Vaccines Licensed for Use in the United States by the Food and Drug

Total Page:16

File Type:pdf, Size:1020Kb

Vaccines Licensed for Use in the United States by the Food and Drug Vaccines Licensed for Use in the United States by the Food and Drug Administration (FDA) Cell Lines Used for Viral Vaccine Production Current FDA list accessed 4 January 2021 Use of Cell Lines for Vaccine Production Vaccine Product Name No fetal cells (linked to FDA vaccine page Vaccine Trade Name fetal cells including package insert) -- no cell lines - bacteria grow independently WI-38 Adenovirus Type 4 and Type 7 Vaccine, No Trade Name Live, Oral -- Anthrax Vaccine Adsorbed Biothrax -- BCG Live BCG Vaccine -- BCG Live TICE BCG -- Cholera Vaccine Live Oral Vaxchora Vero Dengue Tetravalent Vaccine, Live DENGVAXIA -- Diphtheria & Tetanus Toxoids Adsorbed No Trade Name -- Diphtheria & Tetanus Toxoids & Acellular Infanrix Pertussis Vaccine Adsorbed -- Diphtheria & Tetanus Toxoids & Acellular DAPTACEL Pertussis Vaccine Adsorbed Yeast (HepB) Diphtheria & Tetanus Toxoids & Acellular Vero (polio) Pertussis Vaccine Adsorbed, Hepatitis B Pediarix -- diphtheria, tetanus, (recombinant) and Inactivated Poliovirus pertussis Vaccine Combined Vero (polio) Diphtheria and Tetanus Toxoids and -- diphtheria, tetanus, Acellular Pertussis Adsorbed and Inactivated KINRIX pertussis Poliovirus Vaccine Vero (polio) Diphtheria and Tetanus Toxoids and -- diphtheria, tetanus, Acellular Pertussis Adsorbed and Inactivated Quadracel pertussis Poliovirus Vaccine Yeast (HepB) Diphtheria and Tetanus Toxoids and Vero (polio) Acellular Pertussis Adsorbed, Inactivated -- diphtheria, tetanus, Poliovirus, Haemophilus b Conjugate VAXELIS pertussis, haemophilus [Meningococcal Protein Conjugate] and Hepatitis B [Recombinant] Vaccine Vero (polio) Diphtheria and Tetanus Toxoids and Pentacel -- diphtheria, tetanus, Acellular Pertussis Adsorbed, Inactivated pertussis, haemophilus Use of Cell Lines for Vaccine Production Vaccine Product Name No fetal cells (linked to FDA vaccine page Vaccine Trade Name fetal cells including package insert) -- no cell lines - bacteria grow independently Poliovirus and Haemophilus b Conjugate (Tetanus Toxoid Conjugate) Vaccine Vero Ebola Zaire Vaccine, Live ERVEBO -- Haemophilus b Conjugate Vaccine PedvaxHIB (Meningococcal Protein Conjugate) -- Haemophilus b Conjugate Vaccine (Tetanus ActHIB Toxoid Conjugate) -- Haemophilus b Conjugate Vaccine (Tetanus Hiberix Toxoid Conjugate) MRC-5 Hepatitis A Vaccine, Inactivated Havrix MRC-5 Hepatitis A Vaccine, Inactivated VAQTA MRC-5 (HepA) Hepatitis A Inactivated and Hepatitis B Twinrix Yeast (HepB) (Recombinant) Vaccine Yeast Hepatitis B Vaccine (Recombinant) Recombivax HB Yeast Hepatitis B Vaccine (Recombinant) Engerix-B Yeast Hepatitis B Vaccine (Recombinant), HEPLISAV-B Adjuvanted Yeast Human Papillomavirus Quadrivalent (Types Gardasil 6, 11, 16, 18) Vaccine, Recombinant Yeast Human Papillomavirus 9-valent Vaccine, Gardasil 9 Recombinant Insect cells Human Papillomavirus Bivalent (Types 16, Cervarix 18) Vaccine, Recombinant Chicken eggs Influenza A (H1N1) 2009 Monovalent No Trade Name Vaccine Chicken eggs Influenza A (H1N1) 2009 Monovalent No Trade Name Vaccine Chicken eggs Influenza A (H1N1) 2009 Monovalent No Trade Name Vaccine Chicken eggs Influenza