<<

4 3

m A m % m %

5^-3 M

4^ §13##^# Hz > rS7 —

hEDO ns • *#m

01 001 5478- come##. j;m4 a## rm&ttftm&wt&mcDffiR j zmmtz

«t fg tnmoK AClil/;fe©t$.5o li i; to ic

m GS9 j¥?e$fflSW8 j$!K«IM) j ®¥J$4^KE%gg%®mil© (t1'C' rs^ts$» %j ©-Si LTf?l®L/c ®«S*Si»/ct>®T*« r@-6-#SEfi8®K«®E3eM%J 14. -t:7;?UI' AM$#-&##©Sm##m %a«ri}»LTa-&fte«*w5EL. Mt:am%mxE#cf + ®/nt7>rS*©H«^o^i!> t-T$>3» ftoo t,.

-e©^ < uTiteMeareic&So -ente. #ri?©w?E«)i6]cfta l. -e©e®isig**

/D?x? h©if%ics»§*5 cii^D ?I 7 h ©S6¥ttHeillc^$V"5T^T* 5 „

ST'n y x ? h©fiBSH©—oTfe^.affl'ttiPXe*. #ct7 c -y ©MttiTOX&Sli. t7L) ? t@aL/cl:ag f. cn^M®u*ic»

c®»/iES^e>. ¥J$4iE$ rtt-g-#SBSBS«ia$J T14. i-f-bv i-7?x*-

&®$a^#s®$ytiRHi-b5 i 7 7%*##©@m*#%©#mmtmmLT. $ /d^j h^f-+ u>y-r ?n69ta.6Tie,x./c„ McwafammAmo: ilc|6^§n/cMljcei9$L. *S©E?E«l|6]$-tex5 i ? o©%* 6 C i i L/c. C®W5*(4. *^ny x 9 b bffc-fe 5 i -y ? X*5m£ • X#SB ¥»»«.* # g, *7=7 ?X©affl14(C'7V'Tr«i*Wc/cV'/c$S:*¥: #AM#gC)n x.TXSS*K8 t5'BXSRSrIt ra-6-#S$rSKSS«©»%MBj Bf%t\ *LTff$ *%iom%«M©m%#©xm#. cjg^©m#T&6. te^iij^mssLTffe/tiys*

waftA •fass-^E** > ? - # a * a $ ^& 1. issoDBBt ■ i

2.

%i5mx¥ x^s® fcmtmn mz wm- ...... -...... 3

Amak — SAMPE Toront##^ 6%36T — x^gp ttwmx.¥ft nm M mis ...... 7

3. i 35 © i i

i?7 ; y ? Xtr^o^>E>S:^bbbEEE14 x#gp #### ...... 11

4.

A. Il ^ 5. "j ...... 19

A- 1 . E # ...... 19

A-2. £ E # E

[A-2-1] U-tf-va >x

1. Fiber Debonding and Pullout Processes in Ceramic Composites. (■ky 5 y ?xa^#«-i;fclt55S-ft«*®#H#lJ#t5l^»e^n-bx) ...... 21 2. Damage Development in a Ceramic Matrix Composite under Mechanical Loading. mm###c:w±6t7W7Hj7my^7i' ^vcommomm) ...... ----- 23 3. Microtextures of Interfaces Related to Mechanical Properties in Ceramic Fiber Reinforced Cerami Matrix Composites ceiiiimmmttfii'nwin .... 25 4. Short-crack T -Curves and Damage Tolerance in Alumina-based Composites ...... 27 3. Matrix Cracking during Deformation and Fatigue of Glass Matrix Composites Composites DO'flJft ttilffilimWin ...... 29 6. Experimental Observation of Progressive Damage in SiC/Glass-Ceramic Composites (sicmxinwx ...... 31 7. Micromechnics of Compressive Fracture in Particulate Reinforced Ceramics.

...... -...... 33 8 . Micromechanisms of Toughening in a Particulate Reinforced Ceramic Matrix Composite (#E%fbt7; #<2)^7-// ##) ...... 35 9. Mechanical Behavior of Carbide Particulate Reinforced Reaction Boneded Nitride Matrix Composites. (SiC#-f-eg&{bWcMM$S ...... 37 10. Indentation Residual Stress in RBSN and RBSN Composites. (RBSN6RBSN#^#®^fyf-y3y Zti) ...... 39

[A-2-2] 1. Whisker Growth and Composite Fabrication in the Si3N4-C System. (Si3N4-C ...... 41 2. Surface Modification and Slip Casting of SiC Platelets in A1203 Composites (##tsic%-f/Ai2o3m^##c4o(t6m@%m

CA-2-33 m^itZfnizx 1. Green Body Processing Effects on SiC Wisker Textures in Alumina Matrix Composites. (j&fttiuuminui'hnw.&ttn® sic ...... -...... 51 2. Fabrication of SiC Whisker-Reinforced SiC Ceramics. (Sic 0W- sicbil7n

[a—2-4] m. m tt 1. Superplastic Flow in Nanograin Ceramics...... 59 2. Deformation of Alumina/Titaniun Carbide Composites at Elevated Temperatures (i5af#Ai2o3/Tic ...... 61 [A-2-5] -fnizxtmmte. 1. Superplastic Alumuina Ceramics with Grain Growth Inhibitors...... 63 2. Shear Thickening Creep in Superplastic Silocon Nitride...... 65 3. Superplasticity of Mullite/Zirconia Composite. h - ...... -...... 67 4. Fabrication of Mullite Body using Transient Phase...... 69 5 Superplastic Bulging of Fine-Grained Zirconia...... ?i

[A-2-6] 1. Assesment of the Status of Ceramic Matrix Composites Technology in the United States and Abroad. (JMlWCfca-g-#©tta,©7-fcrxy > t- ) ...... 73

B 82 b-i. m #...... 82

B — 2. 3t » S> »

cb-2-1 ] *^ x t> 'j tr- v a v, 1. Low Cycle Fatigue of Discontinuously Reinforced Metal Matrix Composite ...... 84 2. Corrosion Behavior of Metal Matrix Copmposotes...... 86 3. Enviromental Influence to the Fatigue Behavior and Damage in SiC-Fibre Reinforced Aluminum Alloys.

...... 88

CB-2-22 1. Heat Treatment Optimization and Improvement of Tensile Properties of Fibre-Reinforced Aluminum Alloys. (#m3&Yb7;K-96 a&® aammm 6 9 1 is; ±)...... 90 2. An Overview of the Damage Effects Related to the Processing of Aluminum Matrix Composites by Liquid Infiltration. it...... 92

CB-2-3] «£ft7"D-fcX 1. of Short Alumina Fibre Reinforced Aluminum Alloys...... 94 2. Manufacturing of Al-Si Matrix Composites Preformes Reinforced by C-Fibres...... 96 3. Forming of Matrix Composites by Forging ...... 98 4. Theoretical and Experimental Analysis of A1203/Al-Si Composites Processed from Al-Si-Zn and Al-Si-Mg by Direct Metal Oxidation. (E^A##

[b-2-4] @ m tt 1. On Superplasticity in Silicon Carbide Reinforced Aluminim...... -...... 108 2. A Rheological View of High-Strain Rate Superplasticity in Alloys and Metal Matrix Composites. t & ft & iWiSEE-B 11/W-mA) ...... -...... no 3. Superplastic Behaviour in As-Extruded Al-Cu-Mg Alloy Matrix Composite Reinforced with 20 vol% Si3N* Particulate. ... 112

[B-2-5] 1. Effect of Hot Working on the Microstruxture and Properties of a Cast 5083 Al-SiCp Metal Matrix Composite. (5083Al-SiC,#]m%^##(Dm#^tW:#(2'fBMn%#^#) ....-...... 114 2. Superplastic Behavior in a Mechanically Alloyed Aluminum Composite Reinforced with SiC Particulate. sicgf) ...... lie 3. Mirostructural Refinement by Thermomechanical Treatment of a Cast and Extruded 6061 Al-Al203 Composite. (Slit4b ck L5ax^ n/c606!Ai-Ai 2o3ny^y?

mxmmmo)##) ...... 122 1 . mill3EtD EH 6*] ■ Jj}£; 3o 1. IBS® B fit ■

1.1. a w

#6nx##rA6mA##®m#^mmx i*j. iittimiifti^>y>«#-'r7 hr*5,, M^am^s• SSS«B-§-Ba%S«(NEDO)^ b$S££glj-fc r%A##@rmBK#®Bf%M#l ( )li C®fliB(::|6l»^ef%l$fl§SXn y i. ? h?&6. ¥fiS3^KJ:<3 3 A^tfST. igSI63£gi£ B fBX t7i5n*' Am^mA##®mAffl#lffiA'eft tltl/Co id r*7 s y xx» • A#*m^##®a%tmmji #ia*w%Mm®msmmx&6 it7 ; V ?X®j@M14j ®tt|6i*^^ ny 3:t|6r$x.5(#|6ll@$)„ (2)X»E$KJ:f3E%®*B®#|6l^?Sx.5(5:#tE$)0

1.2. ^ *

01616138$ Hz 7 i 7 ? X5S • ^*Sa-6-#»®att irRHl (Col'Tli. $*%M#®mAK#SM*S MX&&&-&B*# W • 6 fit? i 7 ?XM«£tm • Am^%A##l: -z>V'TWS$-Wcti®/z„ Wfc. Hz5 i 7 XX®iBSttJ ffl»[6HCo®TIO fcATal #&i=

2)XMI8 $ *E3EE%®-b7 i 7 txMftWg (SMS • SIKRHOXES 4'»£ffiW9EW) fcitF A##*#A (Sms-«iw apsis mm##x#ms) ®me#6®#m&mT#A®#% *A£® U Journals iSESr^SMX^mtRL. SB 52#®«XStii

* Proceedings of 5th Europian Conference on Composite Materials (1992) :tfl iXX^^fdAP^ * 16th Annual Conference on Composites and Advanced Materials (1992) :t70?X^ * Journal of the Ameriam Ceramic Society (1990 ~1992) :t7l7?Xrfc * J.Mat.Sci.(1992) rtiOXXS * Scripts Matallurgica et Materialia (1990 ~1992) iAPr^ * Acta Me tall .Mater. (1991) : AP^

b. » m m m « » (* tttxoxxswfcttAJSxsefi-ASA)

(1) «A*m®ai*t?se ¥if *- ...... t7; 7 ^x^#A##®a#tmm fi HBB -A)S». #lcTii09i«A»»fflatt

(3) 3» 3t *b a (3)—1 t9S7 9X*#A## #### WSA** £#SI*&*S»i5r«0?x#|gSI$ XEW%S...... [A-2-i]-3 *# £#* «*Bxss*Me@rt70xx$®a5 xeer?es...... [a-z-ai-ma-z-si-a #@ ^ «*BXSK*Ke69rt70XX$W$ Bf%*...... [A-2-1J-2,[a-2-2]-a [ A—2—2 ] —5, [ A-2-3 ] —2

-1- ;*»#»•

ftffi ,■&* WHE%*.... -...... -■-...... -[A-2-21-1 •tai xm essiwBsme sese...... 1A-2-5J-2 -iE essiwK^me ses...... u-2-31-1 fe® c«* m#m#x#wg*gx#R#m^%#...... [a -2-im,[a -2-i]-7 [A—2—1]—8 ,[A—2—1]—9 [A—2—1]—10,[A—2—2j —2 [A-2-2]-3,[A-2-5]-1 [A-2-5J-1 S# 5£A S*E1tXSE%E)T6* • SfiWJE* ...... -...... [A—2—1 ]-5 afl 3?tt* £*grffXSE%@r:£:J* • MtWES...... [A-2-1 ]-6 H-'® ** £*gTffX$W%0fE¥g3 SEfttfrE i$@i... -...... -...... [a-2-5]-3 '&m m jit#m%#m##K*w%mm^#e%*#m##m%E#mEA-2-i]-i,EA-2-4]-2 *# BHit* W'fs?-mmas aa®»...... ia -2-6]-i (3)-2. 4-# 11 it* iffiWJEf..... [B-2-4]—1,[B-2-4]-2 #ia 9= «*MI*S#K*B1««S»»JDIE e%« [B-2-1] -2, [B-2-4]-3 S® E9E* ...... [B—2—1]—1 ...... [B-2-1]-3 88 S** $»»XSK**> j'-MXS*® X1£W?EM [B-2-2]-1,[B—2—3]—3 [B-2-5]-1 ** itEifS* ...... [B—2—3]—1,[B—2—3]— 2 ±k ate* sojmxsi$s-t?> xeemH [B—2—3]—6,[B-2-5]-2 e* mm* xa...... [B—2—3]—4,[B-2-3]-5 [B-2-5]-3,[B-2-5]-4 am mz s#ax##g*gmg:¥eyxfimm#E%gmxE%Exe...... [6-2-21-2 sea jniwexsEi®t$^ws**$##K«E ...... eb-2-3]-? Xg m JWSXS«lin;$*SS«*:$ ##K#E «* ...... [B-2-51-5

heb am ##%##* BOi ?S« mt»KXS«ttSS*E%E«SSE5E®#iS • ##E%E

fe® Jt*A XEexS»«*Btt$¥W9XfASfFEE%S»aXE%R

ICO l \T

A : -t? -7 i -9 B : A—1—n tv?«'HH/3 ?, Si® / A ¥lKJ B—1—n : tt7??'H-y3y,56®Z*¥6U#tt // 2 /' W^

