Behaviour of Threaded Cylinder Tool in the Friction Stir Welding of Al-Zrb2 and Al-Sic Composite

Total Page:16

File Type:pdf, Size:1020Kb

Behaviour of Threaded Cylinder Tool in the Friction Stir Welding of Al-Zrb2 and Al-Sic Composite International Journal of Mechanical Engineering and Technology (IJMET) Volume 10, Issue 01, January 2019, pp. 1751-1761, Article ID: IJMET_10_01_174 Available online at http://iaeme.com/Home/issue/IJMET?Volume=10&Issue=1 ISSN Print: 0976-6340 and ISSN Online: 0976-6359 © IAEME Publication Scopus Indexed BEHAVIOUR OF THREADED CYLINDER TOOL IN THE FRICTION STIR WELDING OF AL-ZRB2 AND AL-SIC COMPOSITE P. Jayaseelan and T. V. Christy*. Department of Mechanical Engineering, School of Engineering & Technology, Karunya Institute of Technology and Sciences, Karunya Nagar, Coimbatore – 641114, India *Corresponding author ABSTRACT Friction St ir w elding i s a s olid s tate j oining pr ocess of us ing w ithout any filler material. I n t his w ork, t wo bas e m aterials l ikely A l-MMC’s ar e us ed namely Silicon Carbide and Zirconium di-Boride are used. Hardness Rockwell Value and Tensile Strength Tests are evaluated to the various tool material respect to Al-ZrB2 and Al-SiC. Threaded Cylinder Tool made of the materials likely OHNS, HCHCr, H13 are carried out in the process with D/d Ratio are used. The process is carried out with three different tool materials and two different base material mainly aluminium reinforced Zirconium diboride (Al-ZrB2) and Silicon Carbide (Al-SiC). The Micrograph of each four zones for the tool material and base material is shown. This paper mainly focusing on which the tool material shows a maximum tensile and hardness value for two base materials. Keywords: Friction Stir Welding; Threaded Cylinder; Tool Material; Al-ZrB2, Al-SiC D/d Ratio. Cite this Article: P. Jayaseelan and T. V. Christy, Behavior of Threaded Cylinder Tool in the Fr iction St ir Wel ding of A l-Zrb2 and A l-Sic C omposite, I nternational J ournal of Mechanical Engineering and Technology, 10(01), 2019, pp.1751–1761 http://iaeme.com/Home/issue/IJMET?Volume=10&Issue=1 1. INTRODUCTION Friction Stir Welding is initially developed by “The Welding Institute” (TWI) in December 1991. Friction Stir Welding is a Solid state joining process that creates a frictional heat between the plates or where the tool i s pl unged. T he poor w elds are caused b y detrimental phases can be avoided in this type of welding. Tool plays a major part in the non-consumable welding process. By t he r otational of t he t ool, pl astic def ormation occur s bet ween t he contact s urfaces. Tool geometry, tool profile, and tool material are plays an important role in completing the successful welded joints. The four main process parameter includes speed of the rotation, traverse speed, plunging depth and tilt angle. The length of the tool is slightly smaller than the thickness of the plates. Especially, Friction stir welding is originally adapted for welding the Aluminium alloys. http://iaeme.com/Home/journal/IJMET 1751 [email protected] P. Jayaseelan and T. V. Christy This welding process does not require any filler material. According to the macro view, the four different zones are classified and considered. They are unaffected zone or Base metal (BM), Heat- Affected zone (HAZ), Thermo-mechanically heat affected zone (TMAZ), and stirred zone (SZ) or Nugget Zone (NZ). Basically Zones are divided by its microstructure and temperature variations. Especially, the Weld Zone has higher amount of temperature compared to the Thermo- mechanically affected zone. Then, the thermos-mechanically affected zone has higher temperature t han ov er t he ot her and s o on. E ach zones having t he di fferent microstructure properties and strength. Here, this process is mainly focused on the Aluminium reinforced Silicon Carbide and Zirconium diboride are mainly focused with three different threaded tool material known as H 13, OHNS, HCHCr. D /d ratios and pr ocess parameter are assessed and tabulated. Comparing the strength between the Al-SiC and Al-ZrB2 are shown in the following tables. 