A (H1N1) 2009 Monovalent No Trade Name Vaccine Chicken eggs Influenza A (H1N1) 2009 Monovalent No Trade Name Vaccine Use of Cell Lines for Vaccine Production Vaccine Product Name No fetal cells (linked to FDA vaccine page Vaccine Trade Name fetal cells including package insert) -- no cell lines - bacteria grow independently Chicken eggs Influenza Virus Vaccine, H5N1 (for National No Trade Name Stockpile) Chicken eggs Influenza A (H5N1) Virus Monovalent No Trade Name Vaccine, Adjuvanted MDCK cells Influenza A (H5N1) Monovalent Vaccine, AUDENZ Adjuvanted Chicken eggs FLUAD Influenza Vaccine, Adjuvanted QUADRIVALENT Chicken eggs Influenza Vaccine, Adjuvanted FLUAD Chicken eggs AFLURIA Influenza Vaccine QUADRIVALENT MDCK cells Flucelvax Influenza Vaccine Quadrivalent Chicken eggs Influenza Virus Vaccine Afluria (Trivalent, Types A and B) Chicken eggs Influenza Virus Vaccine FluLaval (Trivalent, Types A and B) Chicken eggs Influenza Vaccine, Live, Intranasal FluMist (Trivalent, Types A and B) Chicken eggs Influenza Virus Vaccine Fluarix (Trivalent, Types A and B) Chicken eggs Influenza Virus Vaccine Fluvirin (Trivalent, Types A and B) Chicken eggs Influenza Virus Vaccine Agriflu (Trivalent, Types A and B) Chicken eggs Fluzone, Fluzone Influenza Virus Vaccine High-Dose and (Trivalent, Types A and B) Fluzone Intradermal MDCK cells Influenza Virus Vaccine Flucelvax (Trivalent, Types A and B) Insect cells Influenza Vaccine (Trivalent) Flublok Insect cells Influenza Vaccine (Quadrivalent) Flublok Quadrivalent Chicken eggs Influenza Vaccine, Live, Intranasal FluMist Quadrivalent (Quadrivalent, Types A and Types B) Use of Cell Lines for Vaccine Production Vaccine Product Name No fetal cells (linked to FDA vaccine page Vaccine Trade Name fetal cells including package insert) -- no cell lines - bacteria grow independently Chicken eggs Influenza Virus Vaccine Fluarix Quadrivalent (Quadrivalent, Types A and Types B) Chicken eggs Influenza Virus Vaccine Fluzone Quadrivalent (Quadrivalent, Types A and Types B) Chicken eggs Influenza Vaccine Flulaval Quadrivalent Vero Japanese Encephalitis Virus Vaccine, Ixiaro Inactivated, Adsorbed Chick cells (Measles, Measles, Mumps, and Rubella Virus Vaccine, Mumps) M-M-R II Live WI-38 (Rubella) Chick cells (Measles, Mumps) Measles, Mumps, Rubella and Varicella Virus WI-38 (Rubella) ProQuad Vaccine Live MRC-5 (Varicella- Zoster) -- Meningococcal (Groups A, C, Y, and W-135) Oligosaccharide Diphtheria CRM197 Menveo Conjugate Vaccine -- Meningococcal (Groups A, C, Y and W-135) Polysaccharide Diphtheria Toxoid Conjugate Menactra Vaccine -- Meningococcal Group B Vaccine BEXSERO -- Meningococcal Group B Vaccine TRUMENBA -- Meningococcal Polysaccharide Vaccine, Menomune-A/C/Y/W- Groups A, C, Y and W-135 Combined 135 -- Meningococcal (Groups A, C, Y, W) MenQuadfi Conjugate Vaccine -- Plague Vaccine No trade name -- Pneumococcal Vaccine, Polyvalent Pneumovax 23 -- Pneumococcal 13-valent Conjugate Vaccine Prevnar 13 (Diphtheria CRM197 Protein) Poliovirus Vaccine Inactivated (Human Poliovax Diploid Cell) (discontinued in U.S.) Vero Poliovirus Vaccine Inactivated (Monkey IPOL Kidney Cell) Use of Cell Lines for Vaccine Production Vaccine Product Name No fetal cells (linked to FDA vaccine page Vaccine Trade Name fetal cells including package