The Use of Kosher Phenotyping for Mapping QTL Affecting Susceptibility to Bovine Respiratory Disease
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Unc93b Antibody (Pab)
21.10.2014Unc93b antibody (pAb) Rabbit Anti -Human/Mouse/Rat Unc93b Instruction Manual Catalog Number PK-AB718-4553 Synonyms Unc93b Antibody: Unc93b1, homolog of C. elegans Unc93 Description The endoplasmic reticulum (ER) protein Unc93b, a human homolog of the C. elegans Unc93 gene, was initially identified by a forward genetic screen using N-ethyl-N-nitrosourea where a histidine- to-arginine substitution in Unc93b caused defects in Toll-like receptor (TLR) 3, 7 and 9 signaling. Unlike Unc93a, another homolog of the C. elegans Unc93 gene whose function is unknown, Unc93b specifically interacts with TLR3, 7 and 9; the histidine-to-arginine point mutation used to identify Unc93b abolishes this interaction. Mice carrying this point mutation are highly susceptible to infection with a number of viruses, indicating that Unc93b plays an important role in innate immunity. Multiple isoforms of Unc93a are known to exist. This antibody will not cross-react with Unc93a. Quantity 100 µg Source / Host Rabbit Immunogen Unc93b antibody was raised in rabbits against a 19 amino acid peptide from near the amino terminus of human Unc93b. Purification Method Affinity chromatography purified via peptide column. Clone / IgG Subtype Polyclonal antibody Species Reactivity Human, Mouse, Rat Specificity Multiple isoforms of Unc93a are known to exist. This antibody will not cross-react with Unc93a. Formulation Antibody is supplied in PBS containing 0.02% sodium azide. Reconstitution During shipment, small volumes of antibody will occasionally become entrapped in the seal of the product vial. For products with volumes of 200 μl or less, we recommend gently tapping the vial on a hard surface or briefly centrifuging the vial in a tabletop centrifuge to dislodge any liquid in the container’s cap. -
Molecular Classification Reveals the Diverse Genetic Features and Prognosis
bioRxiv preprint doi: https://doi.org/10.1101/2021.06.07.447364; this version posted June 7, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Molecular classification reveals the diverse genetic features and prognosis of gastric cancer: a multi-omics consensus ensemble clustering 1 Xianyu Hu1#, Zhenglin Wang1#, Qing Wang2#, Ke Chen1, Qijun Han1, Suwen Bai3, 2 Juan Du3,4*, Wei Chen1* 3 1 Department of General Surgery, The First Affiliated Hospital of Anhui Medical 4 University Hefei, Anhui Province 230022, P.R. China 5 2 Department of Biliary-Pancreatic Minimally Invasive Surgery, The First Affiliated 6 Hospital of Shantou University Medical College, Shantou, Guangdong Province 515000, 7 P.R. China 8 3 Longgang District People’s Hospital of Shenzhen & The Third Affiliated Hospital 9 (Provisional) of The Chinese University of Hong Kong, Shenzhen, Shenzhen, 10 Guangdong Province 518172, P.R. China 11 4 School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 12 Guangdong Province 518172, P.R. China 13 14 # These authors contributed equally to the study. 15 Correspondence should be addressed to Wei Chen ([email protected]) 16 17 18 bioRxiv preprint doi: https://doi.org/10.1101/2021.06.07.447364; this version posted June 7, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 19 *Correspondence to: 20 Prof. Juan Du 21 Longgang District People’s Hospital of Shenzhen & The Third Affiliated Hospital 22 (Provisional) of The Chinese University of Hong Kong, Shenzhen, Shenzhen, 23 Guangdong Province 518172, P.R. -
Supplemental Table 1: Genes That Show Altered Expression in Hepg2 Cells in the Presence of Exogenously Added Let-7
Supplemental Table 1: Genes that show altered expression in HepG2 cells in the presence of exogenously added let-7 Gene Title Gene Symbol RefSeq Transcriptp- IDvalue(TREAp-TMENTvalue(Let7bS) - negativLog2 Reatio control1) (Let7b - negativp-value(Let7be control1) - negativLog2 Reatio control2) (Let7b - negative control2) aldo-keto reductase family 1, member D1 (delta 4-3-ketosteroid-5-beta-reductase) AKR1D1 NM_005989 3.28E-12 2.52E-12 -3.85007 3.59E-12 -3.73727 lin-28 homolog B (C. elegans) LIN28B NM_001004317 6.13E-15 8.29E-15 -3.29879 1.55E-15 -3.79656 high mobility group AT-hook 2 /// high mobility group AT-hook 2 HMGA2 NM_001015886 /// NM_0034833.74E-14 /// NM_0034844.29E-14 -3.06085 4.56E-14 -3.04538 HECT, C2 and WW domain containing E3 ubiquitin protein ligase 2 HECW2 NM_020760 1.27E-13 6.65E-13 -2.94724 4.47E-12 -2.50907 cell division cycle 25A CDC25A NM_001789 /// NM_2015672.01E-11 7.32E-11 -2.88831 1.99E-11 -3.22735 hypothetical protein FLJ21986 FLJ21986 NM_024913 1.05E-09 5.19E-10 -2.80277 1.18E-09 -2.61084 solute carrier family 2 (facilitated glucose transporter), member 3 SLC2A3 NM_006931 1.59E-13 3.49E-13 -2.78111 1.84E-12 -2.41734 Transcribed locus --- --- 2.58E-13 1.08E-13 -2.59794 1.69E-13 -2.50248 Hypothetical protein LOC145786 LOC145786 --- 4.23E-12 1.07E-11 -2.58849 3.00E-12 -2.88135 Dicer1, Dcr-1 homolog (Drosophila) DICER1 NM_030621 /// NM_1774381.06E-08 4.37E-09 -2.5442 4.49E-09 -2.53796 mannose-binding lectin (protein C) 2, soluble (opsonic defect) MBL2 NM_000242 9.73E-10 1.48E-09 -2.53211 9.84E-10 -2.62363 cell -
Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing -
Molecular Cytogenetic Characterisation of a Novel De Novo Ring
Pace et al. Molecular Cytogenetics (2017) 10:9 DOI 10.1186/s13039-017-0311-y CASEREPORT Open Access Molecular cytogenetic characterisation of a novel de novo ring chromosome 6 involving a terminal 6p deletion and terminal 6q duplication in the different arms of the same chromosome Nikolai Paul Pace1, Frideriki Maggouta2, Melissa Twigden2 and Isabella Borg1,3,4* Abstract Background: Ring chromosome 6 is a rare sporadic chromosomal abnormality, associated with extreme variability in clinical phenotypes. Most ring chromosomes are known to have deletions on one or both chromosomal arms. Here, we report an atypical and unique ring chromosome 6 involving both a distal deletion and a distal duplication on the different arms of the same chromosome. Case presentation: In a patient with intellectual disability, short stature, microcephaly, facial dysmorphology, congenital heart defects and renovascular disease, a ring chromosome 6 was characterised using array-CGH and dual-colour FISH. The de-novo ring chromosome 6 involved a 1.8 Mb terminal deletion in the distal short arm and a 2.5 Mb duplication in the distal long arm of the same chromosome 6. This results in monosomy for the region 6pter to 6p25.3 and trisomy for the region 6q27 to 6qter. Analysis of genes in these chromosomal regions suggests that haploinsufficiency for FOXC1 and GMDS genes accounts for the cardiac and neurodevelopmental phenotypes in the proband. The ring chromosome 6 reported here is atypical as it involves a unique duplication of the distal long arm. Furthermore, the presence of renovascular disease is also a unique feature identified in this patient. -
Atypical Solute Carriers
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1346 Atypical Solute Carriers Identification, evolutionary conservation, structure and histology of novel membrane-bound transporters EMELIE PERLAND ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6206 ISBN 978-91-513-0015-3 UPPSALA urn:nbn:se:uu:diva-324206 2017 Dissertation presented at Uppsala University to be publicly examined in B22, BMC, Husargatan 3, Uppsala, Friday, 22 September 2017 at 10:15 for the degree of Doctor of Philosophy (Faculty of Medicine). The examination will be conducted in English. Faculty examiner: Professor Carsten Uhd Nielsen (Syddanskt universitet, Department of Physics, Chemistry and Pharmacy). Abstract Perland, E. 2017. Atypical Solute Carriers. Identification, evolutionary conservation, structure and histology of novel membrane-bound transporters. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1346. 49 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0015-3. Solute carriers (SLCs) constitute the largest family of membrane-bound transporter proteins in humans, and they convey transport of nutrients, ions, drugs and waste over cellular membranes via facilitative diffusion, co-transport or exchange. Several SLCs are associated with diseases and their location in membranes and specific substrate transport makes them excellent as drug targets. However, as 30 % of the 430 identified SLCs are still orphans, there are yet numerous opportunities to explain diseases and discover potential drug targets. Among the novel proteins are 29 atypical SLCs of major facilitator superfamily (MFS) type. These share evolutionary history with the remaining SLCs, but are orphans regarding expression, structure and/or function. They are not classified into any of the existing 52 SLC families. -
WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T (51) International Patent Classification: David [US/US]; 13539 N . 95th Way, Scottsdale, AZ C12Q 1/68 (2006.01) 85260 (US). (21) International Application Number: (74) Agent: AKHAVAN, Ramin; Caris Science, Inc., 6655 N . PCT/US20 12/0425 19 Macarthur Blvd., Irving, TX 75039 (US). (22) International Filing Date: (81) Designated States (unless otherwise indicated, for every 14 June 2012 (14.06.2012) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, English (25) Filing Language: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, Publication Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, (30) Priority Data: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 61/497,895 16 June 201 1 (16.06.201 1) US MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 61/499,138 20 June 201 1 (20.06.201 1) US OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, 61/501,680 27 June 201 1 (27.06.201 1) u s SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, 61/506,019 8 July 201 1(08.07.201 1) u s TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. -
Recommendations for Accurate Resolution of Gene and Isoform Allele-Specific Expression in RNA-Seq Data
RESEARCH ARTICLE Recommendations for Accurate Resolution of Gene and Isoform Allele-Specific Expression in RNA-Seq Data David L. A. Wood1*, Katia Nones1, Anita Steptoe1, Angelika Christ1, Ivon Harliwong1, Felicity Newell1, Timothy J. C. Bruxner1, David Miller1, Nicole Cloonan2, Sean M. Grimmond3,1 1 Queensland Centre for Medical Genomics, University of Queensland, Brisbane, Australia, 2 QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD, 4006, Australia, 3 Translational Research Centre, University of Glasgow, Glasgow, Scotland a11111 * [email protected] Abstract Genetic variation modulates gene expression transcriptionally or post-transcriptionally, and OPEN ACCESS can profoundly alter an individual’s phenotype. Measuring allelic differential expression at Citation: Wood DLA, Nones K, Steptoe A, Christ A, heterozygous loci within an individual, a phenomenon called allele-specific expression Harliwong I, Newell F, et al. (2015) (ASE), can assist in identifying such factors. Massively parallel DNA and RNA sequencing Recommendations for Accurate Resolution of Gene and Isoform Allele-Specific Expression in RNA-Seq and advances in bioinformatic methodologies provide an outstanding opportunity to mea- Data. PLoS ONE 10(5): e0126911. doi:10.1371/ sure ASE genome-wide. In this study, matched DNA and RNA sequencing, genotyping ar- journal.pone.0126911 rays and computationally phased haplotypes were integrated to comprehensively and Academic Editor: I. King Jordan, Georgia Institute of conservatively quantify ASE in a single human brain and liver tissue sample. We describe a Technology, UNITED STATES methodological evaluation and assessment of common bioinformatic steps for ASE quantifi- Received: February 3, 2014 cation, and recommend a robust approach to accurately measure SNP, gene and isoform Accepted: April 9, 2015 ASE through the use of personalized haplotype genome alignment, strict alignment quality control and intragenic SNP aggregation. -
UNC93A (NM 018974) Human Tagged ORF Clone – RC217002L3
OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC217002L3 UNC93A (NM_018974) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: UNC93A (NM_018974) Human Tagged ORF Clone Tag: Myc-DDK Symbol: UNC93A Synonyms: dJ366N23.1; dJ366N23.2; Unc-93A Vector: pLenti-C-Myc-DDK-P2A-Puro (PS100092) E. coli Selection: Chloramphenicol (34 ug/mL) Cell Selection: Puromycin ORF Nucleotide The ORF insert of this clone is exactly the same as(RC217002). Sequence: Restriction Sites: SgfI-MluI Cloning Scheme: ACCN: NM_018974 ORF Size: 1371 bp This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 UNC93A (NM_018974) Human Tagged ORF Clone – RC217002L3 OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing variants is recommended prior to use. More info OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression varies depending on the nature of the gene. RefSeq: NM_018974.2 RefSeq Size: 2011 bp RefSeq ORF: 1374 bp Locus ID: 54346 UniProt ID: Q86WB7 Protein Families: Transmembrane MW: 50.1 kDa This product is to be used for laboratory only. -
Case Report an Adolescent with a Rare De Novo Distal Trisomy 6P and Distal Monosomy 6Q Chromosomal Combination