-2- rj ,6

AJ 4<

G 34-

CXI ~t 1 57 t mm;

168 w

AStt^-feb 5 -y 7xli, iSiSE • &*###& ■> -c ;U*S OT l-'i. U»'U fciAMU as®*5 i y 7 X ® tnittAtMISK <£ o Tl'5 J: 9 K. 5 5 » ?x®*ttl6

t55j^oa«*58T

01 i:t5; xi'XCStejSSWffcSfo dtibfflS?©?^ »Sirl»ig©H^I±, #Xf© fe©*s$r5t>®r*5„ ui'Wc**^ #$SjHz5 i 7 ?x©®to6#iwf-stctt, taetA© @f©mA, mi at ■£•©#*&, m?l©ei6j, »#, mm% f©m#m©%w*#m t % 6. Sbic. ttffi-rsicBurii. /:##©## gem*) fia.

fW6fiK TO-tt (C) ?*#

00

HildFL#:

# $#

$r=869E?iJ • Ml • Eft SMM* • • EI9

Ell

1 0 j: 3 ; V ^XC^U"

mi m ^ # it ® m m

tB

OKA

- K A **Eisia-a-#» H Mi JBttfllat HI Mi eA'-Y?*S SIS=i*«iS

-3- fcSfti-m%lcteVTE5^EH(c4-^r8rV'50 gf • WKWO»S#S«4ftU

BSF$$atm©* ft tlistc •s.is-gyaBnc-fs:: t tc ^? h)

Eg%#m& && & r & 5 ?.

Mt)'i-5%##©##&*#S-e-Sirli. ##©/oty>/©Eg$ £ J; xA-:g3l

2 t7;?>#S#fiffl^nty2r

ffi 7° n -tr x

$ ffl 7'A/-YA/&n zK#&, (8 $, BiS8 ) L a n xi deS

^ y 9 —j1 y — y 3 y$£;

a. s CVD&, cv m

X/<7 >/&. MAEfc "f

0 ffi ttJife

til J *rlti ;(/&

* - # 6 % 5 -< * @#%f & 6vxtx ^ x -fA-&^br^ /;Wb©l#i:. a$rs»< K#wfci/cv sfciJHftjcWcaJLA-sfl-ystfc-bx; ^ x mm-g##e-g a c t y,<-c * a. c ©.k^WHttrii, Saitt-bx i 7 (tfxX) t7 5 7 A#e% bx i 7 ?*«•&&». b x 5 7 ? — b x i 7 =Zk AiSSMfL* 1C W#H V b - 6* «U -e®ey v-^E-g-f 5Ci:KJ:-7Tf#5,n3WaSfl-^-bx$ 7 >a^ttw^5. &J*S»*®

-4 Y i ?1:, HfWe-i't^WK^T $S6tffiti3tffc9'tS*7.t'-yx m-t?5 i -y 6 C 3#T3 Zo MA'6-bx ; y ?@f&*#3#&:mif. #%%#«#K#©m3fl:i:##?&b. a«« «ttftffl£?S5L3-«:fcb. #f * $ c 31: J: -y T. $rU'W«68i| H-f5#36&«fB3tn:V'3„

? -y 5'«-6-##©a«$®$iii@icit, ^swsffi*$ij-5am v^-e®^zm

mmmztti-z-T-j xnt. «m • • mmm • mmm • it^mtmttm.-kitt&tz 6i:ag%#0-c*5. 3-f^>ri©^js&tL.m k#w>\,-v>v&^ ma-mm, mifta (vd) &. %/y&. (mbe) cne.®^& It. SS"Clt. ##@jEM#%©,»TU^ < . yxYXW -y K I C®vY ? □xyiXr.T V nTXifty TI6-3,,

« iS ffl "b 7 5 v 3> % ^ #

*5 5 -y ?xi±@n/c«#69 • mm#a. itAtt^wurvxsfcsbi:, m@m##6LTa5^a m&A&T©6. t*'U mVd4M£Wt" 5*7 i -y ?Xt>. —;fr-C(t. %#3fT,%lffl,lfO:6'a: ©»!im$3nT©5„ *7 i -y ?Xlt. B6$ WM-St"5 &J**S3 3ItMti b. Yf YIS3&5 v'ltoisjBessvx^wte-s-A'bfltjssnrv'^, *?; y extern iwa.-sN isi'iwssss. * SV@1t¥, 3©#ae#-f ©It. Cto-ftgiis -31-636LT©5o UA'U —7; c®|S3i:l6a%Sigi5>x.lc, Ea®»KMft<, -r^bSAWi < s »'*\ #»©« • fiKSx* 71/^-*vjx $ 16 3 3 6 X 5 fc h 3 ^p=1® 3 ti -y X© 5 O i@fE«tt«igffl-fe5i-y?X©Mieagl±. £36. */jMCf57"a-b-y >y® t7;y?X©#tt^9Ci, fc633j£)ffi-f 5 3 3. "f Si Ir5. bAt435S;#"6-E>C 3®E£"C $>53l6-yTJ:l,\, *5 i -y ?X©$#«#bA14©S2Fi:Si:5liSSIE*i6*:«$i(K.c) If. KST'S 3tl50 Kic “ V 2Ey = a r • Y V~c CCT, E Itvsrm, r ItBSxW-. a, l«»5&K. YltSSSttB^. clt§»©63„ e6or. SSSSrBV'OTttmwr5*5 i -y ?x£iMS5ef ■Bfctoicit. K,ct±#<. #%©* 3C 337b£/h3 < iT5 3 3»y6gT7$E lt«E;E®re<6b . -flSCHSigiraBtCBY- TiiScvv 3S!®ft3c If. S$7"n-t?xic5S< 7 lti$* ti:8 ®x* A'^-WKtoSlcf: •yT9c#r5 3 3=r*B"C$b. iS5S$ • iSU/vWfclclt. m#m3'f5@8©*3t*#

© 33A-m#3©*S^m 1= f -7T. 3S®t:>x>j7'yf>SSi®f7Alt6 • 6fa£i@33 (IttSf'PbfT.ifflM) ® 3 SfcffifilS®Yo -t x /- > T®EiiSl.t.® 3(S/Jx3a®?66. 0 Y X * f##©91*3 1: Z5 3M*S©B7]#6&##3*5^& (OYX*. aE**»Bt5S

-5 Yz03£ 2—4 Zr02/Zr0z^ E%#jg (a,) # l.OOOMPa H_LT\ EiSD/VBfi6(Kic) fe 10 MPa-m1/2J£U:©fgi

U=y4 bXU Kic$t 5MPa-m1/2x cj f 500MPa t 2 ^©#tM Si3Nt$^WC(i;, K,c$t 7MPa-m^\ at 900MPa 4

ZrOzMS^ftJffl LTV^/c^^ mb/vmb(±ZrOz®IE^^6##^ ^/c 200-300°Cti*Sr\ #(C7X^#^-T5^#T t©»T4ic4'oti^o vy

5A#^#AYbL/c##(j:, th-y v h (Cermet )tmttl, WCS, TiC$ &/C, $t2/zm® SiC#f^l0mol%1g^ L/C SiC/Alz03#^-##T,Kic(±$t 4.5MPa-m1/\ cj , 500MPa ^TC

coE#UA/##6D[ei±(± Sic^##fcj;6 Sic£ aizo3 im#®^m^,Aiz03^#L/c A1Z03/ SiC/TiB2^#J|4(Cfe^r Ulbtltl^o

*fi. iotib jt ? &^CD Alz03#f-^#L/c A1 z03/A1 Z03^##-C(±, fyWi Alz03#$§#:Cjt^T K1C^ 50%J^( £fcf£t£t:*EL/-c Klc^2^Cfe[D]_h-r^.

fW>;L f £*>■£. ytmmtKDmm^ntti^o 6j; < ^6fiTv^ mmmm/^^ vm&m^^'x, w^bAtMcD^nen 4.7^ 6.9 # & re## u/um&m± u. Ei$x * i^ll l wr^ £ nr t, > 5 „ zottnvwmxu, ^>j7^>^©»^titi^*0

^ 3fc

11tlb< ^otfc^ < #%# zro2ffi%ho * m x #^swt xn, £%‘mfaxummtftmmx& <9 , *? hxuz jt>Hip(mwmtm)&£Mm-rzm «l^o 7 f 2:2: t>C, pftmv^&ft’ttzisbOXn-t ^5 3o J; ^ wmmxfoz o £/x a^o

: ####;% ABA#####, P.171(1990)

— 6 — — SAMPE TorontiaEcjijSUT —

ias s i$bh t>A'6':b‘Sf\ %###6 U-C«%ei:#t,\T#cm@A,TV'6. Chli@ii3X hfe-M'llttH-WCt tC(sr*'©fe®CS;-Clf^^t#x., C tl: Wc.

a tt

^*sa-^##matt^:RRicoi,>rE V < If* tr £ tJ65 c: t<£ £«)£?% s c txiite <, 3= /cMiafc^ijBr* < K-raant>*«K cnsT©6n***tori$-4< • ftXf^ >?*& Lt*#*, WB • ESS • 5®5K6&&, s6icust>^7W<£if»ifSV'btn:8;fco £/x cf 1,6®^&l:«k co©rii, #s*»^M.zt, m©*%-e-##ic#-3c <. X5xf- y 7x?sa-6-ti-SKffsn. <«B-f * t t-t t>, a!0Dp®r<-a!c|!fif,nri'5» —=>x t-

W/x tt»#ttCo©Tli. 3Slti&frTT'fFfiK£ftfctt£*mcol,>T3£E#tt£#;EU dft ics-dV'TBSSex^sssrsR^ *5®(in.aw#tt, mmmfme#/!a#aM##©*m t,-asnrv'5„ c©i#*\ a-a-##©m#^ei:-ou-c&mamme6jyLfc##f, Tiia-s-bkic =t 5 mmmmmtfm g snrv'5, CCT\ ©< -3^©m«%a,VV:Ttf KT®J:9t:^5t#Xf.n5„ (D ^x H£S®fc*®$fUv-5S'ffc:lf*.'J:ySSXn-bx®M$6 — #ic, X-FX^SAYba&at,'

© jra3fiK®stft*a®5fc£z: - ttnm£ictt-r6Rm&&

® a-6#S®E®Xn-bX*5WiWSftiito® 7 h V -y ?X, SiftMfc±yj®©»#jteitf

-7- t\ #sse^t>

© — V -tM ?;l/

SAMPE Toront ^BlCitiJgLT

1992^10^ 20-22 B> tl^^Ob n > MfT. V * WtC^AtoSbB® (#±|#(il/Xl'7 >) ©XXX^ Westin Harbour Castle Hotel ©^aWHCjoV^X 3rd International SAMPE Metals and Metals Processing Conference jo t/ 24th International SAMPE Technical Conference mm^ntzo ioai9B(:m;m&m%u mff ho< hn #C#Wco hn> (Z^E©^ 6 IW) ©^ 1 °C tP^T ©mmmcm# ^-^©Mrc^ o tz0 MB©20B. 8:00^bB^^>D> CjT(C#UX Plenary Session^#?£;h,;fc0 g£o£x©g|^© Prof.Ignas Verpoest (Katholieke Univ. ,AUl/X— ) 4 x 3 — 0 y /<(C jo (j" 5£ntc0 ^n^ctnt^ nmunt #©E%(±y?%f v ^x^©t>©^E##C0<. ttz^ c©&JSX(;:joV'Xt> 7*n-trXCKt^^li^b 3-n^yxe