insert) -- no cell lines - bacteria grow independently MRC-5 Rabies Vaccine Imovax Chicken cells Rabies Vaccine RabAvert Monkey cells Rabies Vaccine Adsorbed No Trade Name Vero Rotavirus Vaccine, Live, Oral ROTARIX Vero Rotavirus Vaccine, Live, Oral, Pentavalent RotaTeq Chicken cells Smallpox and Monkeypox Vaccine, Live, JYNNEOS Non-Replicating Vero Smallpox (Vaccinia) Vaccine, Live ACAM2000 -- Tetanus & Diphtheria Toxoids, Adsorbed TDVAX -- Tetanus & Diphtheria Toxoids Adsorbed for TENIVAC Adult Use -- Tetanus Toxoid Adsorbed No Trade Name -- Tetanus Toxoid, Reduced Diphtheria Toxoid Adacel and Acellular Pertussis Vaccine, Adsorbed -- Tetanus Toxoid, Reduced Diphtheria Toxoid Boostrix and Acellular Pertussis Vaccine, Adsorbed -- Typhoid Vaccine Live Oral Ty21a Vivotif -- Typhoid Vi Polysaccharide Vaccine TYPHIM Vi MRC-5 Varicella Virus Vaccine Live Varivax Chicken eggs Yellow Fever Vaccine YF-Vax MRC-5 Zoster Vaccine, Live, (Oka/Merck) Zostavax CHO cells Zoster Vaccine Recombinant, Adjuvanted SHINGRIX .
Recommended publications
  • Commonly Administered Vaccines
    Commonly Administered Vaccines CPT CVX Vaccine Type Brand Name Manufacturer PhilaVax Display Name Description Code Code Combination Vaccines Diptheria, tetanus toxoids and acellular pertussis vaccine, Hepati- DTaP-HepB-IPV Pediarix® GlaxoSmithKline 90723 110 DTaP-HepB-IPV tis B and poliovirus vaccine, inactivated Diptheria, tetanus toxoids and acellular pertussis vaccine and DTaP-Hib TriHIBit® Sanofi Pasteur 90721 50 DTaP-Hib (TriHIBit) Haemophilus influenzae type b conjugate vaccine Diptheria, tetanus toxoids and acellular pertussis vaccine, Hae- DTaP-Hib-IPV Pentacel® Sanofi Pasteur 90698 120 DTaP-Hib-IPV mophilus influenzae type b, and poliovirus vaccine, inactivated Diptheria, tetanus toxoids and acellular pertussis vaccine, and DTaP-IPV Kinrix® GlaxoSmithKline 90696 130 DTaP-IPV (KINRIX) poliovirus vaccine, inactivated HepA-HepB TWINRIX® GlaxoSmithKline 90636 104 HepA/B (TWINRIX) Hepatisis A and Hepatitis B vaccine, adult dosage Hepatitis B and Hemophilus influenza b vaccine, for intramuscular HepB-Hib Comvax® Merck 90748 51 Hib-Hep B (COMVAX) use Haemophilus influenza b and meningococcal sero groups C and Y MeningC/Y-Hib Menhibrix® GlaxoSmithKline 90644 148 Meningococcal-Hib vaccine, 4 dose series Diphtheria, Tetanus and Pertussis DTaP Infanrix® GlaxoSmithKline 90700 20 DTaP (INFANRIX) Diptheria, tetanus toxoids and acellular pertussis vaccine DTaP, 5 Pertussis Antigens Daptacel® Sanofi Pasteur 90700 106 DTaP (DAPTACEL) Diptheria, tetanus toxoids and acellular pertussis vaccine Tetanus toxoid, reduced diphtheria toxoid, and acellular
    [Show full text]
  • Vaccine Hesitancy
    Vaccine Hesitancy Dr Brenda Corcoran National Immunisation Office Presentation Outline An understanding of the following principles: • Overview of immunity • Different types of vaccines and vaccine contents • Vaccine failures • Time intervals between vaccine doses • Vaccine overload • Adverse reactions • Herd immunity Immunity Immunity • The ability of the human body to protect itself from infectious disease The immune system • Cells with a protective function in the – bone marrow – thymus – lymphatic system of ducts and nodes – spleen –blood Types of immunity Source: http://en.wikipedia.org/wiki/Immunological_memory