2. EXPERIMENTAL PROCEDURE: 2.1. Friction Stir Welding Tool Friction stir welding tool consists of round shoulder and pin was used. Basically pin will have the factor of different profiles such as threaded, tapered, conical etc...So selecting the proper tool for the base material is a play. Proper design and dimensions should be followed then the profile was to be done accordingly. Proper selection of tool will provides a proper weld quality. Rotating shoulder along with the pin is fixed into the CNC machine and operated numerically. Selection of appropriate tool and tool design plays an important role in the FSW process. In this case, we used the Threaded Cylindrical tool as shown in Figure 1. 2.2. Tool Material Used FSW tool plays an important role and selection of tool material achieves proper weld quality and long-durable purpose. For this study we discussed H13, OHNS, and HCHCr for the Al-ZrB2 and Al-SiC. Selecting good material for the tool will have high dur ability t han the other material. Using tool material, should withstand the peak temperature of the welding process, so that the welding process can be done. The FSW process only done, if the tool withstand from thermal properties. Comparing one tool material with other materials should be done, so that we came to know that which material exhibits the high strength. The tool should be designed with all this concern including its material, mechanical and thermal properties. In this case, we using the three various tool profiles are Oil Hardened Normalized Steel (OHNS), High Carbon High Chromium steel ( HCHCr) and H 13 St eel. A ccording t o K Palani, C E lanchezhian, K aranam Avinash, C Karthik, Karra Chaitanya, Karthick Sivanur, K Yugandhar Reddy shows that, the non- consumable FSW tool was designed based on the requirements with the dimensions of shoulder diameter and prolonged pin diameter. 2.3. Choice of Tools In this case, we us ed t hree di fferent non- consumables t ool m aterials was us ed t o f ind out the amount of deformation and at the end of the process, proper weld should be obtained only if the grains are uniformly distributed. Here the three different tool materials used are i) High Speed Steel (H13 steel), ii) Oil Hardened Normalized Steel (OHNS), iii) High Carbon High Chromium steel (HCHCr) are tool materials carried out in the FSW process to find out which tool material and profile possess in such a way of equally distributed grains in the microstructural characterization. The tool is designed in such a way that followed by the shoulder diameter to the prolonged pin diameter in terms of D/d ratio.The following Table 1.shows the tool profile, tool material and corresponding D/d ratio are shown as below. http://iaeme.com/Home/journal/IJMET 1752 [email protected] Behavior of Threaded Cylinder Tool in the Friction Stir Welding of Al-Zrb2 and Al-Sic Composite Table 1. Shows Tool Profile, Tool Material, D/d Ratio Tool Tool Profile Tool Material D/d ratio no. 1 Threaded Cylinder H13 2 2 Threaded Cylinder OHNS 3 3 Threaded Cylinder HCHCr 4 2.4. Process In this pr ocess, the m aterial used was A luminium metal matrix composites (MMC’s) Al-10% ZrB2 and SiC with the dimension of the plates are 100 mm x 50 mm x 6 mm manufactured by in- situ stir casting process was employed as weldments for the Friction stir welding. The enforcements such like Aluminium reinforced with Zirconium diboride and Silicon Carbide