20 B £]r^kt3'' b (i; 3rd International SAMPE Metals and Metals Processing Conference^jijJS L/c0 3&#C#d'ii,XM&fk A#mm59#0 9-S. %^##M#(±9#X60. B^bimif ^®2frMIS (f#±) (Ccfc^, U'k©X&o*: 0 c jr 6®##^ 6#^©^m& 6 v ^ L > h % ©mv'x, szm^wt^nx^/ct,^

21BX%^ Advances in Forming and Thermomechanical Processing - H© Sessional## #x C(Cjb'VxT^b[l] (%X) SiC^E/6061 T;b; o.^Am^##©tQ%##Cjo(j'6##% #-B

##(:Mcmmox^tnx.6 2:tnxj^m©%gc[m%L/co £/c, T6m@©j^@^ma^ vm v jfjDX©w^> m^##x(±, tg mmmox#4imxm^gm^&TL/co ;niiixi:#9^AHj>y ?XJM©MtK:J:6k©-e£>£o C©#^C#LX. %^##©Sm- m#W#G)#M#['C&6X ( Fo> h±).M&07HCP4£ft/c0 CW#6%(X %^t)3^(i23B(:ho> W/c, o^X(CdZ7 $ 7 ?x/y *;UMm©WHX&tx B^tcjo ^[^^©ToguriM^^-T'E, C tfrX^tzo

22 B *X Synthesis of Metal Matrix Composites for Cost-Effective Use © Session r^^$n/c0 Y.H.Tengb[2](Queen's Univ.,#^) (i Al/SiC ©e ws(c^irr#m©s^(cov btzQ c©E%x(i, #xmm s-is/zm © sic jo a# 20-100Atm (DTJli-'yUT:rV:7;t--AU t^ em^esu ^mooo@(D#f T;i/; wmzxj >77l/#rc&tx ^< ©ES^^ES^n, $v h V 7 -5si&J:tfAi4c3^!$&b;ftfco C©#^C(±, ot#otb®&<±#u- sic^mwc#^cu. Mra^-WJ2nr^@5M7bMSTu ^©MMaT-^m& \,'1\m&B£tt£r>tz0 c©«*\ #Cl'T\ T.F.Stephenson £[3] (Incoz^f ^) ft, feiaotM«U:0 Vf=3'-5Z®:®I^liV h V y ^X#66V'(j: SiC%f/A356 %^##(Vf=2O%)j;0 t)B#%1&(c4oV'T^TV'6C 2:^L/co *rJl/T Jl i — 'yAfflfclXlZX^XW^^tltz. Ni-A13%A#fWYb&#%f-#V h V y C^#LTV'6C

tt^ G.Huard b [4] (Laval Univ., #-J* ;X ) (ix X # — # A, 7 n>f ;/?*)£(::£-? T SiCfftTVMg ^ ^rn&MA^wnr^s Ct^7f^tz.Q fc/c'U SiCCDE^±#a:<>:kCit&TLfco mfB6[5](f#±) te. Til/;-•)3^imass% J^T^rU £/c&£(I^Jg£ 0.3° k/s mm#Al,Ti&in situ^$#, C^l6 7 > b%#(: J: ^ LTVf A Ax in situ A13Ti/T )ll^ Atlirtm^fF^ L Tio ^©^ll, c ©m^##©#@#l^(±|5]D#:#^#© SiC Whisker/7 71/ % — 0 A%^## j; o i>&nx^6 z L/c0 W.F.Caley [6] (Nova Scotia Technical Univ.,7 7/) (iN AXfi^^C SiC(ir^®l:'^)

A£&© Wollastonite (CaSiO3, 50%t^$7-T:-£> <3 , ^650%^###t) Reocast & CioT Ai-Zn^A(8-20%Zn)^CDm^{b<&^^ 5V A±§6Yb#mA##^#^L/Co

£tz^ /J#6[7](^±) (i, ai2o3 j; (3 bg A J: 7 vl/7- © A ^ v#{b#, cuo, ZnO, SnOj , Cr203:ftoP£^i&77h ^ ^ A^IC^H *SJ^U f$&3 A1203#% in situ

SCt^fco ^niCcktKi'. Cuo l/zm J£(T© A1203x Al- 3%Mg^ ’C(i A1 203 .Mg04i ©^^#g§-C# /Co ZnO & 'Sn02fi^£ Al-3%Mg /c/fb,cr2o3^»-e(i in situ&m&f&m' in situ^^f ©A#^j;^TA# < /Z(3. CbB#T6C

jg^EU 22 B 7#^ 6 Advances in Powder Metallurgy Processing - Interne tallies, MMC's and Net Shape Processing© session^ Hf! A1 tl/Co T' C {C&V '"C-. Y.Wu£> [8 ](California Univ., 7 XV#) (ilii:J:oT7h-7^Xb Al-Si^(4,12%Si) 7C:TiB2(5//ni)£>5 Wt SiCfl7-(7.4 Spray&(: j: «3%^##^f#%b/c#m^$R#L/Co Al-4%Si/TiB2 2&(Vf =13.2%)T m#SLTV'6o —?J Ai-i2%si/TiB2^(vf=i7.3%)71i. ck|gg^(±6b

j^±©m#e#^©m@c^ ur^ x 9 o

-9- ztctbic, mlvoz o -ewi. asb©i;9(: in te^-tir^yn-bx-e^Dx $M^b0ck9insituSJSCJ:

^T^LT^mcT6 t>©T&5o -^JHISbfcraiC^tM^UtSb/:

#-&(=&. LT^ MI6B& ft-LL T © 3 tK dtitt* (Sfc£:SM> 75(1989), 1790) {CckoTBBU^ftfc (ALSILON ES+in situ NiAlO,) T'ilfrffcL 6t)0-e&6. tit* E*C& <9, Near Net Shape Spray &kWSTr&So 7°n-t? X©®StL &6V4i3X h®{£^(Cfp]^on^i:St>tl. m#©#Bg(D(:#^f 5 t>©r&6 9 tfc. ac6##3 &-ct>%w d©E*>b -rnt^ 3^ bC(mmm©#^^L/cA0:b©Bf^(i. mmax:# Ifc-fZ&WfoZo EMES^tcS'd^r, T7i/;^ma sic^6v4±TiB:#f u/cm^##T 1^. m&e frm'to 6, CIt51W^iSTtl/: Teng b, wu b©#%(l. i» b(c(i0C^Tm5-9 L©T&6o dnb©Emi'T;bt>£B 2;h5o

*f-y^b®#%, ry V ^tCAZ^WtU MIT © J.A.Cornie j;c/ Drexel±#©

M.J.Kockzaki(E©E%^^BSr=1U, ^ < ©ftjl£9 £ d nx\,'Z>fi\ * ©^©m#^$o^c ltmm# 11n±r6 fr^mx-s 'B J Xtib'itz. o

nt4b\ ^m^7#B23B#%g (^#4^^m9o) ^f-jKDxmmwt Ml<9 , ^mtiLTZWM lb xl/<-^-(^ihL/co *©Zca6. TtrBLTl'/c35|Jg^ t) 5#BCZ(^ /Co 9 ^U35|%C?gm L

TV Vcd

©mv ATMZC d 6^ # b Wco

?l ffl 3t tt Proceeding of 3rd International SAMPE Metals and Metals Processing Conference/Advances in Synthesis and Processes (October 20-22, 1992, Toront, Canada) [1] N.Kanehara and T.Choh : Mechanical Properties of Forged SiC/6061 Aluminum Metal Matrix Composite, PP.M414~M423. [2] T.H.Teng, et al : Interface Effects in Fracture of Al-SiC Particulate Composites, PP.M546~M554. [3] T.F.Stephenson, et al : Nikel-Coated Carbon Fiber Preforms for Metal Matrix Composites, PP.M560~M568. [4] G.Hurd, et al : Tensile and Impact Properties of Mechnically Alloyed SiC/Mg Composites, PP.M569~M580. [5] Hiroshi Asanuma, et al : Fabrication of In Situ TijAl/Al Composite, PP.M581~M587. [6] W.F.Caley, et al : Natural Minerals as Secondary Reinforcing Agents in Metal Matrix Composites, PP. M588~M599. [7] M.Kobashi and T.Choh : In-Situ Formation of Oxide Particles in Metal Matrix Composite, PP. M600~M610. [8 ] Yue Wu, et al : Synthesis of Al-Si Metal Matrix Composites Using Spray Atomization and Co-deposition, M692~M704.

10- 3 . ffi O SB -tr^ 5. y ^ d: *7 t ± -5.

## mm #A

*5 $ •? ?xic*iy5atoiB=i,e@stt®#a*ffi=aicvh‘a-t-5, i urn KT®t7 5 7 nt-satj. ■7t«5„ ammatmmmcMf &&att9 ;»^xtma.aeRmwf-^emcm^So

•t 5 s 7 » 7.

restti £V'?fflElt3l$EAi:,k-7T±SyffU :--tr5 i 7 ^x##©#Ai:moo%W±-e St"L"Om.' bftS = -byiy ^XtoSHtoi-O©;!'^ XtcXglJdftSo *© —7Ug MSttTfei), #i|4®ffieSBS*-hTt'5BES'f ?SlcJ:-7r$ac5<, to©—3li, &5-% BgK4=V'r$ac5«S@att"C$.5o g#t-e©#RBf%$(l) (i. figo.3 yni ©TZPIcfcVT, -5EBST 100% H„h® ff fSCt^ftfiJCfg-g-Ufco •etlHS, #4 ti-by i 7 ^X®@M14ti J:y@ai4E®lco©rjA|g

W5E^iH6e>nri'-5o -b 5 i 7 :?XtoiBBtiiti;, £ < I±f4gte lym ©iBgx?*^ c © * tf©u(iumto&MeimtmztiZv w%©m#i:-3V'-cu EVJuti'^-KSAbnrv^ca-bx *B£iiSBttE®t®6K«;g®$/m£m.&6a£, *7 5 7 ? X ©$)fflen"nf4i@ B14IC o 1' T ifP< 5 o

$StBtt,1,ttEEtt©!f#t±±® 4#a

■by i 7 ?X©»«;@BBaf48Stt®#ttl±, *1 CSfZilc, ARirligtiS,, «t>WB*i£>S|r SI©—oli, A£"eiRSStlTt.'S#U:®e±tt"C65o AM##©#A, T;Vi7'n>XT-5500% (7) -e$>5»\ -t?7 i 7 9 Xffli6-6-©]6*e!iY-T ZP©800%T'& S (8)„ *7 i 7 ?X©@*:1S(i &Ki:jt^r-tfi/jxsw msit/'b 800 % tv^urntt; 7^x©j:7%m*##?im36"c* #V'@?&So -by i 7 7x©fflffliSj|f4eS146^t*5E.W#ifi6aij:to l(i» TfeO, A#©# A4:i3to-iff/hdi'o a* ©#B@#©Tzp©izt7 • m.mm%7fitm 1 |g't"IS^t4a®B#7iU < toSS (9) „ ISaifiA-iXS < tiSfcEBIE* Mint'S. |ij=a|4S*S < -‘.thM'S IS ifZgjffi-p 7 7 7 7 ST Z P ICifc bS < t£ tK KA#@1.83ym ©TZPTIi, Ettlt WdM'Tt"b, 10% jyT®E»T8Z®V7b. C©j:9 l:, eB1(Sai±, iSfilCfel'-C-tr7 5 7 7X ##©^m&mtm#t$mt"s#ta#o:e#©—^r-ss. ilifm, *S5l®W*Sl^ LtfLU, is**«t 3icj;7r^7 S«SBMa®(cJ; D Mat'S. 5ligIt-*T"Cffl56ttl±*7 57©j$filcJ:i3$Jtedns0 * 7 ?gifl-S%#ldE.»B mso.5 s7biis-n^Esaatt©£'®*:frr'ii*sK -enm^riiS+^T* So C©*Col'Tii«*t-So @MttAK®i$BESIc-7V>T. IE* • S*ilK©M«£W*tli7‘n 7 ht"St, H-7©ffi«lc9- sns(6)„ «MttiiS.sssffis4'ra©ffi*T'fcdSo d©m%?i^ mttM o.5©#±#e%So IE* fflttME i:SiSK©*fM©MffIt, SBtt*7 i 7 ^XKteV'TMS, MftT'S^tlS. 02 |iTZPC«tfc5(ll)o logo t log£®M«±o l200rSbl500"C©IEB®AT®B$TB

mM#61So aB©<9EI4BECJ:-7T$T*t£5. 4t©gltt-b7 i 7?Xt, ESSSS

-11- # — loga vs — tejve o.5(Dm£tz>o

^ v iJ^m-5 d

TV^/cA.