Natural (innate) immunity Non-specific mechanisms – Physical barriers • skin and mucous membranes – Chemical barriers • gastric and digestive enzymes – Cellular and protein secretions • phagocytes, macrophages, complement system ** No “memory” of protection exists afterwards ** Passive immunity – adaptive mechanisms Natural • maternal transfer of antibodies to infant via placenta Artificial • administration of pre- formed substance to provide immediate but short-term protection (antitoxin, antibodies) Protection is temporary and wanes with time (usually few months) Active immunity – adaptive mechanisms Natural • following contact with organism Artificial • administration of agent to stimulate immune response (immunisation) Acquired through contact with an micro-organism Protection produced by individual’s own immune system Protection often life-long but may need boosting How vaccines work • Induce active immunity – Immunity and immunologic memory similar to natural infection but without risk of disease • Immunological memory allows – Rapid recognition and response to pathogen – Prevent or modify effect of disease Live attenuated vaccines Weakened viruses /bacteria – Achieved by growing numerous generations in laboratory – Produces long lasting immune response after one or two doses – Stimulates immune system to react as it does to natural infection – Can cause mild form of the disease (e.g.
    [Show full text]
  • Supplemental Information and Guidance for Vaccination Providers Regarding Use of 9-Valent HPV Vaccine
    Supplemental information and guidance for vaccination providers regarding use of 9-valent HPV A 9-valent human papillomavirus (HPV) vaccine (9vHPV, Gardasil 9, Merck & Co.) was licensed for use in females and males in December 2014.1,2,3,4 The 9vHPV was the third HPV vaccine licensed in the United States by the Food and Drug Administration (FDA); the other vaccines are bivalent HPV vaccine (2vHPV, Cervarix, GlaxoSmithKline), licensed for use in females, and quadrivalent HPV vaccine (4vHPV, Gardasil, Merck & Co.), licensed for use in females and males.5 In February 2015, the Advisory Committee on Immunization Practices (ACIP) recommended 9vHPV as one of three HPV vaccines that can be used for routine vaccination of females and one of two HPV vaccines for routine vaccination of males.6 After the end of 2016, only 9vHPV will be distributed in the United States. In October 2016, ACIP updated HPV vaccination recommendations regarding dosing schedules.7 CDC now recommends two doses of HPV vaccine (0, 6–12 month schedule) for persons starting the vaccination series before the 15th birthday. Three doses of HPV vaccine (0, 1–2, 6 month schedule) continue to be recommended for persons starting the vaccination series on or after the 15th birthday and for persons with certain immunocompromising conditions. Guidance is needed for persons who started the series with 2vHPV or 4vHPV and may be completing the series with 9vHPV. The information below summarizes some of the recommendations included in ACIP Policy Notes and provides additional guidance.5-7 Information about the vaccines What are some of the similarities and differences between the three HPV vaccines? y Each of the three HPV vaccines is a noninfectious, virus-like particle (VLP) vaccine.
