Identification Key

Total Page:16

File Type:pdf, Size:1020Kb

Identification Key GROUP 6 C : IDENTIFICATION KEY SUBGROUP 6 C Partial color change to pink, red or brown. 6.40 Stipe covered with a Xerocomus tenax coarse reticulum on full- Xerocomus tenax length. 6 C-1 Reticulate tipe. Finely reticulate stipe; 6.41 pore surface whitish, Tylopilus indecisus then pink, then pink- Tylopilus indecisus brown. 6 C-2 Non reticulate stipe. GROUP 6 C : IDENTIFICATION KEY 6.42 Lilac-brown Bolete SUDGROUP 6 C-2 Tylopilus eximius Non reticulate stipe. Pore surface dark brown Sutorius at first, then pale brown. eximius Gray or brownish pore surface. Blackish-brow Pale brown to Pore surface pale White flesh Pore surface pale gray at cap, paler with dark brown grey at first, then blushing slowly in 6.43 first, then brownish and age. stipe, finely brownish and places when cut. Porphyrellus darker brown at velvety or dark brown at porphyrosporus maturity. reticulate. maturity. Porphyrellus See also 7.11 porphyrosporus Pallid Bolete, Boletus pallidus Cap and stipe reddish 6.44 Bai Bolete brown to dark brown. Xerocomus badius Pore surface yellow to Imleria badia olive yellow, bluish when bruised. 6.45 Dark brownish cap and Porphyrellus stipe, often cracked at fumosipes maturity. Porphyrellus fumosipes Tylopilus sordidus Brow cap, paler Pale brown stipe Pore surface White flesh slowly Brown cap; pale brown towards the typically whitish at first, browning when 6.46 stipe. margin. attenuated pinkish at cut. Tylopilus Appalachiensis Pore surface whitish- towards the maturity, Tylopilus white at first, pinkish at base browning when appalachiensis bruised. maturity, turning brown when bruised. Pore surface Whitish cap developing Whitish cap White stipe, White flesh 6.47 developing towards brown whitish at first, reddening or Bitter Parchment Bolete pinkish to brownish pinkish to with age or pinkish at browning when Tylopilus intermedius tints. brownish hues. when bruised. maturity, cut. browning when bruised. GROUP 6 C : IDENTIFICATION KEY SUBGROUP 6 C Partial color change to pink, Brown to olive brown cap, cracked with age, yellowish flesh in cracks, margin sometimes lobed to red or brown. irregular at maturity. Whitish to yellowish or reddish stipe, coarsly reticulated in the upper part or 6.40 at length. Stipe covered with a Xerocomus tenax coarse reticulum. Pore surface yellow at the beginning, olivaceous later, immutable or changing color when bruised; pores large, round to angular. Xerocomus tenax White or pale yellow flesh, immutable or turning purple reddish when cut, sometimes yellowing or bluish above tubes. 6 C-1 Reticulate stipe. Velvet brown cap at a young age, pale brown at maturity, with a even margin. Finely reticulate stipe; Typically white reticulated stipe at apex when young, pale brown at maturity. 6.41 pore surface whitish, Pore surface whitish to pinkish then pink-brown, browning when bruised; Tylopilus indecisus then pink, then pink- angular pores. Tylopilus indecisus brown. Whitish flesh, becoming pinkish or brownish in places when cut. 6 C-2 Non reticulate stipe. GROUP 6 C : IDENTIFICATION KEY Stocky fruitbodies with wide stipe and firm flesh. Cap brown, grey to purple, 6.42 sometimes tinged with reddish. Stipe shrunk at the base, covered with tiny Lilac-brown Bolete SUBGROUP 6 C-2 Pore surface dark brown purple brown or brown-grey scales along the entire length. Tylopilus eximius Non reticulate stipe. at first, then pale brown. Pore surface dark brown at the beginning, paler thereafter, immutable or Sutorius browning when bruised. Purple grey flesh, grey-brown when cut. eximius Gray or brownish pore Blackish brown cap, paler at maturity. Pale brown stipe often streaked. 6.43 surface. Pore surface pale gray at Pore surface greyish, darker at maturity, bluish when bruised. Porphyrellus first, then brownish and White flesh, blushing or bluish in places when cut, especially above the tubes. porphyrosporus darker brown at Porphyrellus maturity. porphyrosporus See also 7.11 Pallid Bolete, Often on stumps or trunks rotten on the ground. Stipe of the same color as Boletus pallidus the cap: dark brown to brown red, sometimes tinged with olive at maturity. 