m> MiiE£^-^©^©^JS*cj©sw^M^n-c^^o o ' Q £ = A----- exp (---- — ) (1) dp RT A:Proportional constant, d:Grain size n:Stress exponent p:Grain size exponent Q:Activation energy

I i I S ^ It mm&£*tTZP(Dmm&gn miro?6y bizkzt. ISMETZ P Xhtn 1il(i 2, tteZ>0 6d © j: 7 ^ n#©m(#i^#^©#7%^8© tod j; 9 £ b T l' 5mmfrih5 (4 )„ ttesA. ##©^E(i#x_ , ^'©j:7^^ -Y zfo^mafr n #©Eib©ma a d ^©^5xf8#^©w#(ib^b(m#A^^T#/co ^m#©^@ &###-&(:#, ^m&TZPX7xmz^tjTzp —^etzptte&frmm x^x xm^ai £ uk v ^ & ©£?rr — ©f-y^t^ci :&w%i? $>60 2o©7>-7e©m1il'r-^^ia 3 tZ7°n y b£tlX^'%0 —:># CuO^sJOTZP r Hwang,Chen^4/c^-^> f&©—7(ii^$&ET Z P & «k OWa 5 3 @©$^#7 XtB^tiTT Z P (CO l ^T##© AA'-AMESL/ct^- ^T&6(ll)o CuCMOTZ P Cov 'T Hwang, Chen^# f;f-^llll30’c — ZrOz-CuO^©^BBB^E — ifi^*eS,EUrv^^o d©&Etimm>D T^ , d©mE(±«#m##©E, iSSI14E®tt«L^T©iaK’e4£S{ctd$E$tu Ilfc&a±T?tiJMEJ£K£E£ft5. ££5SLTV^o d©x -9 Xt8©S^-B£EWt::^USfE^r fe5t.W5di:t>-Cl5o b^b%#6, 4£b4kl\> fmoiSV^^#7b^UT Z P (i. ^i200°CJ^T’eEE'BE^^dTZP ©EB#mti, d©mm®±T'r###c#6o tz px{tm^Mmt^o^^mw^n2oo°m ±(cfc^r^b. uoov^yx^ < > R~z>mfrG>m&xw.m T6 6V'7#m^&6(ii)o ##(±, d©£frJHl* Huwang R [/Chen©Bf%^(d^^^l:V^ t>©t#X.T^6o E3 IZ7F b/c^(i^ST Z P &£VmmTJl' i-VJ+tfyX (#5% 1) „ SEVf-^A • T ;t/^r.7A#’7X (#7% 2) , liUf^A^X (#7% 3) CM-#-6##©f-^%:^6(ll)o ^mETZpc(±%#^7%(±#&^ ^7«ii©Tzp©fi#

-12- z pu/ctzp ckt) C©«|(;L Langdon ©mif 6LTW6o g*U i^ETZP©m StiW0.45X:&t), 7bV«k<9 (0.33j£Lk) ±£l\, cnit EiSE^E^b^-tir/cmtcj:Df#y-cm16

(iN log ct vs log £yn7 ^^XS^trTZP© mUte, miB 0.50 '-0.65©i^METZP C^ib©#(i 2j;^ Ebtl^o

StiMbx*;u*- TZ P©@MBES©^WbX*7l/^-(;l 48O-560kJ/mol %?&6(4) o 4^-C\ C©ffiffbx^ OM . »»©S^bx^;u^-(ci:b^n{« T±#v\ 6##^^T#/co cnwr, c©##(±am'EKB©^Wbx^;(/^-^^^zro, (C-Zr02)©|#^^6V;I/4^--- irflffl 337kJ/mol,255kJ/mol

©-e*6 (16,17) 0 =5## A120j-ric,h

Cf&Tf 6

BP5. mmbx4;7l/^-©#^±#v^a^mE(: j;6EBj^eomb^±^ < ^ 6c ^c&B d©tttm. zro2-Ai2o, u&tfm® lommfctitumt® h$n/c0 5©«fc-5t^ Zr02-Al203me##C#^T#m^tT,TW6 6#X.6^6 (16,17) o frn©MEt-^^Tt>, zro.eWg:©^*:!#^(iMeLTU6o zro2^Wfi ©fii'tms^ <^mmt?-* ;v^- m*: t c fa ^ 9c c©me##-C©zro2-^WA©m!mc61)^9^Wbxjvt/^-©K

*s n it ® » fit pi*. #6 L-c^MmmmB©#m##©mg'icm v ^ b # a „ v-ytc^-r^^ti %mc^@gtT7l/fi p=2(20X p =3(2l)^LTV'6o pf@©^#x-^(i WfctiTZPC&l'Tt'b 1.5^b 3.O©*B0(ClibOt,vr^3o Langdon (i,

A4-/cA«b^5Su jgitfti*;wF-1n#^-m©tzpm^t-^^

7en^ hu 3.0 ^#rv^0 c©#mwm##<©#m6m:m-j<#T&&o P#®##

-13- iiU^FIEmtilSmKM5t'M9o iWMES^CDMS^taiSeoV'Tli&iiif6o

31 3S y SEteUUe#T SB?

Iuicfe^fc«):9e OTMtJl J^T0t5 ; xe4b'V^rM^BBHfiBEto^mt"*E»o %

<%&u. ^©/;»»^n^o im ^tzp©js* -m

imftMK®.%L(9,23)0 |g6(a)(±H@#0## — j%Al203, MgO »ai2o3,tzp — 0i4oo"cet)(j-69im^ -ma#m-c&&o c g(D|lD#(iTZP < Mg0^PAl 203 <#&A1,03 C(D3m®##(D3^. TZPA^

wmm±x&z>o #Ai,o3 o.

^m^ej;6%/cLv^K^6D^^#^$m^^6(23), @6(a)(CMbn5ilD> ai2o3 ©m (i Mgoomme j; (] %m^^,6o c tui.m&mtM&v>nmKM{%-tz>0 igecb)®^®##^. m t&<-sevrv^o *©MmMAi 2o3 T#^em#/c^Mgo ®mtoez%mmem< ^ a (25). Tzp®mm#e#36T^r. -ewt. Tzp(i±#^^m ^7^3 >%?TZP®%m^^Me#me

Kimb^tcj^jw^h-a^o mW1rZ>lcmt]m^XfoZo A#mim#^mv^SM#(:&6(27,28) 0 0.5 ^unxu2oo?M±(Du.±w ow#bnn'50 m#(±. 64^ v &%#eM<V'6(iO)o 4; 7 ^##ct)(ta^E{b(D/ca6.

l^JSi?* 7 4; 7 ? j&EffliSite* £ 4k 315E#£#6tzfo(b —z>

^ct3tk tT; 7 L-T. -C fl(D&X{i.X'3t/fr'V&>Z>0 Kim£>V \ 7 2 X ftZener-Hol 1 omonv t =? s exp(Q/RT> 0mn66^emm^mme{ST-#-5cu-cv^o 5 mw mm^xtmznz>0 £ , = K1 [£exp(Q/RT)/A]f (2) K‘:£££ k-MPt;

-14- T. M f £ -0.33<>%a6\ (2)^,(c J: < M&t&o c©N#m m^mmjg(biKv^B^jg©#^c±#^#aA4#b,nsc

Hr n tt s se £ B

luO-tr^^g >T'^/cJ;9^ ^bbbE©^B(±x ^B?T6So TZP, Ai2o3-Zr02, siiN.-sic #^©mmB-t:7; v ^xm, ©EBizill ©iWtmiSES? ©fij^StDlStt, L(i£Ltf, Wilkinson and Cacers©##( 19)^r^(C, M &mnormalizeb/dM^lSE® log - log^O y Wilkinson and Cacers©A#f(CCn(E C© log - log7°tt y #4 ©@EB^#C*TS S^ mM^rmn^n, s^®m%ce^^6o %^©@mBam©m%#m jgcKiE^issetcjtMu mv^^®m^cw^6o ; ? ^xc^v^-cm] mtezfuy h£ft9h EEB&)S®? EEiSS®JS-^*2r|iW (9,15)0 [g7(j:Am6'tr7^v^X®#^®C®j:7^yavh-e&6(25)o TZP MgO tiHCj; *3 BEB&JI

®K#@a.^r#6W^^mLTV'6^6r&6(30)o #%®mr, V^X^®^ Bitrc&So wmmm&mm.

o $Jx-lE ai2o3 tczr02^S5Dt'^.^MS{i^J^(cFliSij$n^/d^ f ®##%^®#^^16(31,32) o Al 203if®Zr02^-iiS(iAl 203 ®^^#®3- f—6 - ® c ® j; 7 6 ^ ^ < ®g&&#r:bfi'cv ^ a« #i&, % 4 (aAl203-Zr02#-&##4;®Zr02, A1203 \h£®itld$^/£ £ t (f l£—^1S £: Zr02flf®#:W®Mm-e&6C:6^##L/c(33-35) 0 |g7(±Al 203 ®^#C#f6Zr02 ®4^#®kb#^Zr02®#:#$C^L-Cya y h btz ©X;-#,& (33)0 Zener©?# 6%B 89C —%LTV'6o Zener © pinning##MZr02$6?C

Y»+ -e©Bi#4'n>cj;s%?^^mcM#TS(36-40), ^#^#mm©#Mr:^^x:t>m m#6&svxi^B?ct)V'x:m»m(±^Lx:v^o m 9 #1700°C- 2fg#%jg©(3(a?^©gjg'C10D#^m$l6L/cY203 4mol%-Zr02 ©M3E$X:£>

-15- Y2o3fWS;(i 2o©^;U-7°(C^n^o ir0----3>ti 2.0—2.7 mol % Y203^<^> ftk©----3>te 5.6—6.1 mol% Y203mt5o Y203^W#(imm^m(C^(t6Y203(D^##C&mLl:U6 (36,38) o CCD^ii. f##cm^2o3^#-f 6 t-zro2 c-zro2 ^Es^ta^±^-o/cc t«ut^0 zro.om mffi£hU(D<£%.‘&(D&Vfo 6 (CffiS/X V >o #MC#m@L%W(36,38) o ^-C©t-Zr02(iM(C4b'WrfcM-r %ij\ c-Zr02(i^(CckoT^(Ct-Zr0 ^ UT L^ 9 (36,38) 0 ZrO2(DaL

^hb0^IE^bbh»©#M'B©/c^^ COmm^f6 6ai/l:W6(41-44) o CCDfge 2 LTW60 c ©iE fa £ raj

mm

1 ym tUT®aM8B HB«t-b7 i ■;- 7Xli. $ST\ KKicE®"TtoTS t), ttEEf 5. affl^gie-b5 i y ?X©«att©#«::ol,'TffittLfc„ *5 i 7 7X©^l*#Cf^r SETS®* *7 i V 5’X©@Ett**Sd-ti-5et>fi$^ia^-(ief Bf4$$ttTS E>o

1. ^Stt7;? ?x®

METALS CERAMICS

Miixinium 5500% 800% HWANO >»4 CHEN rOSHIZAWA .Ai Elongation (Al-Dronzc, 1985) (TZP, 1990) (19901 3AKUMA (19901 Gruin Size

6 vs

UOO'C

1200'C ^ 100 1300'C

UOO'C 1500'C

to 50 0. 28(1111 10** . 10* ’ STRAIN / % STRAIN RATE / «" 0 2. »I©I^5TZ P©l400eClC 03. WKTZPfc. ^(iai&;^-mmm(9) £Wir 5 t z p ©Ej&ESg&o (HiSS:1.3X10-*S -l) mm^^(ll,12)

-16- El

FLOW STRESS / MPa Q / kJ/mol 800 M 04. 5 ® a

Oj 2 . a-

6

Al 2.5 10

1.0 .