    [Show full text]
  • Adenoviral Vector COVID-19 Vaccines: Process and Cost Analysis
    processes Article Adenoviral Vector COVID-19 Vaccines: Process and Cost Analysis Rafael G. Ferreira 1,* , Neal F. Gordon 2, Rick Stock 2 and Demetri Petrides 3 1 Intelligen Brasil, Sao Paulo 01227-200, Brazil 2 BDO USA, LLP, Boston, MA 02110, USA; [email protected] (N.F.G.); [email protected] (R.S.) 3 Intelligen, Inc., Scotch Plains, NJ 07076, USA; [email protected] * Correspondence: [email protected] Abstract: The COVID-19 pandemic has motivated the rapid development of numerous vaccines that have proven effective against SARS-CoV-2. Several of these successful vaccines are based on the adenoviral vector platform. The mass manufacturing of these vaccines poses great challenges, especially in the context of a pandemic where extremely large quantities must be produced quickly at an affordable cost. In this work, two baseline processes for the production of a COVID-19 adenoviral vector vaccine, B1 and P1, were designed, simulated and economically evaluated with the aid of the software SuperPro Designer. B1 used a batch cell culture viral production step, with a viral titer of 5 × 1010 viral particles (VP)/mL in both stainless-steel and disposable equipment. P1 used a perfusion cell culture viral production step, with a viral titer of 1 × 1012 VP/mL in exclusively disposable equipment. Both processes were sized to produce 400 M/yr vaccine doses. P1 led to a smaller cost per dose than B1 ($0.15 vs. $0.23) and required a much smaller capital investment ($126 M vs. $299 M). The media and facility-dependent expenses were found to be the main contributors to the operating cost.
    [Show full text]
  • Version 12.0, 01 Jun 2018 ANNEX I SUMMARY of PRODUCT
    BioThrax® (Anthrax Vaccine Adsorbed) 1.3.1 Summary of Product Characteristics, Labelling and Package Leaflet Version 12.0, 01 Jun 2018 ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS, LABELLING AND PACKAGE LEAFLET Emergent BioSolutions, Inc. Confidential and Proprietary Page 1 of 25 BioThrax® (Anthrax Vaccine Adsorbed) 1.3.1 Summary of Product Characteristics, Labelling and Package Leaflet SUMMARY OF PRODUCT CHARACTERISTICS Emergent BioSolutions, Inc. Confidential and Proprietary Page 2 of 25 BioThrax® (Anthrax Vaccine Adsorbed) 1.3.1 Summary of Product Characteristics, Labelling and Package Leaflet This medicinal product is subject to additional monitoring. This will allow quick identification of new safety information. Healthcare professionals are asked to report any suspected adverse reactions. See Section 4.8 for how to report adverse reactions 1 NAME OF THE MEDICINAL PRODUCT BioThrax1 suspension for injection. Anthrax Vaccine Adsorbed (purified cell-free filtrate) 2 QUALITATIVE AND QUANTITATIVE COMPOSITION One dose (0.5 mL) contains: Anthrax antigen filtrate: 50 micrograms (50 mcg) a, b For a full list of excipients, see Section 6.1. a Produced from cell-free filtrates of an avirulent strain of Bacillus anthracis b Adsorbed on aluminium hydroxide, hydrated (0.6 mg Al3+) 3 PHARMACEUTICAL FORM Suspension for injection. Sterile, milky-white liquid suspension, when mixed. 4 CLINICAL PARTICULARS 4.1 Therapeutic indications BioThrax is indicated for the prevention of disease caused by Bacillus anthracis, in adults at risk of exposure. BioThrax should be used in accordance with official recommendations, where available. 4.2 Posology and method of administration Posology: Primary Immunisation: 3-doses each of 0.5 mL, given at 0, 1 and 6 months.