Hindawi Case Reports in Genetics Volume 2020, Article ID 8857628, 8 pages https://doi.org/10.1155/2020/8857628 Case Report An Adolescent with a Rare De Novo Distal Trisomy 6p and Distal Monosomy 6q Chromosomal Combination Leia A. Peterman , Gail H. Vance, Erin E. Conboy, Katelynn Anderson, and David D. Weaver Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA Correspondence should be addressed to David D. Weaver; [email protected] Received 15 April 2020; Revised 11 August 2020; Accepted 23 August 2020; Published 31 August 2020 Academic Editor: Silvia Paracchini Copyright © 2020 Leia A. Peterman et al. (is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We report on a 12-year-old female with both a partial duplication and deletion involving chromosome 6. (e duplication involves 6p25.3p24.3 (7.585 Mb) while the deletion includes 6q27q27 (6.244 Mb). (is chromosomal abnormality is also described as distal trisomy 6p and distal monosomy 6q. (e patient has a Chiari II malformation, hydrocephalus, agenesis of the corpus callosum, microcephaly, bilateral renal duplicated collecting system, scoliosis, and myelomeningocele associated with a neurogenic bladder and bladder reflux. Additional features have included seizures, feeding dysfunction, failure to thrive, sleep apnea, global de- velopmental delay, intellectual disability, and absent speech. To our knowledge, our report is just the sixth case in the literature with concomitant distal 6p duplication and distal 6q deletion. Although a majority of chromosomal duplication-deletion cases have resulted from a parental pericentric inversion, the parents of our case have normal chromosomes. -
The Interaction Between the ER Membrane Protein UNC93B And
View metadata, citation and similar papers at core.ac.uk brought to you by CORE JCB: ARTICLEprovided by PubMed Central The interaction between the ER membrane protein UNC93B and TLR3, 7, and 9 is crucial for TLR signaling Melanie M. Brinkmann,1 Eric Spooner,1 Kasper Hoebe,2 Bruce Beutler,2 Hidde L. Ploegh,1 and You-Me Kim1 1Whitehead Institute for Biomedical Research, Cambridge, MA 02142 2Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037 oll-like receptors (TLRs) sense the presence of in UNC93B abolishes their interactions. We establish the microbial and viral pathogens by signal trans- physical interaction of the intracellular TLRs with UNC93B T duction mechanisms that remain to be fully eluci- in splenocytes and bone marrow–derived dendritic cells. dated. A single point mutation (H412R) in the polytopic Further, by expressing chimeric TLRs, we show that TLR3 endoplasmic reticulum (ER)–resident membrane protein and 9 bind to UNC93B via their transmembrane do- UNC93B abolishes signaling via TLR3, 7, and 9. We mains. We propose that a physical association between show that UNC93B specifi cally interacts with TLR3, 7, 9, UNC93B and TLRs in the ER is essential for proper and 13, whereas introduction of the point mutation H412R TLR signaling. Introduction Toll-like receptors (TLRs) are involved in the recognition recognizes lipopolysaccharides (LPSs), which are components and processing of a variety of signals delivered by viral and of the Gram-negative bacterial outer membrane, whereas double- microbial products (Janeway and Medzhitov, 2002; Takeda et al., stranded RNA, single-stranded RNA, and unmethylated bacte- 2003). -
Morphology, Behavior, and the Sonic Hedgehog Pathway in Mouse Models of Down Syndrome
MORPHOLOGY, BEHAVIOR, AND THE SONIC HEDGEHOG PATHWAY IN MOUSE MODELS OF DOWN SYNDROME by Tara Dutka A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland July, 2014 © 2014 Tara Dutka All Rights Reserved Abstract Down Syndrome (DS) is caused by a triplication of human chromosome 21 (Hsa21). Ts65Dn, a mouse model of DS, contains a freely segregating extra chromosome consisting of the distal portion of mouse chromosome 16 (Mmu16), a region orthologous to part of Hsa21, and a non-Hsa21 orthologous region of mouse chromosome 17. All individuals with DS display some level of craniofacial dysmorphology, brain structural and functional changes, and cognitive impairment. Ts65Dn recapitulates these features of DS and aspects of each of these traits have been linked in Ts65Dn to a reduced response to Sonic Hedgehog (SHH) in trisomic cells. Dp(16)1Yey is a new mouse model of DS which has a direct duplication of the entire Hsa21 orthologous region of Mmu16. Dp(16)1Yey’s creators found similar behavioral deficits to those seen in Ts65Dn. We performed a quantitative investigation of the skull and brain of Dp(16)1Yey as compared to Ts65Dn and found that DS-like changes to brain and craniofacial morphology were similar in both models. Our results validate examination of the genetic basis for these phenotypes in Dp(16)1Yey mice and the genetic links for these phenotypes previously found in Ts65Dn , i.e., reduced response to SHH. Further, we hypothesized that if all trisomic cells show a reduced response to SHH, then up-regulation of the SHH pathway might ameliorate multiple phenotypes.