is known for improved wear resistance and tensile strength but reduced corrosion resistance. As we know that, FSW basically a welding technique for welding the Aluminium and MMC’s due to withstand the high melting point, hardness and stability. The microstructure of Al-ZrB2 and Al- SiC is shown in Figure 3 and 2. According to K Palani, C Elanchezhian, K H V Saiprakash, K Sreekanth, Dayanand, Keshav Kumar, Deepak Kumar that the better microstructural results were observed in friction stir processing joints relate to the friction stir welded joints and the addition of nanoparticles improved the surface and joint properties and also they discussed Aluminium alloys in addition to nanoparticle Al2O3 and SiC showed the sound defect free joints compared to other joints. Proper selection of tool material is necessary so that we obtain a good quality of welds. Figure 1 – Threaded Cylinder 1 – H13, 2 – OHNS, 3 – HCHCr Figure 2 – Optical Micrograph of Al-ZrB2 http://iaeme.com/Home/journal/IJMET 1753 [email protected] P. Jayaseelan and T. V. Christy 2.5. Parameter Used Welding parameters used in this case are shown in table 3. Parameter includes downforce or axial load, rotational speed, tilt angle and traverse speed. Here 1000 rpm, 25 mm/min, 3.8-4.3 kN were applied and used in this process. By the parameters used, H13 showed the superior results when compared to the other two tools materials. In general, parameters plays an important role in defect free joint, as the nominal parameters should use for obtain the good quality weld. Figure 3 – Optical Micrograph of Al-SiC Table 2 Shows Tool Configuration Factor 1 Factor 2 Factor 3 Response 1 Run A:Profile B:Material C:D/d Selected Tool 1 3 2 1 1 2 2 2 2 2 3 1 2 3 3 Figure 4 – FSW Welded Al-ZrB2 and Al-SiC with corresponding tool Used 3. EXPERIMENTAL PROCEDURE: 3.1. Mechanical Characterization Tests like Tensile strength and Hardness test are conducted to the friction stir welded specimens are Al-SiC, Al-ZrB 2 are prepared as per ASTM E08 standard.
Recommended publications
  • Nguyen Quoc Tuan Effects of Substituting Ytterbium for Scandium
    Universidade do Minho Escola de Engenharia Nguyen Quoc Tuan Effects of substituting ytterbium for scandium on the microstructure and properties of Al-Sc and Al-Mg-Sc alloys Effects of substituting ytterbium for scandium on the microstructure and properties of Al-Sc and Al-Mg-Sc alloys Nguyen Quoc Tuan Outubro de 2014 UMinho | 2014 Universidade do Minho Escola de Engenharia Nguyen Quoc Tuan Effects of substituting ytterbium for scandium on the microstructure and properties of Al-Sc and Al-Mg-Sc alloys Tese de Doutoramento Programa Doutoral em Engenharia de Materiais Trabalho efectuado sob a orientação da Professora Ana Maria Pires Pinto e co-orientação do Professor Luís Augusto Marques Sousa Rocha Outubro de 2014 STATEMENT OF INTEGRITY I hereby declare having conducted my thesis with integrity. I confirm that I have not used plagiarism or any form of falsification of results in the process of the thesis elaboration. I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho. University of Minho, Guimarães, 29th October 2014 Full name: Nguyen Quoc Tuan Signature: _________________________________________________________________ Acknowledgments This research have been carried out during my Ph.D program at Centre for Mechanical and Materials Technologies (CT2M), Department of Mechanical Engineering, University of Minho, Guimaraes, Portugal. There are many people who I would like to thank for their assistance in this thesis research. First and foremost, I would like to express my sincere gratitude and warm regards to my advisors Prof. Ana Maria Pinto and Prof. Luis Rocha for giving me opportunity to complete the Ph.D degree at their laboratory.