    [Show full text]
  • Criteria for Reviewing Pneumococcal Conjugate Vaccine
    Draft—3/11/10 Oregon School/Facility Immunization Advisory Committee: Review of Pneumococcal Conjugate Vaccine Against Twelve Criteria for Children’s Facility Immunization Requirements Oregon Department of Human Services Public Health Division Office of Family Health Immunization Program 800 NE Oregon Street, Suite 370 Portland, Oregon 97232 Phone: 971-673-0300 Fax: 971-673-0278 Web: www.oregon.gov/DHS/ph/imm Page 1–Review of Pneumococcal Conjugate Vaccine Against Criteria for School Law Immunization Requirements Oregon School/Facility Immunization Advisory Committee: Review of Pneumococcal Conjugate Vaccine Against Twelve Criteria for School/Facility/College Immunization Requirements Process for Reviewing Antigens for Potential Inclusion in OAR 333-050-0050, 333-050-0130 and 333-050-0140. Request for the inclusion of additional antigens or vaccines can come from the Oregon Immunization Program, IPAT (Immunization Policy Advisory Team), or from the community. Proposed changes to vaccine requirements are discussed with IPAT either in a regularly scheduled meeting or through electronic communication. IPAT will submit their comments and a request for consideration to the Oregon Immunization School Law Advisory Committee. The Oregon School/Facility Immunization Advisory Committee was established as a part of the school law immunization requirements when the original legislation was passed in 1980. This Committee is composed of immunization stakeholders from the fields of public health, school health, school administration, medicine, day care, child advocacy and consumers (parents). Through consensus, the committee determines what vaccines (antigens) should be included in Oregon school immunization requirements. Information about new vaccines and the diseases they prevent, including transmission within schools, burden of disease, cost-effectiveness, effect on schools/counties and vaccine availability is presented at a scheduled meeting for committee consideration.
    [Show full text]
  • Immunity and How Vaccines Work
    Immunity and how vaccines work Dr Brenda Corcoran National Immunisation Office Presentation Outline An understanding of the following principles: • Overview of immunity • Different types of vaccines and vaccine contents • Vaccine failures • Time intervals between vaccine doses • Vaccine overload • Adverse reactions • Herd immunity Immunity Immunity • The ability of the human body to protect itself from infectious disease The immune system • Cells with a protective function in the – bone marrow – thymus – lymphatic system of ducts and nodes – spleen –blood Types of immunity Source: http://en.wikipedia.org/wiki/Immunological_memory Natural (innate) immunity Non-specific mechanisms – Physical barriers • skin and mucous membranes – Chemical barriers • gastric and digestive enzymes – Cellular and protein secretions • phagocytes, macrophages, complement system ** No “memory” of protection exists afterwards ** Passive immunity – adaptive mechanisms Natural • maternal transfer of antibodies to infant via placenta Artificial • administration of pre- formed substance to provide immediate but short-term protection (antitoxin, antibodies) Protection is temporary and wanes with time (usually few months) Active immunity – adaptive mechanisms Natural • following contact with organism Artificial • administration of agent to stimulate immune response (immunisation) Acquired through contact with an micro-organism Protection produced by individual’s own immune system Protection often life-long but may need boosting How vaccines work • Induce active immunity – Immunity and immunologic memory similar to natural infection but without risk of disease • Immunological memory allows – Rapid recognition and response to pathogen – Prevent or modify effect of disease Live attenuated vaccines Weakened viruses /bacteria – Achieved by growing numerous generations in laboratory – Produces long lasting immune response after one or two doses – Stimulates immune system to react as it does to natural infection – Can cause mild form of the disease (e.g.