6.44 Cap and stipe reddish Pore surface yellowish, olivaceous at maturity, bluish when bruised; round to Bai Bolete brown to dark brown. angular pores. Xerocomus badius Unchanging white flesh, sometimes blushing or bluishing a little when cut. Imleria badia Pore surface yellow to olive yellow, bluish when Small fruitbody darkened on all its parts, little visible in autumn among bruised. Dark brownish cap and dead leaves. Brown cap fading with age and often cracked at maturity. 6.45 Brownish stipe with darker longitudinal streaks. Porphyrellus fumosipes stipe, often cracked at Pore surface whitish, browning at maturity, bluish when bruised. Whitish flesh Porphyrellus fumosipes maturity. turning red brown when cut. Tylopilus sordidus Brown cap lighter brown yellow towards the margin, sometimes dark all over the surface. 6.46 Brown cap; pale brown Stipe concolored with the cap or paler, sometimes finely reticulated. Tylopilus Appalachiensis stipe. Pore surface whitish, pinkish at maturity, browning when bruised. Tylopilus Pore surface whitish- White to pale yellow flesh browning when cut. appalachiensis white at first, pinkish at maturity, turning brown when bruised. Whitish cap developing pinkish or brownish hues at maturity; often pleated 6.47 Whitish cap developing surface. White stipe, sometimes weakly reticulate. Bitter Parchment Bolete pinkish to brownish Pore surface white, pinkish at maturity, browning when bruised. Tylopilus intermedius tints. White flesh, turning slowly brown when the cut. GROUP 6 C : IDENTIFICATION KEY SUBGROUP 6 C Partial color change to pink, red or brown. English name: French name: Bolet tenace 6.40 Stipe covered with a Latin names: Xerocomus tenax, Boletus tenax Xerocomus tenax coarse reticulum on full- Xerocomus tenax length. 6 C-1 Reticulate stipe English name: Finely reticulate stipe; French name: Bolet indécis 6.41 Latin name: Tylopilus indecisus pore surface whitish, Tylopilus indecisus then pink, then pink- Tylopilus indecisus brown. 6 C-2 Non reticulate stipe. GROUP 6 C : IDENTIFICATION KEY English name: Lilac-brown Bolete 6.42 French names: Bolet distingué, Bolet singulier Lilac-brown Bolete SUBGROUP 6 C-2 Pore surface dark brown Latin names: Sutorius eximius, Tylopilus eximius, Leccinum eximium Tylopilus eximius Non reticulate stipe. at first, then pale brown. Sutorius eximius Gray or brownish pore surface. English name: Pore surface pale gray at French name: Bolet porphyre 6.43 Latin name: Porphyrellus porphyrosporus first, then brownish and Porphyrellus darker brown at porphyrosporus maturity. Porphyrellus porphyrosporus English name: Bai Bolete French name: Bolet bai 6.44 Cap and stipe reddish Latin names: Xerocomus badius, Imleria badia, Boletus badius, Suillus Badius, Boletus Bai Bolete brown to dark brown. stejskalii, Gyrodon stejskalii, Suillus vaccines, Ixocomus badius… Xerocomus badius Pore surface yellow to Imleria badia olive yellow, bluish when bruised. English name: 6.45 Dark brownish cap and French names: Bolet à pied fumé, Bolet à pied sombre Porphyrellus fumosipes stipe, often cracked at Latin names: Porphyrellus fumosipes, Tylopilus sordidus, Boletus sordidus, Porphyrellus sordidus, Ceriomyces sordidus, Tylopilus porphyrosporus Porphyrellus fumosipes maturity. Tylopilus sordidus English name: French name: Bolet des Appalaches 6.46 Brown cap; pale brown Latin name: Tylopilus appalachiensis stipe. Tylopilus Appalachiensis Pore surface whitish- Tylopilus white at first, pinkish at appalachiensis maturity, turning brown when bruised. English name: Bitter Parchment Bolete 6.47 Whitish cap developing French name: Bolet mitoyen Bitter Parchment Bolete Latin name: Tylopilus intermedius pinkish to brownish Tylopilus intermedius tints..