    [Show full text]
  • Trabalho De Diplomação Estudo Da Corrosão
    UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA ENGENHARIA DE MATERIAIS ENG 02298 - TRABALHO DE DIPLOMAÇÃO ESTUDO DA CORROSÃO LOCALIZADA DAS LIGAS AA 2024 E AA 2198 ENDURECIDAS POR PRECIPITAÇÃO Jéssica Salles Pinheiro 205994 Orientador: Prof. Dr. Luís Frederico Pinheiro Dick Co-orientador: Pedro Atz Dick Dezembro de 2015 1 AGRADECIMENTOS Pelo apoio que recebi direta ou indiretamente para a concretização do presente trabalho sou grata às seguintes pessoas: Ao meu orientador, Luís Frederico Pinheiro Dick, pelos conhecimentos passados e pela confiança em minha independência na execução do trabalho. Ao meu co-orientador, Pedro Atz Dick, pelo auxílio imprescindível em cada etapa do trabalho e por não poupar esforços para repassar seu conhecimento desde o início de minha experiência no laboratório. Ao mestrando Lucas Travi, pelo acesso e ajuda no uso do microdurômetro do LdTM. Aos meus pais, Tânia e Diógenes, que me proporcionaram as melhores oportunidades possíveis até hoje e incentivaram minha vida de estudante desde o início, além de me apoiarem financeira e emocionalmente. À minha irmã, Francielli, que sempre me apoiou em todas as decisões que tomei, lembrando como tenho sorte por ter sua amizade incondicional em minha vida. À minha namorada, Priscila, pela paciência nos dias difíceis e por estar sempre ao meu lado me motivando. À minha amiga Luísa, por ter prontamente me ajudado nas análises de microscopia de varredura, dispondo de mais de um dia para isso, além de ser meu porto seguro emocional em todos os momentos. À minha amiga Alana, por sua amizade valiosa e pela sincera preocupação que demonstrou desde o início do trabalho.
    [Show full text]
  • Machining of Aluminum and Aluminum Alloys / 763
    ASM Handbook, Volume 16: Machining Copyright © 1989 ASM International® ASM Handbook Committee, p 761-804 All rights reserved. DOI: 10.1361/asmhba0002184 www.asminternational.org MachJning of Aluminum and AlumJnum Alloys ALUMINUM ALLOYS can be ma- -r.. _ . lul Tools with small rake angles can normally chined rapidly and economically. Because be used with little danger of burring the part ," ,' ,,'7.,','_ ' , '~: £,~ " ~ ! f / "' " of their complex metallurgical structure, or of developing buildup on the cutting their machining characteristics are superior ,, A edges of tools. Alloys having silicon as the to those of pure aluminum. major alloying element require tools with The microconstituents present in alumi- larger rake angles, and they are more eco- num alloys have important effects on ma- nomically machined at lower speeds and chining characteristics. Nonabrasive con- feeds. stituents have a beneficial effect, and ,o IIR Wrought Alloys. Most wrought alumi- insoluble abrasive constituents exert a det- num alloys have excellent machining char- rimental effect on tool life and surface qual- acteristics; several are well suited to multi- ity. Constituents that are insoluble but soft B pie-operation machining. A thorough and nonabrasive are beneficial because they e,,{' , understanding of tool designs and machin- assist in chip breakage; such constituents s,~ ,.t ing practices is essential for full utilization are purposely added in formulating high- of the free-machining qualities of aluminum strength free-cutting alloys for processing in alloys. high-speed automatic bar and chucking ma- Strain-hardenable alloys (including chines. " ~ ~p /"~ commercially pure aluminum) contain no In general, the softer ailoys~and, to a alloying elements that would render them lesser extent, some of the harder al- c • o c hardenable by solution heat treatment and ,p loys--are likely to form a built-up edge on precipitation, but they can be strengthened the cutting lip of the tool.
