEUIFTPVSDFJTGVMMZBDLOPXMFEHFE3FQSPEVDUJPOPGNBUFSJBMJOUIJT JOGPSNBUJPOQSPEVDUGPSSFTBMFPSPUIFSDPNNFSDJBMQVSQPTFTJTQSPIJCJUFE XJUIPVUXSJUUFOQFSNJTTJPOPGUIFDPQZSJHIUIPMEFST"QQMJDBUJPOTGPSTVDI QFSNJTTJPOTIPVMECFBEESFTTFEUPUIF$IJFG &MFDUSPOJD1VCMJTIJOH1PMJDZ BOE 4VQQPSU #SBODI $PNNVOJDBUJPO %JWJTJPO '"0 7JBMF EFMMF 5FSNF EJ $BSBDBMMB 3PNF *UBMZPSCZFNBJMUPDPQZSJHIU!GBPPSH ª'"0 iii Contents Acknowledgements x Preface xi List of acronyms xiii 1. Introduction 1 2. The weedy rice problem 3 What weedy rices are 3 Where weedy rices are a
    [Show full text]
  • Rice: Bioactive Compounds and Their Health Benefits
    The Pharma Innovation Journal 2021; 10(5): 845-853 ISSN (E): 2277- 7695 ISSN (P): 2349-8242 NAAS Rating: 5.23 Rice: Bioactive compounds and their health benefits TPI 2021; 10(5): 845-853 © 2021 TPI www.thepharmajournal.com Arsha RS, Prasad Rasane and Jyoti Singh Received: 22-03-2021 Accepted: 24-04-2021 Abstract Arsha RS Rice is the primary source of calories in many developing countries, and about 60% of the world's Department of Food Technology population consumes rice as a staple food. Rice has high nutritional value such as carbohydrate, fat, fibre, and Nutrition, School of protein, vitamins as well as food energy, minerals profile and fatty acids. The processing steps of rice is Agriculture, Lovely Professional cleaning, parboiling, drying, dehusking, partial milling, grading, packing and storage. The pigmented rice University, Phagwara, Punjab, varieties are available with reddish, purple or even blackish colour. Various extraction methods are used India for extraction bioactive compounds from rice including traditional methods (like Soxhlet extraction Prasad Rasane method and maceration method) to modern methods ( like accelerated solvent extraction method (ASE), Department of Food Technology solid-phase extraction (SPE), pressurized liquid extraction (PLE), pressurized fluid extraction (PFE), and Nutrition, School of subcritical water extraction (SWE), subcritical fluid extraction (SFE), microwave-assisted extraction Agriculture, Lovely Professional (MAE), vortex-assisted extraction (VAE), ultrasound-assisted extraction (UAE))
    [Show full text]
  • EFFECT of WEEDY RICE (Oryza Sativa L.)
    EFFECT OF WEEDY RICE (Oryza sativa L.) ON THE YIELD OF CULTIVATED RICE (Oryza sativa L.) IN GREENHOUSE AND FIELD ENVIRONMENT SALMAH BINTI TAJUDDIN UNIVERSITI SAINS MALAYSIA 2014 EFFECT OF WEEDY RICE (Oryza sativa L.) ON THE YIELD OF CULTIVATED RICE (Oryza sativa L.) IN GREENHOUSE AND FIELD ENVIRONMENT by SALMAH BINTI TAJUDDIN Thesis submitted in fulfilment of the requirements for the degree of Master of Science AUGUST 2014 ACKNOWLEDGEMENTS My postgraduate (MSc) study at the Universiti Sains Malaysia (School of Biological Sciences) was a great challenge. It was made possible with the kind assistance of many individuals, either directly or indirectly, to whom I am indebted, not all of whom are mentioned in this page. First and foremost, my deepest appreciation goes to Prof. Mashhor Mansor for his strong support, unweary supervision and motivating guidance during the course of my study. In addition, I was also trained in writing scientific papers and had the opportunity to present scientific papers in seminars and conferences. Other academicians had also given support through inspirational motivations and guidance, particularly Dr. Azmi Man, Prof. Nashriyah Mat and Dr. Asyraf Mansor, my co-supervisors, to all of whom I am very grateful. I wish to thank the staff of the Malaysian Meteorological Department Pulau Pinang for providing me the necessary meteorological data needed for my thesis. The staff of MARDI (Seberang Perai) had been very helpful in my experimental work, especially En. Awang, En. Ebnil, En. Mustafa, Pn. Norhayati and Pn. Aqilah. The staff of USM for help me solve statistics analysis problems, particularly Dr.