Recommended publications
  • TLC–Densitometry Analysis of Indole Compounds in Mycelial Culture of Imleria Badia and Agaricus Bisporus Enriched with Precursors — Serine Or Anthranilic Acid
    Original Research Paper TLC–Densitometry Analysis of Indole Compounds in Mycelial Culture of Imleria badia and Agaricus bisporus Enriched with Precursors — Serine or Anthranilic Acid Włodzimierz Opoka1*, Katarzyna Kała2, Remigiusz Krężałek2, Katarzyna Sułkowska-Ziaja2, Anna Maślanka1 and Bożena Muszyńska2 1Department of Inorganic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland 2Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland Received: 14 May 2017; accepted: 05 June 2017 Agaricus bisporus and Imleria in vitro cultures were cultivated on modified Oddoux medium, and Oddoux medium was enriched with serine or anthranilic acid. Serine or anthranilic acid was used at the concentrations of 0.1, 0.25, 0.5, and 0.75 g/L of medium. Determination of indole compounds in the obtained biomass was carried out using thin-layer chromatography (TLC) with densitometric detection. In every analyzed sample, presence of serine or anthranilic acid was studied. Comparison of the results obtained for the treatment and control samples allowed us to determine the optimum concentration of serine or anthranilic acid in the medium in order to obtain biomass with increased content of indole compounds. A. bisporus with addition of anthranilic acid or serine to the medium at the concentration of 0.5 g/L was the most beneficial. In the case of Imleria badia, anthranilic acid at the concentration of 0.5 g/L was the most optimal. This is the first report demonstrating the content of indole derivatives in biomass affected by their precursors (serine or anthranilic acid). The study indicates that modification of the medium can provide satisfactory results, and it is worth to search for its new, improved compositions.
    [Show full text]
  • Desjardin Et Al – 1 Short Title: Spongiforma Squarepantsii from Borneo 1 Spongiforma Squarepantsii , a New Species of Gastero
    Desjardin et al – 1 1 Short title: Spongiforma squarepantsii from Borneo 2 Spongiforma squarepantsii, a new species of gasteroid bolete from Borneo 3 Dennis E. Desjardin1* 4 Kabir G. Peay2 5 Thomas D. Bruns3 6 1Dept. of Biology, San Francisco State university, 1600 Holloway Ave., San Francisco, 7 California 94131; 2Dept. of Plant Pathology, University of Minnesota, St. Paul, Minnesota 8 55108, USA; 3Dept. Plant and Microbial Biology, 111 Koshland Hall, University of California, 9 Berkeley, California 94720-3102 10 Abstract: A gasteroid bolete collected recently in Sarawak on the island of Borneo is described 11 as the new species Spongiforma squarepantsii. A comprehensive description, illustrations, 12 phylogenetic tree and a comparison with a closely allied species are provided. 13 Key words: Boletales, fungi, taxonomy 14 INTRODUCTION 15 An unusual sponge-shaped, terrestrial fungus was encountered by Peay et al. (2010) 16 during a recent study of ectomycorrhizal community structure in the dipterocarp dominated 17 forest of the Lambir Hills in Sarawak, Malaysia. The form of the sporocarp was unusual enough 18 that before microscopic examination the collectors were uncertain whether the fungus was a 19 member of the Ascomycota or the Basidiomycota. However, upon returning to the laboratory it 20 was recognized as a species of the recently described genus Spongiforma Desjardin, Manf. 21 Binder, Roekring & Flegel that was described from dipterocarp forests in Thailand (Desjardin et 22 al. 2009). The Borneo specimens differed in color, odor and basidiospore ornamentation from Desjardin et al – 2 23 the Thai species, and subsequent ITS sequence analysis revealed further differences warranting 24 its formal description as a new species.