    [Show full text]
  • THE VACUUM CHAMBERIN the INTERACTION REGIÓN of PARTIÓLE COLLIDERS: a HISTORICAL STUDY and DEVELOPMENTS IMPLEMENTED in the Lhcb EXPERIMENT at CERN
    Departamento de Física Aplicada a la Ingeniería Industrial Escuela Técnica Superior de Ingenieros Industriales THE VACUUM CHAMBERIN THE INTERACTION REGIÓN OF PARTIÓLE COLLIDERS: A HISTORICAL STUDY AND DEVELOPMENTS IMPLEMENTED IN THE LHCb EXPERIMENT AT CERN Autor: Juan Ramón Klnaster Refolio Ingeniero Industrial por la E.T.S.I. Industriales Universidad Politécnica de Madrid Directores: Raymond J.M. Veness Ph; D. Mechanics of Materials and Plasticity University of Leicester (England) Linarejos Gámez Mejías Doctor Ingeniero Industrial por la E.T.S.I.I. Universidad Politécnica de Madrid 2004 Whatever you dream, you can do, begin it! Boldness has power, magic and genius in it Goethe Homo sum: humani nihil a me alienum puto (Je suis homme, et rien de ce que est humain ne m'est étraxiger) Terence Loving softly and deeply... Elsje Tout proche d'étre un Boudha paresseusement réve le vieux pin Issa En nuestra cabeza, en nuestro pecho es donde están los circos en que, vestidos con los disfraces del tiempo, se enfrentan la Libertad y el Destino Jünger This Thesis has been possible thanks to the support of many people that duñng last 15 months have helped me in different ways. I would like to thank my co- lleagues R. Aehy, P. Bryant, B. Calcagno, G. Corii, A. Gerardin, G. Foffano, M. Goossens, C. Hauvüler, H. Kos, J. Kruzelecki, P. Lutkiewicz, T. Nakada, A. Rossi, J.A. Rubio, B. Szybinski, D. Tristram, B. Ver- solatto, L. Vos and W. Witzeling for their contribu- tions in different moments. Neither would I have ever managed to finish it without those moments of peace shared with mes fréres d'Independance et Verité á VOr :.
    [Show full text]
  • Aluminium Alloys Chemical Composition Pdf
    Aluminium alloys chemical composition pdf Continue Alloy in which aluminum is the predominant lye frame of aluminum welded aluminium alloy, manufactured in 1990. Aluminum alloys (or aluminium alloys; see spelling differences) are alloys in which aluminium (Al) is the predominant metal. Typical alloy elements are copper, magnesium, manganese, silicon, tin and zinc. There are two main classifications, namely casting alloys and forged alloys, both further subdivided into heat-treatable and heat-free categories. Approximately 85% of aluminium is used for forged products, e.g. laminated plates, foils and extrusions. Aluminum cast alloys produce cost-effective products due to their low melting point, although they generally have lower tensile strength than forged alloys. The most important cast aluminium alloy system is Al–Si, where high silicon levels (4.0–13%) contributes to giving good casting features. Aluminum alloys are widely used in engineering structures and components where a low weight or corrosion resistance is required. [1] Alloys composed mostly of aluminium have been very important in aerospace production since the introduction of metal leather aircraft. Aluminum-magnesium alloys are both lighter than other aluminium alloys and much less flammable than other alloys containing a very high percentage of magnesium. [2] Aluminum alloy surfaces will develop a white layer, protective of aluminum oxide, if not protected by proper anodization and/or dyeing procedures. In a wet environment, galvanic corrosion can occur when an aluminum alloy is placed in electrical contact with other metals with a more positive corrosion potential than aluminum, and an electrolyte is present that allows the exchange of ions.
    [Show full text]
  • Aluminum Alloy Weldability: Identification of Weld Solidification Cracking Mechanisms Through Novel Experimental Technique and Model Development
    Dipl.-Ing. Nicolas Coniglio Aluminum Alloy Weldability: Identifi cation of Weld Solidifi cation Cracking Mechanisms through Novel Experimental Technique and Model Development BAM-Dissertationsreihe • Band 40 Berlin 2008 Die vorliegende Arbeit entstand an der BAM Bundesanstalt für Materialforschung und -prüfung. Impressum Aluminum Alloy Weldability: Identifi cation of Weld Solidifi cation Cracking Mechanisms through Novel Experimental Technique and Model Development 2008 Herausgeber: BAM Bundesanstalt für Materialforschung und -prüfung Unter den Eichen 87 12205 Berlin Telefon: +49 30 8104-0 Telefax: +49 30 8112029 E-Mail: [email protected] Internet: www.bam.de Copyright © 2008 by BAM Bundesanstalt für Materialforschung und -prüfung Layout: BAM-Arbeitsgruppe Z.64 ISSN 1613-4249 ISBN 978-3-9812354-3-2 Aluminum Alloy Weldability: Identification of Weld Solidification Cracking Mechanisms through Novel Experimental Technique and Model Development Dissertation zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.) genehmigt durch die Fakultät für Maschinenbau der Otto-von-Guericke-Universität Madgeburg am 02.06.08 vorgelegte Dissertation von Dipl.-Ing. Nicolas Coniglio Thesis Committee: Prof. Dr.-Ing. A. Bertram Prof. Dr.-Ing. T. Böllinghaus Prof. C.E. Cross Prof. S. Marya Date of Examination: 23 October 2008 Abstract Abstract The objective of the present thesis is to make advancements in understanding solidification crack formation in aluminum welds, by investigating in particular the aluminum 6060/4043 system. Alloy 6060 is typical of a family of Al-Mg-Si extrusion alloys, which are considered weldable only when using an appropriate filler alloy such as 4043 (Al-5Si). The effect of 4043 filler dilution (i.e. weld metal silicon content) on cracking sensitivity and solidification path of Alloy 6060 welds are investigated.