    [Show full text]
  • The Effect of Raxibacumab on the Immunogenicity of Anthrax Vaccine Adsorbed: a Phase
    The effect of raxibacumab on the immunogenicity of anthrax vaccine adsorbed: a Phase IV, randomised, open-label, parallel-group, non-inferiority study Nancy Skoura, PhD1, Jie Wang-Jairaj, MD2, Oscar Della Pasqua MD2, Vijayalakshmi Chandrasekaran, MS1, Julia Billiard, PhD1, Anne Yeakey, MD3, William Smith, MD4, Helen Steel, MD2, Lionel K Tan, FRCP2 1GlaxoSmithKline, Inc. Collegeville, PA, USA 2GlaxoSmithKline. Stockley Park West, Middlesex, UK 3GlaxoSmithKline, Inc. Rockville, MD, USA 4AMR, at University of TN Medical Center, Knoxville, TN; New Orleans Center for Clinical Research (NOCCR), USA Author for Correspondence: Dr Lionel K Tan GlaxoSmithKline Stockley Park West 1–3 Ironbridge Road Uxbridge Middlesex UB11 1BT UK Email: [email protected] Tel: +44 (0)7341 079 683 1 Abstract: 340/350 Body text: 4321/4500 words including Research in Context Table/Figures: 2/4 References: 30 2 Abstract Background Raxibacumab is a monoclonal antibody (Ab) which binds protective antigen (PA) of Bacillus anthracis and is approved for treatment and post-exposure prophylaxis (PEP) of inhalational anthrax. Anthrax vaccine adsorbed (AVA), for anthrax prophylaxis, consists primarily of adsorbed PA. This post-approval study evaluated the effect of raxibacumab on immunogenicity of AVA. Methods In this open-label, parallel-group, non-inferiority study in three centres in the USA, healthy volunteers (aged 18–65 years) with no evidence of PA pre-exposure were randomised 1:1 to receive either subcutaneous 0·5 mL AVA on Days 1, 15, and 29 or raxibacumab intravenous infusion (40 mg/kg) immediately before AVA on Day 1, followed by AVA only on Days 15 and 29.
    [Show full text]
  • Inactivated Japanese Encephalitis Virus Vaccine
    January 8, 1993 / Vol. 42 / No. RR-1 CENTERS FOR DISEASE CONTROL AND PREVENTION Recommendations and Reports Inactivated Japanese Encephalitis Virus Vaccine Recommendations of the Advisory Committee on Immunization Practices (ACIP) U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Centers for Disease Control and Prevention (CDC) Atlanta, Georgia 30333 The MMWR series of publications is published by the Epidemiology Program Office, Centers for Disease Control and Prevention (CDC), Public Health Service, U.S. Depart- ment of Health and Human Services, Atlanta, Georgia 30333. SUGGESTED CITATION Centers for Disease Control and Prevention. Inactivated Japanese encephalitis vi- rus vaccine. Recommendations of the advisory committee on immunization practices (ACIP). MMWR 1993;42(No. RR-1):[inclusive page numbers]. Centers for Disease Control and Prevention .................... William L. Roper, M.D., M.P.H. Director The material in this report was prepared for publication by: National Center for Infectious Diseases..................................James M. Hughes, M.D. Director Division of Vector-Borne Infectious Diseases ........................Duane J. Gubler, Sc.D. Director The production of this report as an MMWR serial publication was coordinated in: Epidemiology Program Office.................................... Stephen B. Thacker, M.D., M.Sc. Director Richard A. Goodman, M.D., M.P.H. Editor, MMWR Series Scientific Information and Communications Program Recommendations and Reports ................................... Suzanne M. Hewitt, M.P.A. Managing Editor Sharon D. Hoskins Project Editor Rachel J. Wilson Editorial Trainee Peter M. Jenkins Visual Information Specialist Use of trade names is for identification only and does not imply endorsement by the Public Health Service or the U.S. Department of Health and Human Services.
    [Show full text]
  • An Overview of Nanocarrier-Based Adjuvants for Vaccine Delivery
    pharmaceutics Review An Overview of Nanocarrier-Based Adjuvants for Vaccine Delivery Kailash C. Petkar 1,*,†, Suyash M. Patil 2,†, Sandip S. Chavhan 3 , Kan Kaneko 4, Krutika K. Sawant 3, Nitesh K. Kunda 2,* and Imran Y. Saleem 4,* 1 Department of Scientific and Industrial Research, Ministry of Science & Technology, Government of India, New Delhi 110016, India 2 Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Jamaica, NY 11439, USA; [email protected] 3 Department of Pharmaceutics, Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Kalabhavan, Vadodara 390001, India; [email protected] (S.S.C.); [email protected] (K.K.S.) 4 School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; [email protected] * Correspondence: [email protected] (K.C.P.); [email protected] (N.K.K.); [email protected] (I.Y.S.) † These authors contributed eqally to this work. Abstract: The development of vaccines is one of the most significant medical accomplishments which has helped to eradicate a large number of diseases. It has undergone an evolutionary process from live attenuated pathogen vaccine to killed whole organisms or inactivated toxins (toxoids), each of them having its own advantages and disadvantages. The crucial parameters in vaccination are the generation of memory response and protection against infection, while an important aspect is the effective delivery of antigen in an intelligent manner to evoke a robust immune response. In Citation: Petkar, K.C.; Patil, S.M.; Chavhan, S.S.; Kaneko, K.; Sawant, this regard, nanotechnology is greatly contributing to developing efficient vaccine adjuvants and K.K.; Kunda, N.K.; Saleem, I.Y.