    [Show full text]
  • Comment on “Study of Biological Activity of Tricholoma Equestre Fruiting Bodies and Their Safety for Human”
    European Food Research and Technology https://doi.org/10.1007/s00217-019-03236-w SHORT COMMUNICATION Comment on “Study of biological activity of Tricholoma equestre fruiting bodies and their safety for human” Piotr Rzymski1 · Piotr Klimaszyk2 · Denis Benjamin3 Received: 18 December 2018 / Accepted: 3 January 2019 © The Author(s) 2019 Keywords Mushrooms · Toxicity · Tricholoma equestre Dear Editor, countries (e.g., France, Spain, and Italy) to officially declare T. equestre as poisonous, releasing warnings to avoid its con- The paper by Muszyńska et al. [1] entitled “Study of biologi- sumption. Prior to this, it had a long -history of consumption cal activity of Tricholoma equestre fruiting bodies and their in many countries with no anecdotal or scientific evidence safety for human” published in the journal of European Food of toxic effects. It is still considered edible and widely con- Research and Technology (https ://doi.org/10.1007/s0021 sumed in regions such as Poland [8]. As shown in a recent 7-018-3134-0) presents the results of a study on the compo- study, more than half of mushroom foragers in this country sition of T. equestre (syn. T. flavovirens, and syn. T. auratum) have consumed T. equestre at least once in their lifetime [9]. and in vitro anti-microbial and antioxidant activities of this This questionnaire survey and additional analysis of Polish mushroom. As reported, T. equestre can be a source of some registry of mushroom toxicity demonstrate that no rhabdo- essential minerals and has a favorable ratio of unsaturated- myolysis was reported in the last decade and that only mild to-saturated fatty acids, while its extracts exhibit antioxidant gastrointestinal effects were noted, at a lower frequency than effects (as shown in DPPH assay) at levels comparable to for other well-established edible wild mushrooms, such as other mushroom species, but weak anti-microbial activities.
    [Show full text]
  • Xerocomus S. L. in the Light of the Present State of Knowledge
    CZECH MYCOL. 60(1): 29–62, 2008 Xerocomus s. l. in the light of the present state of knowledge JOSEF ŠUTARA Prosetická 239, 415 01 Teplice, Czech Republic [email protected] Šutara J. (2008): Xerocomus s. l. in the light of the present state of knowledge. – Czech Mycol. 60(1): 29–62. The definition of the generic limits of Xerocomus s. l. and particularly the delimitation of this genus from Boletus is very unclear and controversial. During his study of European species of the Boletaceae, the author has come to the conclusion that Xerocomus in a wide concept is a heterogeneous mixture of several groups of species. These groups are separated from each other by different anatomical and some other characters. Also recent molecular studies show that Xerocomus s. l. is not a monophyletic group. In agreement with these facts, the European species of Xerocomus s. l. whose anatomy was studied by the present author are here classified into the following, more distinctly delimited genera: Xerocomus s. str., Phylloporus, Xerocomellus gen. nov., Hemileccinum gen. nov. and Pseudoboletus. Boletus badius and Boletus moravicus, also often treated as species of Xerocomus, are retained for the present in the genus Boletus. The differences between Xerocomus s. str., Phylloporus, Xerocomellus, Hemileccinum, Pseudoboletus and Boletus (which is related to this group of genera) are discussed in detail. Two new genera, Xerocomellus and Hemileccinum, and necessary new combinations of species names are proposed. Key words: Boletaceae, Xerocomus, Xerocomellus, Hemileccinum, generic taxonomy, anatomy, histology. Šutara J. (2008): Rod Xerocomus s. l. ve světle současného stavu znalostí. – Czech Mycol.