    [Show full text]
  • Localized Corrosion of a 2219 Aluminium Alloy Exposed to a 3.5% Nacl Solution
    Corrosion Science 52 (2010) 2855–2866 Contents lists available at ScienceDirect Corrosion Science journal homepage: www.elsevier.com/locate/corsci Localized corrosion of a 2219 aluminium alloy exposed to a 3.5% NaCl solution Rossana Grilli a,*, Mark A. Baker a, James E. Castle a, Barrie Dunn b, John F. Watts a a The Surface Analysis Laboratory, Faculty of Engineering and Physical Science, University of Surrey, Guildford, Surrey GU2 7XH, UK b European Space Research and Technology Centre, Keplerlaan 1, Postbus 299, 2200 AG Noordwijk, The Netherlands article info abstract Article history: This work is focused on the role of intermetallics in pitting corrosion of Al2219 alloy. Second phase par- Received 30 December 2009 ticles were characterized by AES, SAM and EDX. Their behaviour in a solution of NaCl was investigated as Accepted 27 April 2010 a function of exposure time. The results confirmed the cathodic nature of the intermetallics with respect Available online 2 June 2010 to the aluminium matrix. Corrosion products rich in aluminium and oxygen were found to progressively accumulate around the particles and iron was dissolved from the intermetallic, followed by back- Keywords: deposition. Copper and manganese did not show any major activity. After 32 h of exposure the larger A. Aluminium alloy intermetallics were completely covered. A. Intermetallics Ó 2010 Elsevier Ltd. All rights reserved. B. AES C. Corrosion 1. Introduction In the 2xxx series Al alloys the two major types of precipitates 0 0 are h (Al2Cu) and S(Al2CuMg). The h is cathodic to the alloy matrix Aluminium alloys are widely employed within the spacecraft and causes corrosion of the Al alloy at the precipitate/alloy inter- industry due to the possibility of improving mechanical and corro- face [1].
    [Show full text]
  • Pietro Pedeferri's Great Contribution on Understanding Corrosion in Concrete
    European Corrosion Congress 2009 (EUROCORR 2009) Nice, France 6-10 September 2009 Volume 1 of 6 ISBN: 978-1-61567-796-2 Printed from e-media with permission by: Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 Some format issues inherent in the e-media version may also appear in this print version. Copyright© (2009) by CEFRACOR All rights reserved. Printed by Curran Associates, Inc. (2010) For permission requests, please contact CEFRACOR at the address below. CEFRACOR 28 Rue Saint Dominique 75007 Paris France Phone: +33 (0) 1 47 05 39 26 Fax: +33 (0) 1 45 55 90 74 [email protected] Additional copies of this publication are available from: Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA Phone: 845-758-0400 Fax: 845-758-2634 Email: [email protected] Web: www.proceedings.com TABLE OF CONTENTS VOLUME 1 PIETRO PEDEFERRI'S GREAT CONTRIBUTION ON UNDERSTANDING CORROSION IN CONCRETE................................1 Luciano Lazzari KEY ISSUES ON MATERIALS COMPATIBILITY AND RELATED TECHNOLOGIES FOR TRANSMUTATION SYSTEMS ......................................................................................................................................................................2 C. Fazio INFLUENCE OF PROTEIN AND MICRO-STRUCTURE ON THE PASSIVE FILM FORMATION ON MOM HIP REPLACEMENTS.....................................................................................................................................................................................3 Michael Schymura, Mathew Mathew, Robin Pourzal,
    [Show full text]
  • Microstructural Characterisation and Corrosion Behaviour of Top Surface of Tig Welded 2219−T87 Aluminium Alloy G