20 A1 2 S*-HtM(a)

3 2 m00##(Di4oo'c(:&#a -ZrO 0

e 30 3

TEMPERATURE -Zr A I

too 1,0 m-ts 2 STRA tO Pure 0 (2.5Y)©10%

2

CONTENT

50 A CD

1 1,0 x (16,17) N 006 ■

60 ^3-7

• lt50 cFSjiiE(i6,i7) 70 a

COMPRESSION TENS

14-00 A * V ♦ ■ •

*i,o, /

/ 20«lXZr0*J 80»IXZi0^2.5TI 50«lXZi0^2.5TI

10, s.ixzio^z.sri 2,UZ

EES* *C

80 WZ, wtX I

C ON

i O,I2.5YI 0,12.571

90

2.5T1

2,0,

100

-17- 07. 08. 0 O

9. 0.3 0.2 0.0 0

.

w

Pure

mm&&mbmmvtninofcti log-log^ I A1 ft¥m/7inmmttcDMi%(33) ^•Wl:^Y Zr0 1700 m HOO'C 1300' C VL /

2 O * 1500*0 i/FZ A1 // 0 2

-4rnol%Y 3 ^ e 0 ,0; CTl0^r5T--;L -Zr0

%

10

” (iTEM-EDS£HJr • n

2 f 2

CD

0 "j & / o 2 3 (WILKINSON) v r

mol%r'SU/c 0

1600*0 1500 / h METAL 3 voIX

CD%[#m#o /Hiller

:/ (25) Zener ’ 20 C]

J 7 Horl *

el t

© el.

tc

t u/c

7 t x

30 mu t

>©0 3

(38) # # % m 1. F. Wakiii, S. Saknguchi and Y. Malsuno", "Supcrplaslicily of Yllrin-Slabilizcd Tetragonal Zr02 Polycryslnls", Adv, Ceram. Mater., 1(1986)259-263. 2. F. Wakai, Y. Kodnma and T. Nagano, "Supcrplaslicily in Zr02 Polycrystals", Jpn. J. Appl. Phys., Series 2, Lattice Defects in Ceramics, (1989) p.57-67. . 3. Y. Moclutra and T. G. Langdon, "Supcrplaslicily in Ceramics", J. Mater. Sci., 25(1990)2275-2286. 4. T. G. Langdon, "Supcrplaslic Ceramics- A Review", Supcrplaslicily In Aerospace, II, Ed. by T. R. McNellcy and H. C. Heikkenen, The Min. Mel. Muter. Soc., (1990) p.3-18.

5. I. W. Chen and L. A. Xuc, "Development of Supcrplasllc 27. D. A. Woodford, "Strain Rate Sensitivity as a Measure of Slruclural Ceramics", J, Am. Ceram. Soc., 73(1990)2585- Ductility", Trims. ASM, 62(1969)291-293. 2609. 28. C. II. Hamilton, "Supcrplaslicily", Strength of Metals and 6. A. K. Mukherjee, Plastic Deformation and Fracture of Alloys, Ed. by II. J. McQueen and J. P. Ballon, Peignmon Materials, Ed. by II. Muglmibi, in press. Press (1986) p.1831. 7. K. Higashi, T. Ohnishi and Y. Naknlnni, "Supcrplasllc 29. D. S. Wilkinson and C. H. Cnccrcs, "On the Mechanism of Behavior of Commercial Aluminum Bronze", Scripla Strain-Enhanced Grain Growth during Supcrplasllc Mclall., 19(1985)821-828. Deformation", Acta Mclall., 32(1984)1335-1345. 8. T. G. Nlch and J. Wadsworth, Ada Mclall. Mater., 30. Y. Yoshizawa and T. Snkumn, "The Strain-Enhanced Grain "Supcrplasllc Behavior of a. Fine-Grained, Yllrlu- Growth in Tetragonal Zirconia Polycrystal during Slabilizcd, Tetragonal Zirconia Polycrystnl(Y-TZP)", Acta Supcrplnslic Deformation", Supcrplaslicily in Advanced Mclall. Mater., 38(1990)1221-1233. Materials, Ed. by S. Mori cl ill., The Jpn. Soc. for Research 9. Y. Yoshizawa and T. Snkumn, "High-Temperature on Supcrplaslicily, (1991)251-256. Deformation and Grain Growth in Fine-Grained Zirconia", 31. D. J. Green, "Critical Microslruclures for Microcracking in Eng. Fract. Mcch., 40(1991)847-854. AI203-Zi02 Composites", J. Am. Ceram. Soc., 65(1982) 10. W. A. Backofcn, 1. R. Turner and D. H. Avery, 610-614. "Supcrplaslicily in an Al-Zn Alloy", Trans. ASM, 57 32. F. F. Lange and M. M. Ilerllnger, "Hindrance of Grain (1964)980-998. Growth In Al203 by Zr02 Inclusions", J. Am. Ceram. Soc., 11. Y. Yoshizawa and T. Snkumn, "Role of Grain-Boundary 67(1984)164-168. Glass Phase on (lie Supcrplnslic Deformation of Tetragonal 33. K .Okada, Y. Yoshizawa and T. Snkumn, "Grain-Size Zirconia Polycrystal", J. Am. Ceram. Soc., 73(1990)3069- Distribution in Al203-Zr02 Generated by Annealing at 3073. High Temperatures'', J. Am. Ceram. Soc., 74(1991)2820- 12. C. M. J. Hwang and I. W. Chen, "Effect of Llould Phase on 2823. Supcrplaslicily of 2mol%Y 203-Stnbilizcu Tetragonal 34. K. Okada and T. Snkumn, "The Role of Zener's Pinning Zirconia Polycryslnls", J. Am. Ceram. Soc -., 73(1990) Effect on the Grain Growth in Al203-Zr02", J. Ceram. Soc. 1626-1632. Jpn., 100(1992)382-386. 13. Y. Oishi, Y. Sakkn and K. Ando, "Gallon lnlcrdlffuslon in 35. 1. W. Chen and L. A. Xuc, "Development of Supcrplnslic Polycrystnllinc Fluorite-Cubic Solid Solutions", J. Nucl. Structural Ceramics", J. Am. Ceram. Soc., 73(1990)2585- Malcr., 96(1981)23-28. 2609. 14. Y. Sakkn, Y. Oishi, 1C. Ando and S. Morlla, "Gallon 36. T. Snkumn and Y. Yoshizawa, "Grain Growth of Zirconia lnlcrdlffuslon and Phase Stability In Polycrvstnllinc during Annealing In the Cubic/Tclragonal Two-Phase Tetragonal Ccria-Zirconia-I lafnia Solid Solution , J. Am. Region", Grain Growth Conference, Rome, 1991. Ceram. Soc., 74(1991)2610-2614. 37. F. F. Lange, D. B. Marshall ami J. R. Porter, "Controlling 15. F. Wakai, "Supcrplaslicily of Zirconia Toughened Microslruclures through Phase Partitioning from Mclnslnblc Ceramics", (Ph D. thesis, Kyoto University, 1988) 109-150. Precursors", Ultrastructure Processing of Advanced 16. K. Okada, Y. Yoshizawa and T. Snkumn, "fligh- Ceramics, Ed. by J. D. Mackenzie and D. R. Ulrich, John Tcmpcralurc Deformation in Alumina-Rich Al203", Proc. Wiley & Sons, (1988)519-532. 1st lilt. Symp. on the Science of Engineering Ceramics, Ed. 38. Y. Yoshizawa and T. Snkumn, "Evolution of Microstruclurc by S. Kinuira and K. Niihnra, The Ceram. Soc. Jpn., (1991) and Grain Growth in Zr02-Y203 Alloys", IS IJ International, p.251-256. 29(1989)746-752. 17. K. Okada, Y. Yoshizawa and T. Snkumn, "Hlgh- 39. D. K. Leung, C. J. Chan, M. Rlllilc and F. F. Lange, Tcmpcralurc Deformation in Al203-zr02", Supcrplaslicily "Mclnslnblc Crystallization, Phase Partitioning, and Grain in Advanced Materials, Ed. by S. Mori cl til., The Jpn. Soc. Growth of Zr02-Gd203 Materials Processed from Liquid for Research on Supcrplaslicily, (1991) p.227-232. Precursors", J. Am. Ceram. Soc., 74(1991)2786-2792. 18. F. Wakai and II. Kato, "Supcrplaslicily of TZP/AI203 40. T. Sloto, M. Naucr and C. Carry, "Influence of Residual Composite", Adv. Ceram. Mater., 3(1988)71-76. Impurities on Phase Partitioning and Grain Growth 19. J. Wang and R. Raj, "Activation Energy for the Sintering of Processes of Y-TZP Materials", J. Am. Ceram. Soc., TVvo-Pluisc Aluminn/Zirconin Ceramics", J. Am. Ceram. 74(1991)2615-2621. Soc., 74(1991)1959-1963. 41. T. Snkumn, Y. Yoshizawa and I I. Suto, "Mclnslnblc Two- 20. C. Herring, ,lDlffusional Viscosity of a Polycryslnlllhc Phase Region In the Zirconin-RIch Part of Zr02-Y203 Solid", J. Appl. Phys., 21(1950)437-445. System", J, Mater. Sci., 21(1986)1436-1440. 21. R. L. Coble, "A Model for Boundary Diffusion Controlled 42. T. Snkumn and II. Plata, "The Domain Structure of Creep in Polycryslalllnc Materials", J. Appl. Phys., 34 Tetragonal Zirconia In Zi02-Y203 Alloys", Advances in (1963)1679-1682. Zirconia Science and Technology, Ed. by S.Mcrinni ami 22. A. I I. Chokshl and J. R. Porter, "Analysis of Concurrent C.Pnlmonurl, Elsevier,(1989)283-292. Grain Growth during Creep of Polycryslalllnc Alumina", J. 43. T. Snkumn, "Development of the Domain Structure Am. Ceram. Soc., 69(1 986)c37-c39. Associated with the Diffusionlcss Cubic-lo-Tctragonal 23. Y. Yoshizawa and T. Snkumn, "Improvement of Tensile Transition in Zr02-Y203 Alloys", J. Mater. Sci., Ductility In High-Purity Alumina due to Magnesia 22(1987)4470-4475. Addition", submitted to Acta Mclall. Mater. 44. M. Hillcrt and T. Snkumn, "Thermodynamic Modeling of 24. D. J. Schisslcr, A. H. Chokshl, T. G. Nlch and J. the c-C Transformation in Zr02 Alloys", Acta Mclall. Wadsworth, "Mlcrostructural Aspects of Supcrplasllc Mater., 39(1991)1111-1115. Tensile Deformation and Cavitation Failure in a Fine 45. A. H. Metier, R. Chaim and V. Lanctri, "Phase Grained Yttria Stabilized Tetragonal Zirconia", Acta Mclall. Transformations and Mlcrostructural Characterization of Mater., 38(1991)3227-3236. Alloys in the System Zr02-Y20,", Advances in Ceramics, 25. Y. Yoshizawa and T. Snkumn, "Grain Growth Acceleration Vo I. 24A Science and Technology of Zirconia III, Ed. by S. during High-Temperature Deformation In High-Purity Somiyn ct nl., The Am. Ceram. Soc., (1988)3-20. Alumina", Mater. Sci. Eng., A149(l99l)59-64. 46. R. Chaim, V. Lanlcri and A. II. Ilcucr, "The Displacivc 26. W. J. Kim, J. Wolfcnstinc and O. D. Sherby, "Tensile Cubic-Tetragonal Transformation in Zr02 Alloys", Acta Ductility of Supcrplnslic Ceramics and Metallic Alloys", Mclall., 35(1987)661-666. Acta Mclall. Malcr., 39(1991)199-208. 4 . 4. a £ ft *4 H a 3t it fcb i

A.

A—1. ® $

(1) IB $ fi 3t

*5 $ -v ^X$«^tt#4®S^

H (®, ©) Journalist: (®, ®) £18$ LT, 2 7IS^iltR U ^©feMf^fTOUco tfMiii, ^SBH*SEmFJr36U:lcff$E Uc-t? 7 i •» ? 4 l:Rlrm®6K%#l: =k (###©Ag#n# 1 #%1H) «>

-b 7 i -y 7 X$IB$ISt:©tijA

(1) Europian Association for Composite Materials : 5th Europian Conference on Composite Materials, Apr. 7-10, 1992, "Developments on the Science and Technology of Composite Materials.