    [Show full text]
  • AR TICLE New Sequestrate Fungi from Guyana: Jimtrappea Guyanensis
    IMA FUNGUS · 6(2): 297–317 (2015) doi:10.5598/imafungus.2015.06.02.03 New sequestrate fungi from Guyana: Jimtrappea guyanensis gen. sp. nov., ARTICLE Castellanea pakaraimophila gen. sp. nov., and Costatisporus cyanescens gen. sp. nov. (Boletaceae, Boletales) Matthew E. Smith1, Kevin R. Amses2, Todd F. Elliott3, Keisuke Obase1, M. Catherine Aime4, and Terry W. Henkel2 1Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA 2Department of Biological Sciences, Humboldt State University, Arcata, CA 95521, USA; corresponding author email: Terry.Henkel@humboldt. edu 3Department of Integrative Studies, Warren Wilson College, Asheville, NC 28815, USA 4Department of Botany & Plant Pathology, Purdue University, West Lafayette, IN 47907, USA Abstract: Jimtrappea guyanensis gen. sp. nov., Castellanea pakaraimophila gen. sp. nov., and Costatisporus Key words: cyanescens gen. sp. nov. are described as new to science. These sequestrate, hypogeous fungi were collected Boletineae in Guyana under closed canopy tropical forests in association with ectomycorrhizal (ECM) host tree genera Caesalpinioideae Dicymbe (Fabaceae subfam. Caesalpinioideae), Aldina (Fabaceae subfam. Papilionoideae), and Pakaraimaea Dipterocarpaceae (Dipterocarpaceae). Molecular data place these fungi in Boletaceae (Boletales, Agaricomycetes, Basidiomycota) ectomycorrhizal fungi and inform their relationships to other known epigeous and sequestrate taxa within that family. Macro- and gasteroid fungi micromorphological characters, habitat, and multi-locus DNA sequence data are provided for each new taxon. Guiana Shield Unique morphological features and a molecular phylogenetic analysis of 185 taxa across the order Boletales justify the recognition of the three new genera. Article info: Submitted: 31 May 2015; Accepted: 19 September 2015; Published: 2 October 2015. INTRODUCTION 2010, Gube & Dorfelt 2012, Lebel & Syme 2012, Ge & Smith 2013).
    [Show full text]
  • Boletaceae), First Report of a Red-Pored Bolete
    A peer-reviewed open-access journal MycoKeys 49: 73–97Neoboletus (2019) antillanus sp. nov. (Boletaceae), first report of a red-pored bolete... 73 doi: 10.3897/mycokeys.49.33185 RESEARCH ARTICLE MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research Neoboletus antillanus sp. nov. (Boletaceae), first report of a red-pored bolete from the Dominican Republic and insights on the genus Neoboletus Matteo Gelardi1, Claudio Angelini2,3, Federica Costanzo1, Francesco Dovana4, Beatriz Ortiz-Santana5, Alfredo Vizzini4 1 Via Angelo Custode 4A, I-00061 Anguillara Sabazia, RM, Italy 2 Via Cappuccini 78/8, I-33170 Pordenone, Italy 3 National Botanical Garden of Santo Domingo, Santo Domingo, Dominican Republic 4 Department of Life Sciences and Systems Biology, University of Turin, Viale P.A. Mattioli 25, I-10125 Torino, Italy 5 US Forest Service, Northern Research Station, Center for Forest Mycology Research, One Gifford Pinchot Drive, Madison, Wisconsin 53726, USA Corresponding author: Alfredo Vizzini ([email protected]) Academic editor: M.P. Martín | Received 18 January 2019 | Accepted 12 March 2019 | Published 29 March 2019 Citation: Gelardi M, Angelini C, Costanzo F, Dovana F, Ortiz-Santana B, Vizzini A (2019) Neoboletus antillanus sp. nov. (Boletaceae), first report of a red-pored bolete from the Dominican Republic and insights on the genus Neoboletus. MycoKeys 49: 73–97. https://doi.org/10.3897/mycokeys.49.33185 Abstract Neoboletus antillanus sp. nov. appears to be the only red-pored bolete known from the Dominican Repub- lic to date. It is reported as a novel species to science based on collections gathered in a neotropical lowland mixed broadleaved woodland.