    [Show full text]
  • Assessment of Antioxidant Potential of Lutein, a Retinol Equivalent Carotenoid in Medicinal Landrace of Rice ‘Kavuni’
    Journal of Pharmaceutical Research International 32(38): 39-46, 2020; Article no.JPRI.63773 ISSN: 2456-9119 (Past name: British Journal of Pharmaceutical Research, Past ISSN: 2231-2919, NLM ID: 101631759) Assessment of Antioxidant Potential of Lutein, a Retinol Equivalent Carotenoid in Medicinal Landrace of Rice ‘Kavuni’ Suvarna Rani Chimmili1*, C. R. Ananda Kumar2, G. Subashini2, M. Raveendran3, S. Robin2, G. Padmavathi1, J. Aravind Kumar1, B. Jyothi1, B. Divya1,2, K. Sruthi1 and L. V. Subba Rao1 1Department of Plant Breeding, ICAR -Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500 030, India. 2Department of Rice, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore 641 003, India. 3Department of Plant Biotechnology, Centre for Plant Molecular Biology & Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641 003, India. Authors’ contributions This work was carried out in collaboration among all authors. Author SRC designed the study, performed the statistical analysis, wrote the protocol and wrote the draft of the manuscript. Authors CRAK, SR and MR conceptualized the study. Authors LVSR, GP, JAK, BJ, BD and KS managed the literature searches and editing. All authors read and approved the final manuscript. Article Information DOI: 10.9734/JPRI/2020/v32i3831011 Editor(s): (1) Dr. Syed A. A. Rizvi, Nova Southeastern University, USA. Reviewers: (1) Rukhshan Khurshid, Shalamar Medical and Dental College, Pakistan. (2) Shatha Abdul Wadood Al-Shammaree, University of Baghdad, Iraq. Complete Peer review History: http://www.sdiarticle4.com/review-history/63773 Received 10 October 2020 Original Research Article Accepted 14 December 2020 Published 01 January 2021 ABSTRACT Background: Indigenous traditional coloured rices are rich in dietary fibre, resistant starch, minerals, bioactive compounds and antioxidants like anthocyanins, luteins and phenols.
    [Show full text]
  • Oryza Glaberrima
    African rice (Oryza glaberrima) cultivation in the Togo Hills: ecological and socio-cultural cues in farmer seed selection and development and socio-cultural cues in farmer seed selection development African rice ( Oryza glaberrima ) cultivation in the Togo Hills: ecological Togo ) cultivation in the Béla Teeken Béla Béla Teeken African rice (Oryza glaberrima) cultivation in the Togo Hills: ecological and socio-cultural cues in farmer seed selection and development Béla Teeken Thesis committee Promotors Prof. Dr P. Richards Emeritus professor of Technology and Agrarian Development Wageningen University Prof. Dr P.C. Struik Professor of Crop Physiology Wageningen University Co-promotors Dr H. Maat Assistant Professor Knowledge, Technology and Innovation group Wageningen University Dr E. Nuijten Senior Researcher Plant Breeding & Sustainable Production Chains Louis Bolk Institute Other members Prof. Dr H.A.J. Bras, Wageningen University Prof. Dr S. Hagberg, Professor of Cultural Anthropology, Uppsala University, Sweden Dr T.J.L. van Hintum, Wageningen University Dr S. Zanen, Senior Trainer Consultant, MDF Training & Consultancy, Ede This research was conducted under the auspices of the Wageningen School of Social Sciences (WASS). African rice (Oryza glaberrima) cultivation in the Togo Hills: ecological and socio-cultural cues in farmer seed selection and development Be´la Teeken PHD Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr A.P.J. Mol, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Tuesday 1 September 2015 at 4 p.m. in the Aula. Béla Teeken African rice (Oryza glaberrima) cultivation in the Togo Hills: ecological and socio-cultural cues in farmer seed selection and development 306 pages PhD thesis, Wageningen University, Wageningen, NL (2015) With references, with summaries in English and Dutch ISBN: 978-94-6257-435-9 Abstract Teeken B (2015).