(2) The American Ceramic Society : 16th Annual Conference on Composites and Advanced Ceramic Materials, Jan. 7-10, 1992

(4) J. of American Ceramic Society, 1990~1992

0 J.Mat.Sci.,1992

-tT7 ; V

4^ T 7 ^ ^ V -tf- 3 ...... 10#% ...... 5

...... 4

...... 2 '/□+fXEiWl:...... —...... 5 -ecc# ...... - - i

( 2) IS JH V> « 31

i. <£

-19- sic 3M: si,N,©®#6ti#*)[5] i-sckU\ > i -y 9 x#-&##©^ x —>y##[/,] l y 9 X$a^MS©ftffi©E5Elj|6]67S-r t>©T*5„

ii. iBEtit iBSttilXS®.

mamzxt)mmvkmw^S, ffifEA) f BCtXABo 4©fcfe(CIX jESItiDXicjl LAtifiM ftW-"y ©7/-> xIti©®ft[i'j/ASA, $J[yrp ©f5/jKMAfflM-f6iSJjIlM® »At£t»tfx.B;h.Bo [6],[7]li @E®jpX7i-s ri,S©®F9Ej rxoxx© %j lc5M£teAB;JIBx/!>\, c©f6X7 i -y X x^m-&#mi:"3V'X0*mim^©%&71xX > h/AmMaTV'BIS] „ •etiic«k5t. t5 s (®*. mum) ©«*xhai;—^*, 95 1© ©. *iaxii, atW-EX-A'-y h (tocWA-Sf) 4- • iSf/WE £'©8^69ii?E$mSXniic©5>$f© u -'/ -fiVr

5 C t Jfj&t UTV''-Bo ^7 4? 7 Xy^#4"fff4-©iiWIEI©^%H^L ( Hf£Bo

[1J [2-2-2]-l [3]:[A-2-2]-2 [5]:[A-2-1J-9 [7]:[A—2—5]—4

[2]:[A—2—3 J —1 [A]:[A—2—1]—8 [6]:[A-2-5]-l [8]:[A—2—6]—1

■ pmmt&m® r#mj iceibut*Bo

-20- A-2. £ E fcb #

[A-2-1]+ + 7^^ Utr-i/3 CA-2-1]-1a

4r7 5 7 ?Xm&tiW!C43nS5S(k#E©SBWJISIk3lgo42X

Fiber debonding and pullout process in ceramic composites

m # Proc.of 16th Annual Conf.on Composites and Advanced Ceramics,70-77

# # D.R.Mumm ,K.T.Faber(Northwestern University, Department of Materials (PJfKSSl) Science and Engineering ,Evanston,II 60208-3108)

* - 7 - K ceramic composites, fiber debonding, fiber pullout, interface single-fiber, crack opening displacement, fiber suface morphology

0. 8- #%#«©& 0: 4, 8: 2, 5?*: 0. 10 »#R# #0 S

[fig] ©Mn$e (cod) 1 . gtt (1) *7 5 'V ?zm&m 7 V Z <0 tofrt-i 9 Bit b T l/' & C t Lt © S. (2) 4-B©m%(:m©AKerans6©f flWi, (2) tf ;W5#r©#m- C O (0 4) SSIffcT P V y ^%©#M<(5%7'yf 1: ®04>©P’ 5, #7V>3hmzj; 9J*@E A (: *B®llSJ)m»sf7*>iPi 5 ft, «H©?t **m©%m©;mwma/b%o a. 9 te$MK£<*to&©6.SWBSTibSo (3) *E%©Sl=lti, 42 7 5 -y ©0*®?, ti\ SBM$i^7 y ^©5t«»s »Ji£ IS#S©tC!£('g^EsWB*-C*S. .««*9I §ft§ISS*%ffi) C i: K&S. ®a**»ri±p* j:0fe+#(s©B*r-ec (4) 8 bwj£> aatiro So ttffi, 86«©8B®S»i|iig^ s fia. (3) %#mA©##A7^-^ (8i ) •m 3. SStoii • P, . P" ±E©»9 a) «£tm • On*" SBSffitcWSIj^SEE.* (Dv P V y *)4r-i'KtS*'7X • Gi @5S(ta$6 CVD-SiC ait (33Min IS) ®Gi lltttK, $##©8B#59©<= ®l$)Mi£ (750 'C.lSmin.Ar ) tt- grts. ®T/P M#. 01 (tfifeSCKV vl-bOX) ®Mt±B##i3©t,©km<—mts. (2) tZWifti ® c n e. © a 7 * - $ *> e>#«> t «wt8B© ®T/P tvfOf 0 2 (KM#?6*Gj$S) [email protected] T$>9, toW©8Bffls ©tBTTii 91# (C.H.S=10um/min ) *wifca<-a-*s. ®«I]$IIS #m% AKMlBf 6 7M1, W?,) ®Wt©9l sfttf ttsttto?5o Mm r$>s.

-21- CA-2-1]-1b

Table 1: Fitted parameters Data Set p

Fiber /

Glass Matrix coia z 40 —

12.7 mm.~ "4—► 5.4 mm.

Figure 1: Modified single-fiber pullout specimen geometry.

COD (jxm)

Figure 3: Load-displacement data for the modified single fiber pullout test.

100 - t

-Fiber Fracture

Frictional Pullout 20 -

Figure 2: Modified

Figure 4: Application of the Kerans and Parthasarathy model2 to the experimental load-displacement data.

mJt> 8-16

-22- [A-2-1]-2a

(%%) v Vyxziy^v v

Damage Development in a Ceramic Matrix Composite under Mechanical Loading

## B. F. Sorensen, R. Talreja*, 0. T. Sorensen Materials Department Riso National Laboratory P0 Box 49 4000 Roskilde Denmark ♦Georgia Inst, of Tech. Atlanta Georgia 30332 150 USA

9 — K Continuous SiC fiber reinforced calciumaluminosilicate glass ceramic matrix composite, tensile loading, development of damage, acoustic emmision, elastic modulus. Poisson's ratio, permanent offset strain, coefficient m ■ m ■ ■ #%:$*©& she m-.i 9M-.i mxm-.t sir# *# a

7WT\ M%(DTgmmhT 1*6. g#0.7%i:%6 6:AE .t">"»h%,tti$il6tcViTtc?l58l)t$^Lfc.crokS®a) *• y ^T©m©itg4msteM<-88R V, (77 6:0^^6. TJ-lf'l-rH'.-rJU (AE{@#| ©BBiSOiBBlC £■ o TW-L, Zt£tt;LT& <9 , fc. »£.y]-SWjlimits?t f mtbBSHti’ =t &6. m#mim'-(0^-mm#(D@m)m.iMj/m^. 6ja4.®S$6sfflSsn, f titi:f*(g. mw^m#^$"7V)kbuEr6TT\ 6:< $Tirom&mei-6C6:X)' 6* 16:1-6. #% 6 6 L#0.50^60.7%(D^Tm#^mmU %(/'6: C ^C#i± £uht*6 (fig. l)o 150mm,$§12. 5m, a X)4}^6. ##8%#a6$T(C (s L>0.7%) 37j;' / 3mmT, i3 a /u 6:"(D t) CD iiW 6: dT6 tz£ £ l=0.5%iC^o fzfcifz D r—SSiCiil- 60 ^ #t^-e(DmmT#icT^ $yz37$'/7KD#^fn]6:# At:mw^wyy:mR%mLTt9><. mm.4-0.5%l:^"o^6:#?m'^77A 7/ ii^i-6. ^awj:

& # Proc. of 5th Europian Conf.on Composite Materials, P.613

-23- [A—2—13—2b

HU (%%) Damage Development in a Ceramic Matrix Composite under Mechanical Loading

TABLE 1. Measured mechanical properties of a unidirectional SiC/CAS composite.

E°l v °lt g, a\ a\ (GPa)(%) (%) (%) (10^/0 133.3 0.244 0.13 0.45 0.95 3.4 3.8 ±4.9 ±0.016 ±0.02 ±0.05 ±0.02 ±0.1 ±0.1

A <%)

Figure 4. Crack as function of applied strain (from replicas). Figure 1. Principle of stress-strain curve for unidirectional CMC's.

AE Events (xlO6) E (%) Figure 3. Development of crack patten (replicas from a polished surface). Figure 2. Stress-strain curve for SiCjCAS, and accumulated AE signals.

t, <%>

Figure 5. Unloading modulus and Poisson Figure 6. tL and eT as function of Figure 7. aL and as function of ratio as function of applied strain. applied strain (various specimens). applied strain (various specimens). CA-2-1]-3a

h;v (^) Microtextures of Interfaces Related to Mechanical Properties in Ceramic Fiber Reinforced Ceramic Matrix Composites

(mm# M. Mothioux and D. Cojean Lab. Marcel Mathieu

9—K Silicon Carbide Composite, Chemical vapor infiltration, Interface microstructure

El ::1 i:0

[##] SiC##^lbSiC#^##&CVmTfF#L, -e tin i !/->vt-$>z. ^ os«s$iS6s#vx ztutfm^coyrmmmimn UTNicalon NL-200##Tl^$ a M©*££r*si§<. SBtof *" 'jt i'jf »sSSttC t tee Sbri/'-S. -tur. tiirticii^it6®Wi®ams cvm-e jRt. imu/z. [& at mi

EEts^ Sample A1 A2 A3 B1 IB2 Cl |C2 |C3 |C4 D treated weaves M7' Pyro- Conditions I Conditions II No 0.87 0.70 0.67 0.75 0.60 0.25 0.23 0.16 ? 0.07 10^@WL SiC|##(D±^^##^##^## (BSUs) / £r fguUMWiiM/±8° CD HV)iyf-va'j Interface 1 2 (3) i 3(2) 3 4 1 1(2) 1 0#g/SiC7H',m)#s& type ^ -oT^6(D^A^7° W 2(D^.@^, n : abundant ; n : present ; (n) : rare (related to Fig. 1) SiC^B/MSff^y’)* •‘■BSUs^SiE n"IS/ ± 10°(DU^Jl>f—>a Table 1 : characteristics of samples >&t) -2 6^, Ci, N7"3

6. ^7'4^W(1, Si(m#/AA-X"-r^V^#^^^ #@/SiC7FV^Ad;^^i911'oTV'\6t#m^t)"oTV^c 200 - cco^m^Cg, ^7' 5^@^, sic ##/VX 6a^##&AA,%m#M/±25°(DUm7M' a)& 4) c /2#^tmmm/^#me#^^m@/sic?F Figure 2 ^0^03lcT^6. Bi, N7"6^#(i, SiC##/BSUs+m #/sic+#v^#m^#m#@/siC7i^^#mk Tv\6. m± STRAIN (%) c ^ ^ ^ i§g o #mm:

«il*vjvxS. zh

titi # Proc. of 5th Europian Conf.on Composite Materials, P.729

-25- CA-2-1]-3b f-f HI/ (^) Microtextures of Interfaces Related to Mechanical Properties in Ceramic Fiber Reinforced Ceramic Matrix Composites

mm

$)^CVI{$^SiC/SiC

speculative!:' <£> 6 0

-26- [A—2—1]-4a

(#:%) 7 k l 7 *X6i66 (T i»JI« &&n 9 A h )l Short Crack T -Curves and Damage Tolerance in Aumina-based Composites

fcti A Proc.of 16th Annu.Conf.on Composite Mater.and Adv.Ceramics . P.156

m # Linda M. Braun, Stephan J. Bennision, Brain. R. Lawn (Materials Science and Engineering Lab., National Institute of Standards and Technology, Gaithersburg, MD, USA) 4- U E> I I — T-curve, damage tolerance, alumina based composites, R-curve, toughness, A1 20 3 , AlzTi05. short crack

@ • ###«©« 0:2 8:0 ^*:3 ##%R:18 fe*C«

ft 0 iHJS £■ ^ *5 13 # r&J Jt ( T-curve or R- 'B(T) ftSt'fX, c^ 100/2 0#^0# curve)(i^ < 0t7;?^X##0##P9##0@: # , T ^1.8 MPa m1/2 /?' L C ^ 2mm |^0 "C & <5 o fH t/; ?7%0 T- curve ##, T^ 5 MPa m1/2 ^(Clf JD L/c0 #-B©sis z. T ^ 9 MPa m1/2 IZ M Ltl'^l'o $3# © %J #0—*0(i “short crack" domain BP "L %# ffjfefrfitm&flkfflici&iffl l/cai2o3 ©<-x^y MS’? T-curve^Mf 5 C £V&&0 ##(To=2.75MPa ml/2 ) C 6dE# ft^i/-rx/?<@26T/j\^v^# £S 2 fi i: It £ -Al2tio5^Jnx. ^d W^S3I3SI5* /r