    [Show full text]
  • The Genus Leccinum (Boletaceae, Boletales) from China Based on Morphological and Molecular Data
    Journal of Fungi Article The Genus Leccinum (Boletaceae, Boletales) from China Based on Morphological and Molecular Data Xin Meng 1,2,3, Geng-Shen Wang 1,2,3, Gang Wu 1,2, Pan-Meng Wang 1,2,3, Zhu L. Yang 1,2,* and Yan-Chun Li 1,2,* 1 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; [email protected] (X.M.); [email protected] (G.-S.W.); [email protected] (G.W.); [email protected] (P.-M.W.) 2 Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China 3 College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China * Correspondence: [email protected] (Z.L.Y.); [email protected] (Y.-C.L.) Abstract: Leccinum is one of the most important groups of boletes. Most species in this genus are ectomycorrhizal symbionts of various plants, and some of them are well-known edible mushrooms, making it an exceptionally important group ecologically and economically. The scientific problems related to this genus include that the identification of species in this genus from China need to be verified, especially those referring to European or North American species, and knowledge of the phylogeny and diversity of the species from China is limited. In this study, we conducted multi- locus (nrLSU, tef1-a, rpb2) and single-locus (ITS) phylogenetic investigations and morphological observisions of Leccinum from China, Europe and North America.
    [Show full text]
  • TLC–Densitometry Analysis of Indole Compounds in Mycelial Culture of Imleria Badia and Agaricus Bisporus Enriched with Precursors — Serine Or Anthranilic Acid
    View metadata, citation and similar papers at core.ac.uk Originalbrought Research to you by PaperCORE provided by Jagiellonian Univeristy Repository TLC–Densitometry Analysis of Indole Compounds in Mycelial Culture of Imleria badia and Agaricus bisporus Enriched with Precursors — Serine or Anthranilic Acid Włodzimierz Opoka1*, Katarzyna Kała2, Remigiusz Krężałek2, Katarzyna Sułkowska-Ziaja2, Anna Maślanka1 and Bożena Muszyńska2 1Department of Inorganic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland 2Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland Received: 14 May 2017; accepted: 05 June 2017 Agaricus bisporus and Imleria in vitro cultures were cultivated on modified Oddoux medium, and Oddoux medium was enriched with serine or anthranilic acid. Serine or anthranilic acid was used at the concentrations of 0.1, 0.25, 0.5, and 0.75 g/L of medium. Determination of indole compounds in the obtained biomass was carried out using thin-layer chromatography (TLC) with densitometric detection. In every analyzed sample, presence of serine or anthranilic acid was studied. Comparison of the results obtained for the treatment and control samples allowed us to determine the optimum concentration of serine or anthranilic acid in the medium in order to obtain biomass with increased content of indole compounds. A. bisporus with addition of anthranilic acid or serine to the medium at the concentration of 0.5 g/L was the most beneficial. In the case of Imleria badia, anthranilic acid at the concentration of 0.5 g/L was the most optimal. This is the first report demonstrating the content of indole derivatives in biomass affected by their precursors (serine or anthranilic acid).