    [Show full text]
  • Degruyter Revac Revac-2021-0137 272..292 ++
    Reviews in Analytical Chemistry 2021; 40: 272–292 Review Article Vinita Ramtekey*, Susmita Cherukuri, Kaushalkumar Gunvantray Modha, Ashutosh Kumar*, Udaya Bhaskar Kethineni, Govind Pal, Arvind Nath Singh, and Sanjay Kumar Extraction, characterization, quantification, and application of volatile aromatic compounds from Asian rice cultivars https://doi.org/10.1515/revac-2021-0137 crop and deposits during seed maturation. So far, litera- received December 31, 2020; accepted May 30, 2021 ture has been focused on reporting about aromatic com- Abstract: Rice is the main staple food after wheat for pounds in rice but its extraction, characterization, and fi more than half of the world’s population in Asia. Apart quanti cation using analytical techniques are limited. from carbohydrate source, rice is gaining significant Hence, in the present review, extraction, characterization, - interest in terms of functional foods owing to the presence and application of aromatic compound have been eluci of aromatic compounds that impart health benefits by dated. These VACs can give a new way to food processing fl - lowering glycemic index and rich availability of dietary and beverage industry as bio avor and bioaroma com fibers. The demand for aromatic rice especially basmati pounds that enhance value addition of beverages, food, - rice is expanding in local and global markets as aroma is and fermented products such as gluten free rice breads. considered as the best quality and desirable trait among Furthermore, owing to their nutritional values these VACs fi consumers. There are more than 500 volatile aromatic com- can be used in bioforti cation that ultimately addresses the pounds (VACs) vouched for excellent aroma and flavor in food nutrition security.
    [Show full text]
  • Rice Research Studies
    B.R. Wells RICE RESEARCH STUDIES R.J. Norman and J.-F. Meullenet, editors ARKANSAS AGRICULTURAL EXPERIMENT STATION Division of Agriculture University of Arkansas August 2001 Research Series 485 Layout and editing by Marci A. Milus. Technical editing and cover design by Cam Romund. Arkansas Agricultural Experiment Station, University of Arkansas Division of Agriculture, Fayetteville. Milo J. Shult, Vice President for Agriculture and Director; Gregory J. Weidemann, Associate Director. PS1.20PM65. The Arkansas Agricultural Experiment Station follows a nondiscriminatory policy in programs and employment. ISSN:0099-5010 CODEN:AKAMA6 ISSN:0099-5010 CODEN:AKAMA6 B.R. Wells R I C E Research Studies 2 0 0 0 R.J. Norman and J.-F. Meullenet, editors Arkansas Agricultural Experiment Station Fayetteville, Arkansas 72701 DEDICATED IN MEMORY OF Bobby R. Wells Dr. Bobby R. Wells was born July 30, 1934, at Wickliffe, KY. He received his B.S. in Agriculture from Murray State University in 1959, his M.S. in Agronomy from the University of Arkansas in 1961, and his Ph.D. in Soils from the University of Missouri in 1964. Dr. Wells joined the faculty of the University of Arkansas in 1966 after two years as an Assistant Professor at Murray State University. He spent his first 16 years at the U of A Rice Research and Extension Center near Stuttgart. In 1982, he moved to the U of A Department of Agronomy in Fayetteville. Dr. Wells was a world-renowned expert on rice production with special empha- sis on rice nutrition and soil fertility. He was very active in the Rice Technical Work- ing Group (RTWG) where he served on several committees, chaired and/or moder- ated Rice Culture sections at the meetings and was a past Secretary and Chairman of the RTWG.
    [Show full text]
  • The Art of Naming Traditional Rice Varieties and Landraces by Ancient Tamils
    Full-length paper Asian Agri-History Vol. 18, No. 1, 2014 (5–21) 5 The Art of Naming Traditional Rice Varieties and Landraces by Ancient Tamils A Sathya Centre for Advanced Research in Environment (CARE), School of Civil Engineering, SASTRA University, Thanjavur 613402, Tamil Nadu, India (email: [email protected]) Abstract South Indian history is interwoven with rice. Rice is the essential component of food, festival, occupation, birth, and death of every single citizen of Tamil Nadu, as elsewhere in India. Especially in Tamil Nadu, the Cauvery river basin had been renowned as ‘Rice Granary of South India’. There had been approximately 400 varieties of rice in vogue since Kingdoms’ Era. An effort has been made to collect names of traditional rice varieties that are still extant and those that had been then household varieties of ancient Tamils. The names had been collected from sources like inscriptions, textual records, literature, personal communications, poems, semi-structured interviews, and oral sayings. The meticulous transliteration efforts have enabled us to understand and appreciate the criteria of naming the traditional varieties of rice primarily on morphological traits of whole plant or infl orescence or grain. The varieties had been clearly distinguished and given names with color, shape, size, and appearance, either as an individual trait or in combination with other characters. This article corroborates the phenomenon of naming of traditional rice by ancient Tamils with the art of naming elsewhere in India as cited in Ayurvedic treatises by Susruta, Taittiriya Samhita of the Black Yajurveda, Paninni’s Astadhyayi, and Ramayana. The art of naming is also compared for a range of crops including rice of Lao PDR, enset of Ethiopia, rice of Gambia, etc.
    [Show full text]