X <9 T-curve#%^%M"f 5---3 0##S:CHI 5 o A1 2 0 3 -A1 2Ti05 V' T-curved j: *9ftm^^#/)<#L < %50-#-6 C ^ ( in-dentation-strength data) £: HI iE cF "tir Fig. 5 d/jvT J: 6 d, 5nS!&E<>:0*b£^L T short crack T-curve fffi L /c $§ ^ £■ ^ C0m^##0B%JgW_ E# -:TV^6o #mc^LTAf9#m-e(i/c<. ^m##© Al 2 0 3 tli^io/c^I^^LTL-So c ©#-&## 6## 0 . A1 2 0 3 (i^RStc^fL ^/c. (A1 203 AKPHP, MS99.9 ©ftm (tWEEWS) %, 95%, %# 0.5// . ^ -AliTiO, : Trans­ tech, ##Jg99.9%, 1&m i~5 n ) ozm-fR® , A1Z03 & ®^(pH -#mm(63MPa) MW£(Fig.3),T-@###75<^ < (Fig.4), fco « Short crack T-curve # # © $lj /E » /k -5) o t LT##L/cc#^^##^m L, ES^b0ft T-curve {C 4o I/-S in-situ%^ — ^ 0 / \ ^ V ^Ji^S^rin-situ IHI^L/Co 4^(Fig 4) tt% ftat>fXS!t0»^fil' cktfss] A1 2 0 3 -A12Ti03 (20vol%) #^##0##^ ©E®J0/cd6"e^,^o liFig.l 0|f)t'^fco ^$>99%0 %# 6 j:6in-situ f^&hU SiSfflt7v/ /20##^7Mj?^X0^C%^C A12 Ti05 ifi *7$ 7x©^JE^©ffe (i^liiS) 0#'B^^6‘ $Ltl^o short crack#^ 0 T-curve## T-curve (i , 0 closure forced T- curve 26 /c0 Fig.4(± C. 0#^##© short crack M0fflSffii:o^rtffl /fit T-curve d## L /c$#MT & 5 o # a t) 0 r & a o -27- [A-2-1]-4b

Short Crack T -Curves and Damage Tolerance in Aumina-based Composites

'it. • 6 /un A1,0, -■ 6 AlgO, + 20 y/o A1*T10, Figure 1 SEM micrograph (backscaltered) of the Al203~Al2Ti05 (20 vol.%) composite. White phase Ai2TiO;; grey phase A1202; black phase porosity. 1000 Indentation Load, P (N)

Figure 5 Plot of Om(F) for Al203-Al2Ti(>5 composite and control AI2O3. The composite shows superior flaw tolerance.

20 N ■ 30 N* 100 N * 200 N * Figure 2 SEM micrograph (backscaltered electrons) of a loaded indentation crack 300 N showing bridging in Al203~Al2Ti0$ composite. B marks grain-grain bridge 1000 Crack Size, c (y. m)

Figure 4 T-curve of Al203-Al2TiO; composite as evaluated by in situ observations of Vickers indentation cracks (P = 20, 30, 100, 200, 300N) during loading. The baseline toughness T0 = 2.75 MPa.mVZ is for fine-grain control A120).

Figure 3 Optical micrograph (bright field) of damage in Al203-Al2TiOs composite. Multiple cracks are present and stable during loading. The image is deliberately overfocused to enhance contrast. ” ______

U t LtzM£tfn tl £o -28- [A-2-1]-5a (fn^c) »fPW F V y^%X^mtihi5y%^y% yi’X'7 F V y ? # J h)ls Matrix Cracking during Deformation and Fatigue of Glass Ceramic Matrix Composites (^^c) B.Harris,R.G.Cooke,F.Habib (School of Materials Science-University of Bath — *7 — F Cracking,Glass ceramic matrix, Composites,Laminates, Incremental loading,Repeated loading m • a• ¥K• m: 6 m: i : 4 [«ES] -*[6]-i4^r.*n>(0,90)3 57^A- # TTs't'bVh&ioti&o S y 2JP, T3-Xf^ a <% 9 , ^ /j\^v^ATZFzF#u^^a c^##& a. ^TTga. %#(DCMCTi±%^ iB'otm&l&aTac ^T|W|l:T25%o h ^ £ n&U'tfWicDE^Ii^ *-df>2:SiC Uy^%^7 #ip^aT%a. %(COV\T(DJ^#fr(D0f^T, a-7 F V y -^(m%^(o,90)3s%^##/jN£^T'£fi£Hrt8&tffi0.45%tiJffl£lzMbT * #%KD l"sicmm^ i/ % 3 - - > y K*^ta. %7 ioo®»jguft^fc«k V —, MU, th y F:/UvU;:o< 0, #/M-a. 0 1 u y: . ^<7m^m 1214 ^ , y 3 — Xt -f y 9 X ^ y i/ 3 KftfaSIS&tK J£m

61: ^0## 6#so U --Y ? % %Ta. F v y ^ am&

tti # Proc. of 5th Europian Conf. on Composite Materials, P.605

-29- CA-2-1]-5b

Matrix Cracking during Deformation and Fatigue of Glass Ceramic Matrix Composites

[I5L ¥*]

Table 1. Strength properties of SfC/CAS eempoehea.

— 0,1 »* o> tee m am* *« bJO)M tie e* no sat '* - tin

TenaBe gee-strain, %

Fig 2. Variation of atltlnaaa (X change) Figure 3. Change In normalized stiffness with pre-strain In ud and (0.90)3, SIC/CAS on tensile cycling of ud and (0.90)3, composites. The figure also shcrrrs the SIC/CAS composites. change In matrix crack spacing with strain for the ud composite.

Figure 1. TanaFa amaafarrakr bim, for & and (D.SOh. STC/CAS eempos/fes, aAowfog both ttm longthjdinal strata, <1,, and ihe tranmnrm

Longitudinal strain, X Crack density, s~\

Figure 6. Family of curves of transverse Figure 5. Relationship between the strain, <22, versus longitudinal strain, fn, change In stiffness and the reciprocal for Incremental loading tests on the ud crack spacing In ud SIC/CAS composites SIC/CAS composite. during Incremental and repeated loading.

Figure 4. Cumulative AS events during cycling ot ud and (0,00)3, SIC/CAS composites. The figure also shows the change In matrix crack spacing.

dm > v y?x(Dz>zfp

-30- [A—2—1]-6a

SiC/#yXty S y?&£ttMff

^ 'f bJb Experimental observation of progressive damage in SiC/glass-ceramic composites mx)

R.Y.Kim(University of Dayton Research Institute Dayton,Ohio 45469)

3— *7 — K fiber-reinforced glass-ceramic composite, unidirectional laminate, multidirectional laminate, NDSANDS model, brittle matrix composite, acoustic emission

0•#•Sg • 0:10 m: 5 S3: 6 : 10 m

[##] yf X. X%^#(±. M#?'* b V y 9Xfcik'

(SiC/CAS3,

fcTo j; y #-y y < E#fSA ^ mz'at>titz o 0 7 &^»&&fx*;i,*'-#[0/90]si$ fa1tk&%ftTz tix^z (0i. 3.5.6) o %mi5\ ofc o 09 bVy? X&0

& # Proc. of, 16th Annual Conf. on Composites and Adv. Ceram., P.281

-31- CA—2—1]-6b

9 4 h;i/(3S£) Experimental observation of progressive damage in SiC/glass-ceramic composites

Table 4. Ply properties of SiOCAS -K5SH7 -wr T?rrT v T ~s~ AT GPa GPa GPa MPa MPa •c

Intact 133 119 49 0.24 35 42 -dOO Detracted SI 1.7 0.24 3.5 4.2

E(L)t Longitudinal module* E(T): Transverse modulus G: Shear modulus v: Poisson's ratio X: Longitudinal tensile strength Y: Transverse tensile strength S: Shear strength AT: Temperature difference between room temperature and residual stress free temperature

STRAIN, % Table S. Comparison of W&CAS and SIC/LASltl figure 1. Stress-strain curve for the [0] laminate of S1C/CAS, Laminate First ply lallura GPa Straw. MP«

SIC/CAS foi 194 0.1 (SO] 35 ozeo) 000* 90S LOAD, N

8IC/LA8IH |0| 0.15 610 (90| 0/901 ..77 0.00

M 5

LOAD, LB (b) S1C/IASII1 figure 7. Applied load versus acoustic energy for specimens of the [0/90] laminate: (a) CAS and (b) IASI II.

Figure 9. Photomicrographs showing onset of matrix cracks occurred 1n [90] and [0] layers of the [0/90],. laminate at 50 MPa.

PF

figure 14. Photomicrographs showing fiber fracture 1i of SIC/CAS [0/90] laminate.

Figure 15. Photomicrograph showing matrix crack at fiber-matrix Interface. <%a.

-32- C A—2—1]-7a

(##) *

W A Proc.of 16th Annu.Conf.on Composite Mater.and Adv.Ceramics. P.107

# # George bird H (US Buerau of Mines, Albany, OR. USA) K. C. Kennedy (Oregon State Univ., Corvallis, OR. USA)

4^—0 — K praticulate reinforcement, SiC/TiB2, Si3N4/SiC, M-Glass/Ni, friction coefficient, stress intensity factor, toughening, elastic moduli mismatch, pull-out, finite element analysis

0 • * • n-M • ##*K®S4 0:6 *:1 W*:0 #*%R:17 S-'RS fcSC«

[SiC] M / [ TiB2 ] P , [ Si 3 N * ] M /[SiC] P & 4: % O' [M-Glass] M / [Ni] P(M:Matrix,?:Parti- Fig.3, Fig.4, Fig.5 C ,3#©#^##©

©fSH££S L/c0 ##(±. W+k’f^fl /Co (//) &0.0, 0.2, 0.2,0.256 @©##%g%c j: % 6 u Tab.i ^mm#m(7* (Fig.iA#m) T##{kL. ## (±7H7?X© Klcti¥fblti7FLfco *^{b© SiC7 F IJ 7 yxt'l^ Ki/Kic. open crackjf^ j^Mfnl ^rzjt (Z =0.1 & <£ (/ a/(7* #*ci.oo©#^c##*-<^$ &, o.2 L. Ki^mm 7HJ??X6 3&{L#/7

%±##Kic 6©Jtr##4L/:o Fig.l(±, #f#,R©jt# ^B^^TiSTL/c (#x.(^Fig.3 #M) o (a/R) £0.1 C@ ^ L /c # ^ © , A?&7H,n/ ###©u7?f U ~-D0.25) R: m@ X: f -mm#^^0.25©6#. CctO

60 Fig.2(i c ©^&(: J;5H-3|L6E£1E£Jt • SS-^©^^> 7HWX " f$ L /c & © T/ %LT05o ;X7?f -33- CA-2-13-7b

Hicroacchanics of Compressive Fracture in Particulate Reinforced Ceramics f HI/ (3&%)

a/a* Fig. 1. (A) Schematic of maVtx/particle composite under clrcumferenlial compressive loading. (B) AxbyinmeUk fnlte Fig. 3. Normalized stress intensity factor versus normalized appied 8lemenf model ol a spite deal particle h an Infinite matrix. Noo stress lor the {SiC)^/{TBj), ceramic compcsxa system. finaar friction elements are shown as Die connecting fines between the matrix and particle. The particle radius to crack length ratio (alt) is equal lo 0.1. (C) Expanded view ol crack region. Coflopved elgltl node elements giving a f'n singularity surround Die crock lip.

o-Si n rs u » - oo siNys n , . at -OSi NSN f . QZ

•W-ghes/M f »at

a/a*

Fig. 4. Normaized stress intensity factor versus normalized applied stress lor the {Si3Ni)ny{SC}, ceramic composite system. a/a*

Fig. 6. Normalized stress fiilenslty factor versus normalized appfied sire:: lor al Usee composKe systems. Tibtsl. EUsdc Properties end CrWcsl SVeoi Intwmty Sectors O U-eamfU-pmm $ • « EIbsOc Mismatch (QPi)E. f

(SC)_/(TB,).' 400 637 0.15 1JM (Si/rjV(SC),' 300 470 cue i sr (MfltaajyiN},' 68.8 650 SOU 3.00 t Data from Ceramic Source, Am. Ceram. Soc. pJW & pJ60 (1990). ' %%%%% Z*"' “1 ^ 0,SOw'pc,(x|