    G. Venkatasubramanian et al. / International Journal of Engineering Science and Technology (IJEST) MICROSTRUCTURAL CHARACTERISATION AND CORROSION BEHAVIOUR OF TOP SURFACE OF TIG WELDED 2219−T87 ALUMINIUM ALLOY G. Venkatasubramaniana , A. Sheik Mideena*, Abhay K Jhab aDepartment of Chemistry, Sathyabama University, Jeppiaar Nagar, Chennai-600119, India bMaterials Characterization Division, Vikram Sarabhai Space Centre, Indian Space Research Organisation, Thiruvananthapuram–695022, India [email protected] Abstract The microstructural characterisation and corrosion behaviour of top surface of tungsten inert gas (TIG) welded 2219−T87 aluminium alloy (AA2219–T87) in 0.6 M NaCl solution was studied by optical microscopy, scanning electron microscopy (SEM), potentiodynamic polarisation, and electrochemical impedance spectroscopy (EIS). The optical microscopy and SEM analyses revealed that the welding of base metal (BM) with ER2319 filler alloy caused the formation of micro pores and micro cracks on the surface of weld zone (WZ) while the welding heat caused the dissolution and segregation of CuAl2 intermetallic particles along the grain boundaries in the heat affected zone (HAZ). The anodic and cathodic branches of polarisation curves showed that the HAZ has lower corrosion resistance than WZ and BM. The decrease of charge transfer resistance of HAZ when compared to WZ and BM obtained by electrochemical impedance spectroscopy (EIS) further confirmed its higher corrosion rate in 0.6 M NaCl solution. Keywords: AA2219-T87, EIS, SEM, Heat Affected Zone 1. Introduction 2219 aluminium alloy (AA2219) is a thermo-mechanically treatable Al-Cu alloy which on precipitation and aging follows the sequence: α → θ + GP zones → α + θ″ → α + θ' → α + θ. The aluminium solid solution is indicated by α, the meta-stable phases are indicated by θ', θ″ and the stable precipitate by θ [1].
    [Show full text]
  • Effect of Process Parameters on Microstructural and Mechanical Properties of Friction Stir Welded 2219 Aluminium Alloys
    International Journal of Theoretical and Applied Mechanics. ISSN 0973-6085 Volume 12, Number 1 (2017) pp. 135-146 © Research India Publications http://www.ripublication.com Effect of Process Parameters on Microstructural and Mechanical Properties of Friction Stir Welded 2219 Aluminium Alloys Sreenivas P1* and Sreejith P S2 1College of Engineering Cherthala, Kerala, 688541, India. 2Cochin University of Science & Technology, Kochi, Kerala, 682022, India. *Corresponding author Abstract The effect of process parameters on the mechanical and microstructural properties of friction stir welded AA 2219 alloy is elucidated in this study. Tool rotational speed, tool traversal speed, vertical force and pin profile were considered as process parameters in the investigation. Based on the conclusion that the tool pin profile is the most influential parameter in deciding the weld strength, the microstructural changes with various pin profiles were examined. Microhardness profile was taken as the preliminary informative source for microstructural changes. Optical microscopy and scanning electron microscopy (SEM) was used for identifying the microstructural changes and behavior of strengthening precipitates. Energy dispersive spectroscopy (EDS) was conducted to identify the precipitates and their distribution. Distribution and dissolution of precipitates were distinct for different tool pin profile which is symptomatic for the variation in mechanical properties. Keywords : Friction stir welding, AA2219 alloy, microstructure, strengthening precipitates, tool pin profile. 1. INTRODUCTION Friction stir welding (FSW) has become a favourite choice for material joining as it eliminates the defects associated with the conventional fusion welding processes [1]. In FSW material joining is taken place much below the melting point of the base material 136 Sreenivas P. and Sreejith PS.