    [Show full text]
  • Spongiforma, a New Genus of Gasteroid Boletes from Thailand
    Fungal Diversity Spongiforma, a new genus of gasteroid boletes from Thailand Desjardin, D.E.1*, Binder, M.2, Roekring, S.3 and Flegel, T.4 1Department of Biology, San Francisco State University, 1600 Holloway Ave., San Francisco, CA 94132 2Department of Biology, Clark University, 950 Main St., Worcester, MA 01601 3Asia Star Lab Co., Ltd., Research and Development, 9 Soi Prachanimitr, Pradipat Road, Samsennai Phayathai, Bangkok 10400, Thailand 4Centex Shrimp, 4th Floor Chalermprakiat Bldg., Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand Desjardin, D.E., Binder, M., Roekring, S. and Flegel, T. (2009). Spongiforma, a new genus of gastroid boletes from Thailand. Fungal Diversity 37: 1-8. Based on morphological and molecular characters, Spongiforma is described as a new genus of gasteroid boletes belonging in the Boletineae. It is represented by a single species, S. thailandica, that is putatively mycorrhizal with dipterocarp trees in central Thailand. Unusual morphological features include a sponge-like, astipitate, epigeous basidiome with large exposed locules and a strong coal tar odor, and rugulose, reddish brown basidiospores with an apical pore that become smooth and violet grey in 3% potasium hydroxide solution. A description, illustrations, phylogenetic analysis and comparison with allied taxa are presented. Key words: Agaricomycotina, Basidiomycota, Boletineae, molecular phylogenetics, taxonomy. Article Information Received 27 October 2008 Accepted 4 March 2009 Published online 1 August 2009 *Corresponding
    [Show full text]
  • Curriculum Vitae
    CURRICULUM VITAE Roy Edward Halling Institute of Systematic Botany The New York Botanical Garden 2900 Southern Blvd Bronx, NY 10458-5126 USA 718.817.8613 E-mail: [email protected] PERSONAL: Born 31 December 1950, Perry, Iowa EDUCATION: University of Massachusetts, Amherst - Ph.D. Botany: Mycology - 1980; Dissertation: The genus Collybia in New England. Major advisor: Dr. Howard E. Bigelow (deceased). San Francisco State University - M.A. Biology - 1976; Thesis: The Boletaceae of the Sierra Nevada. Major advisor: Dr. Harry D. Thiers (deceased). California State College, Stanislaus, Turlock - B.A. Biological Sciences - 1973. Glendale Community College, California - A.A. - 1971. Crescenta Valley High School, California - 1969. POSITIONS HELD: Curator of Mycology, The New York Botanical Garden, Bronx, 1996-present. Associate Curator of Mycology, The New York Botanical Garden, Bronx, 1990-1996. Assistant Curator of Mycology, The New York Botanical Garden, Bronx, 1984-1990. Adjunct Professor of Biology, CUNY Graduate School, 1985-present. Adjunct Senior Research Scientist, Earth Institute Center for Environmental Sustainability, Columbia University, 1997-present. Adjunct Senior Research Scientist, Dept. Ecology, Evolution, Environmental Biology, Columbia University, 1997-2016. Adjunct Professor, Fordham University, 2008-present. Research Fellow, Division of Mycology, Curatorial Department, Buffalo Museum of Science, 1984-2012. Museum Intern, The New York Botanical Garden, Bronx, 1983-1984. Postdoctoral Fellow, The Farlow Herbarium, Harvard University, 1980-1983. 1 Affiliate, Currier House, Harvard University, 1982-present. Research Assistant, U.S. Army Quartermaster Culture Collection of Fungi (University of Massachusetts), 1976-1978. Instructor, San Francisco State University, 1975. HONORS: Distinguished Mycologist, Mycological Society of America, 2017. Fellow of the Mycological Society of America, 2006.