    [Show full text]
  • A Brief History of Vaccines & Vaccination in India
    [Downloaded free from http://www.ijmr.org.in on Wednesday, August 26, 2020, IP: 14.139.60.52] Review Article Indian J Med Res 139, April 2014, pp 491-511 A brief history of vaccines & vaccination in India Chandrakant Lahariya Formerly Department of Community Medicine, G.R. Medical College, Gwalior, India Received December 31, 2012 The challenges faced in delivering lifesaving vaccines to the targeted beneficiaries need to be addressed from the existing knowledge and learning from the past. This review documents the history of vaccines and vaccination in India with an objective to derive lessons for policy direction to expand the benefits of vaccination in the country. A brief historical perspective on smallpox disease and preventive efforts since antiquity is followed by an overview of 19th century efforts to replace variolation by vaccination, setting up of a few vaccine institutes, cholera vaccine trial and the discovery of plague vaccine. The early twentieth century witnessed the challenges in expansion of smallpox vaccination, typhoid vaccine trial in Indian army personnel, and setting up of vaccine institutes in almost each of the then Indian States. In the post-independence period, the BCG vaccine laboratory and other national institutes were established; a number of private vaccine manufacturers came up, besides the continuation of smallpox eradication effort till the country became smallpox free in 1977. The Expanded Programme of Immunization (EPI) (1978) and then Universal Immunization Programme (UIP) (1985) were launched in India. The intervening events since UIP till India being declared non-endemic for poliomyelitis in 2012 have been described. Though the preventive efforts from diseases were practiced in India, the reluctance, opposition and a slow acceptance of vaccination have been the characteristic of vaccination history in the country.
    [Show full text]
  • Docket Number 1980N – 0208
    Comments and Questions regarding FDA’s proposed rule and order to license Anthrax Vaccine Adsorbed Re: DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration, 21 CFR Parts 201 and 610 [Docket No. 1980N–0208] Biological Products; Bacterial Vaccines and Toxoids; Implementation of Efficacy Review ACTION: Proposed rule and proposed order, 29 Fed. Reg. 78281-78293 (Dec 29, 2004).1 1. The lack of human efficacy trials precludes licensure. In its proposed rule, the FDA claims that AVA is efficacious in humans for inhalation and other forms of anthrax, basing this determination on indirect pieces of evidence, because there exist no clinical trials documenting efficacy of AVA for any route of exposure in humans. By so doing, FDA is flouting the existing statutory requirements2 for licensure of a vaccine, which require valid human data from an adequate and well-controlled clinical trials that support both efficacy and safety. In 1969 NIH asked that an IND study be undertaken “to determine human efficacy of the product.”3 The manufacturer never complied with this recommendation. 2. The Animal Rule cannot be used to license anthrax vaccine adsorbed (AVA) without correlates of protection. A second pathway for licensure of vaccines and drugs for bioterrorism, the so-called Animal Rule promulgated by FDA in 20024, requires data obtained from at least two animal species, in conjunction with correlates of immunity that assure the animal data can be extrapolated to humans with absolute reliability. No such correlates of immunity (i.e., surrogate markers for survival following exposure to anthrax) have yet been established 1 http://www.fda.gov/cber/rules/bvactox.pdf 2 21 CFR 601.25 3 Pittman M., Memorandum to S.
    [Show full text]