    [Show full text]
  • As on November 25, 2018 PUBLICATIONS of Prof. B.S. MURTY
    As on November 25, 2018 PUBLICATIONS OF Prof. B.S. MURTY Published in National and International Journals 1. B.S. Murty, M. Mohan Rao and S. Ranganathan, Synthesis of amorphous phase in Ti-Ni-Cu system by mechanical alloying, Scripta Metall. Mater., 24 (1990) 1819-1824. 2. B.S. Murty, S. Ranganathan and M. Mohan Rao, Solid state amorphization in binary Ti-Ni, Ti-Cu and ternary Ti-Ni-Cu system by mechanical alloying, Mater. Sci. Eng., A, 149 (1992) 231-240. 3. B.S. Murty, M.D. Naik, M. Mohan Rao and S. Ranganathan, Glass forming composition range in the Al- Ti system by mechanical alloying, Materials Forum, 16 (1992) 19-26. 4. B.S. Murty, M. Mohan Rao and S. Ranganathan, Nanocrystalline phase formation and extension of solid solubility by mechanical alloying in Ti based systems, Nanostructured Mater., 3 (1993) 459-467. 5. A. Goyal, B.S. Murty and S. Ranganathan, Crystallization studies on amorphous Al-Y-Ni and Al-Y-Cu alloys, J. Mater. Sci., 28 (1993) 6091-6095. 6. B.S. Murty, Mechanical alloying-A novel synthesis route for amorphous phases, Bull. Mater. Sci., 16 (1993) 1-17. 7. R. Nagarajan, B.S. Murty and S. Ranganathan, Nanocrystals in Ti based systems by mechanical alloying, Chinese J. Mater. Res., (1993) 215-220. 8. K.V. Sreenivasa Prasad, A. Arjuna Rao, R.S. Dutta, B.S. Murty and M. Chakraborty, Effect of hot rolling on the grain refining efficiency of Al-Ti and Al-Ti-B master alloys, IIF Trans., 62 (1994) 321-326. 9. A. Arjuna Rao, K.V.S.
    [Show full text]
  • Experimental Investigations of Friction Stir Welding (FSW) on Al 6061 : a Case Study
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 04 Issue: 08 | Aug -2017 www.irjet.net p-ISSN: 2395-0072 Experimental Investigations of Friction Stir Welding (FSW) on Al 6061 : A Case study Dr. Sanjeev Reddy K Hudgikar 1, Dr. Chandrakant Y. Seemikeri 2, Prof. Prasad S. Kamble3 1 Principal & Professor of Mechanical Engg. Dept., Lingaraj Appa Engg College, Gornali, Bidar, Karnataka, India 2 Head of Mechanical Engg. Dept., Govt. Polytechnic Nashik, Nashik, Maharashtra, India 3 Research Scholar, VTU Belgaum & Asst.Prof., Dept. of Mech. Engg., Zeal College of Engineering & Research, Pune, Maharashtra, India ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - Friction Stir Welding (FSW) is a state-of-the art welding technique in which a specially designed rotating tool consists of a shoulder and a pin that applies the frictional force. Friction causes to produce heat on the work piece to weld two work pieces clamped together on fixture. Studies have shown that FSW has been successfully applied on many smart materials like AA2219Al-T6, AA6061-T6, 7075Al-T6, 7010Al-T7651 etc. that are being used in high end applications like aerospace, biomedical, marine, defense etc. This article provides an overview of experimental studies on FSW. Some potential research areas in this regard are explored. INTRODUCTION Welding is one of the most commonly used processes Fig. 1 FSW Process [15] in the industry for joining of different materials. High quality joining of materials is need of time for industries and it is Studies have shown that FSW have been successfully goal of many researchers to achieve it through different applied on many smart materials like AA2219Al-T6, techniques.
    [Show full text]