    [Show full text]
  • Risk Assessment of Potential Food Chain Threats from Edible Wild Mushrooms Collected in Forest Ecosystems with Heavy Metal Pollution in Upper Silesia, Poland
    Article Risk Assessment of Potential Food Chain Threats from Edible Wild Mushrooms Collected in Forest Ecosystems with Heavy Metal Pollution in Upper Silesia, Poland Marek Paj ˛ak 1, Michał G ˛asiorek 2, Michał Jasik 1,*, Wiktor Halecki 3 , Krzysztof Otremba 4 and Marcin Pietrzykowski 1 1 Department of Forest Ecology and Silviculture, University of Agriculture in Krakow, al. 29 Listopada 46, 31-425 Krakow, Poland; [email protected] (M.P.); [email protected] (M.P.) 2 Department of Soil Science and Agrophysics, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Krakow, Poland; [email protected] 3 Department of Land Reclamation and Environmental Development, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland; [email protected] 4 Department of Soil Science and Reclamation, University of Life Sciences in Poznan, ul. Pi ˛atkowska94E, 60-649 Poznan, Poland; [email protected] * Correspondence: [email protected] Received: 9 October 2020; Accepted: 21 November 2020; Published: 24 November 2020 Abstract: In this study, the contents of selected heavy metals (Zn, Cu, Cd, Pb, Cr, and Ni) and macroelements (C, N, K, P, S, Mg, Na, and Ca) were measured in wild mushrooms growing in a heavily polluted forest ecosystem in the northeastern part of the Upper Silesian Industrial Region. The research was conducted on 10 species of mushrooms belonging to three families: Boletaceae, Russulaceae, and Suillaceae. Using a spatial autoregressive model, the study showed a strong relationship between heavy metal concentrations (especially Zn, Pb, and Cd) and the distance from a source of industrial pollution (a zinc smelter, Huta Miasteczko Sl´ ˛askie).The concentrations of potentially toxic metals (Pb and Cd) in mushrooms significantly exceeded food-acceptable standards.
    [Show full text]
  • Sutorius: a New Genus for Boletus Eximius
    Mycologia, 104(4), 2012, pp. 951–961. DOI: 10.3852/11-376 # 2012 by The Mycological Society of America, Lawrence, KS 66044-8897 Sutorius: a new genus for Boletus eximius Roy E. Halling1 Zambia and Thailand represent independent lineag- Institute of Systematic Botany, The New York Botanical es, but sampling is insufficient to describe new species Garden, Bronx, New York 10458-5126 for these entities. Mitchell Nuhn Key words: biogeography, boletes, Boletineae, Department of Biology, Clark University, Worcester, phylogeny, ribosomal DNA Massachusetts 01610-1477 Nigel A. Fechner INTRODUCTION Queensland Herbarium, Mount Coot-tha Road, Boletus eximius Peck was proposed as a new name by Toowong, Brisbane, Queensland 4066, Australia Peck (1887) for Boletus robustus Frost (1874) non Todd W. Osmundson Fries (1851). Since then, this idiosyncratic bolete Berkeley Natural History Museums and Department of from northeastern North America has been placed in Environmental Science, Policy & Management, Ceriomyces (Murrill 1909), Tylopilus (Singer 1947) and University of California, Berkeley, California 94702 Leccinum (Singer 1973). Because Murrill’s concept of Kasem Soytong Ceriomyces can be discounted as a mixture of several Faculty of Agricultural Technology, King Mongkut’s modern genera, placement of B. eximius has been Institute of Technology, Ladkrabang, Bangkok, based primarily on either color of the spore deposit Thailand or the type of surface ornamentation of the stipe. Thus, Smith and Thiers (1971) were inclined to con- David Arora sider the spore color (reddish brown) more nearly P.O. Box 672, Gualala, California 95445 like that of a Tylopilus whereas Singer (1973, 1986) David S. Hibbett judged that the stipe ornamentation was of a scabrous Manfred Binder nature as in a Leccinum.
    [Show full text]