ES SiC/TiB 2 , Sit N i /SiC.H-GIass/Ni £Mt Ifz 0 1 2 3 4 5 a/a*

Fig. 5. Normalized stress intensity factor versus normalized appied stress Ior the (M-glass) m/(Nl)p ceramic composite system. ^fztnX

-34- [A—2—1]-8a f f HI/ Micromechanisms of Toughening in Particulate Reinforced Ceramic Composites

Lti S Proc.of 16th Ann. Conf. on Composite Mater, and Adv. Ceram. P.99

# # R. I. Brett, P. Bowen (School of Metallurgy and Materials, University of Birmingham, Edgbaston. Birmingham, UK) f- — *7 — K SiC, SiC-TiB2, vacuum, fracture toughness

0 •*• 9M ■ ##*»©» 0:3, *:0, 2|J(:2, 8>E# fe*C«

g6tJ(tTiB2^r-?-^-SSn L/cSiC (C ^0 1600°C®E##I###M##0 ^tl/i0 v h ij 7 >7 X f ca@GE#t5^ 66o #(©£ ■5 monolithic SiC CD SiC^ihf Xit 4.6± • X 7 \y ? 1® |dJ 2.3 u, #^#CD SiC)fft+hf %(i 3.7± 1.8 • ^7 t£5f/ihtl ZZ , TiB2©$r^-f f X\t 2.5± 1.0 U T fo 0 - ^5 v ?CD@#% /:0

• ®TiB2#f C j:6x HJ y f X 04 teMQtp, !600TK#rE# L/cSiC/ TiB2CD4^^^-D^^L/Co TiB2%f-?!)^|^% d'fk CD ^ t) f] C ^ 7 v ^ -o CCDif^'eii. SiC/TiB2 CD 3? 7 - > X'SS tz 0 05 (CSiC/TiB2CD^i&(Cfc(f 6 7°b 7 hiceses Wtl£{£iS 6= 60°C, a0/W= a o=0.3 TE##%# mm Kiev £FFEf SCDtCffllVCo SiC/TiB2(±, jE cF 25mm (25mm) W=8mm, B=4mm, SiC (i:fEcF 25mm (25mm) W=10mm, B=5mm £ L£bV ' pitl& Jl* It 3£;ffi U\ Sl'iKI&Jtlt 4A@(f & L/Co P.A.Withe tl6 0 #(D#0C (i. ?h'hnfitJ-(Dmg £ #y\ TiB2(± 250%f£#7XV7XL/co CD#Mv tl, Vf X a X =7 "J X lDfo%>o Cflli^JglC fiT?5 ? ^®ESfpm^m#E^L/co SiC ttlt tlZ' SiC/TiB2©EB^iW < LTU tc^U mi 6J:3C(iM,x.^V^CDT\ /J^V^CDr&a sic®i200°ccDEOT1Mti^:

-35- [A-2-1]-8b

9 'i b Ji' Micromechanisms of Toghning in Particulate Reinforced Ceramic Composite

Material Test Test Kiev Ra (0.25) Temperature Environment (MPaVm) (ptm)

SiC 25 °C Air 2.7 ±0.6 0.88 1200°C Air 3.7 ± 1.0 N/A 1200°C Vacuum 3.7 ±0.8 0.85 1600°C Vacuum 4.6 ±0.7 0.80

SiC/TiB- 25°C Air 4.1 ±0.6 1.37 1200°C Air 3.6 ±0.6 N/A 1200°C Vacuum 3.6 ±0.6 0.86 1600°C Vacuum 4.5 ± 1.0 0.85

Table 1 Summary of fracture toughness, KICV, results for chevron notched specimens tested in bending and surface roughness, rA(0.25> of the resulting fracture surfaces.

Figure 1 Geometry of Chevron Notched Four Point Bend Testpiece Figure 4 Matching Fracture Surfaces of SiC/TiB, tested at 1600°C in vacuum. Equivalent positions of note are labelled.

• SiC (air) o SiC (vacuum) 50 pm 15 pm a SiQTiB2(air) Figure 5 Optical Micrograph of a S iC/TiB2 (vacuum) Figure 6 Fracture Surface of SiC Pre-crack in SiC/TU^. Tested at 1200°C under Vacuum. Free Carbon, C, is labelled. Temperature (°C) Figure 2 Effect of Test Temperature and Environment on the Fracture Toughness, KICV, of SiC and SiC/TiB^.

(a) (b) 3 h

-3

0 50 100 150 200 250 0 50 100 150 200 250

U—,—I—.—t—,—1—*! L 0 50 100 150 200 250

Figure 3 Fracture Surface Profiles of (a) SiC and (b) SiC/TiB? tested at ambient temperature and (c) SiC/TiBj tested at 1600°C under vacuum. All axes are in units of fim.

o VTx iESETf-x h $ titz0 ISS < ft* t

-36- CA-2-1]-9a

(WX) sic&^-e5fi-ftb*KIE«*$sisu1cD««»*»i X A h 7U (^X) Mechanical Behavior of Silicon Crabide Particulata Reinforced Reaction Bonded Silicon Nitride Matrix Composite titi A Proc. of 16th Ann. Conf. on Composite Mater. and Adv. Ceram. P.81

S. V. Nair, Peter Z. Q, Cai, J. E. Ritter (Mechanical Engineering (Br##M) Dept. Univ. of Massachusetts, Amherst, MA), A. Lightfoot, J. S. Haggerty (Materials Prosessing Center, Massachusetts Inst. Techno­ logy, Cambridge, MA, USA)

^ - 7 - F SiC, SiC—Si3Nt, particulate composite, toughening mechanism indentation method

0 • * • 3?K • ##*«:©» 0:1 8:1 2|*:3 ##*tt:13 ftjSCft

#x_/co H79 i, SiC(P)ht£j — l In P (:#"#-& In O r 7°n y ^ CD h V X ± ± < L 1/3T&(9, (^(l)~Xi(5)#BS) o m#(± 0.206 #fbu, ±0.016 T&o/co /cAT^)6o h V ? ? x ± 0 mmm# M7H©#^#(±#t)i%V^m(100N)T^X

± >Tr>7— y 3 y y -7 "j ? ± ^ ;k c? 4c c©^e^#/cx^, 6^,60 ##6(± RBSN±RBSN%^#(i, ##(C±5#B±± 7 ©Mi >0 "CfBfo] L, £/c, 9 7 >y ?©®it#> t s >#©g&E#m(c ^*9, #m##tnf6o ± < -^L/cC ±^%C##L/co ^(1)±X; (^^bstSLy-c^d' 7°10©®^Mtro©T, J: sic*fc^rt

##cmv^cK#^#i ©ao^&6o :Mi5/z ©SiC(P)Ti&fbL/c t>©(M79)te ±9b©jt#) o monolithic RBSN(N78) ± 0 #E©^Yb^^ # < , fiEEMSD Lfco monolithic RBSN (f ±/c,SEM(:± t f78)©^X(j:(a±/;^mXL/c^± FT, # z_h SiCJ^-f- ±RBSNV h V y 7X0|Ci^ #©4^X©±^ ^ J: (9±#V^©T, M79©^#m#©ie, 3o^y;[/ 7° VX^tC SiC#f-^Z±|$L, tr TVl/ 7 y ?f7b^3 7 M b tl 4k /c/c^, K#©—#(: < ^ 0 IE|2 (i, 9^y?1j< SiC%f©^ fco —o(i M79a£P?tf SiC(P) —C22 ^(cfBf6]LTfcb-r, ®:-±£itslLtt^c voi%^^L, fife©—3# M79btr SiC(P) t± ±^^LTV'6o SiC#f ©m#^W%C# 38vol%^^LTV^6 &©T&6„ 4^ X © /J\ ^ V^monolithic RBSN (H710) (t tl^o ^77 V ^(i#^Tfm[6mLTV^ iW3£ET\ ^-©ffilf&Ete 457±111 MPa T ^ o /c0 L'yfr'lx, 4^ X ±*/h cF V'Sll(>2f&56ET f^±m%LTmmLTv^6o jb6©(i, #%^f&©(1.57 MPa m°- 3) /cA T^)5o 50// SiC(P) T^fkb/cRBSN(H7ll c©^lM.^6^#fb(i Sicf&f ©7-r ^7 0 ) (±4^X©±# < , #f&©^ ^ 7 y 4^7XC«k6 $>©±#x.6^L/co E^Lfco :tUt SiC#f ©##©/c36 6

-37- [A-2-1]-9b

9 A h )\/ Mechanical Behavior Silicon Carbide Particulate Reinforced Reaction Bonded Silicon Nitride Matrix Composite

Table 1: Mechanical properties of the materials investi­ gated in this study

Material Ball-on-ring Toughness Toughness Hardness Modulus Flaw Type Strength (Indentation) (fractography) size (MPa) (MPa-m~0.5) (MPa-m-O.S) (QPa) (GPa) (um)

8 RBSN 295(138) 1.63 (0.06) 1.76(0.04) 9.2 (0.8) 147 63 9a RBSN 273(32) 2.46 (0.14) - 102 (1.1) 163 - (22%SIC(p)) 90 RBSN 3.0-3.8 - 11.0(1.3) 176 - (38%SIC(p))

10 RBSN 457(111) 1.57 (0.12) 1.81 (0.22) 8.9 (1.0) 142 19 11 RBSN 171 (8) - 3.11 (0.42) 11.4 (1.3) 182 302 (21%SIC(p))

al. [10]. Fracture toughness was also determined by the fractography method by relating the stress at the flaw site to the size and shape of the strength- controlling flaw as determined by fractography [6,7].

5.0 —i--- 1---- 1---- 1---- 1---- 1-----1-----1-----r--i—i—i—i—i—i—i—i—i—i

4.5 • Type 9b composite ; □ Type 8 RBSN 4.0

3.5

3.0 - / ^ 2.5 ; z ' m ^ ® 2.0 B

1.5

1.0 0 50 100 150 200 250 300 350 400 450500 Crack Length, c (um) Figure 4: SEM micrograph of an indentation crack path Figure 1: Fracture toughness as a function of crack size on the polished surface of Type 9b composite, for Type 9b composite and its baseline. showing uncracked ligsunents along the crack path.

aligning bend fixture. Kr was obtained from a measurement of the post ­ indentation strength alone using the equation [9] (i)

Here is a calibrated constant having the value of 0.59, try is the post ­ indentation strength, E the Young ’s Modulus, H the hardness, P the inden­ tation load and $i(m) is given by

Figure 2: Micrograph of an indentation crack path on 1 $i(m) = ( (2) the polished surface of Type 9b composite. 2m+ 3' (1 - 2m)V« m in Eq.(2) is the power-law exponent of the crack size when the R-curve is defined by the equation Kr(c) m fee™ (3)

Eq.(l) provides the value of Kr at the critical failure crack size value, cj, which is related to the measured as-indented crack size, q, by

(4)

Experimentally, m is obtained from the slope, 0, of a log-log plot of cy versus P using -3/3 (5) + 20 When m — 0, that is, when 0 = 1/3, no R-curve behavior is present, and Kr = Kc. Eq.(l) then reduces to the previous derived equation by Anstis ct

Figure 3: Micrograph showing an SiC particle which fractured in advance of the matrix crack in - y =, >&?##########&R Type 9b composite titistceg Lr&rtu

-38- C A—2—1]-1 Oa

(##) RBSN^RBSNm^#^^ y-fy-f-y s ym@nE;±) ^-r ^7i/ Indentation Residual stress in RBSN and RBSN Composite m m Proc.of 16th Ann. Conf. on Composite Mater, and Adv. Ceram. P.90

# # S. V. Nair, Peter Z. Q, Cai, J. E. Ritter (Mechanical Engineering Dept. Univ. of Massachusetts, Amherst, MA), A. Light!oot, J. S. Haggerty (Materials Prosessing Center, Massachusetts Inst, Technolo gy, Cambridge, MA, HAS)

^r — y — K SiC, SiC—Si3N4, particulate composite, toughening mechanism indentation method, residual stress

0 •*• 5?J( • ##*»©» 0:2 *:3 2?*:0 8 -'IR# tt*C«

Yy-fyf--y3ym®g#jg^^L /co #2 , #3 -f y^y-f- ^-5Xt5 ; V ^XC(±^,?L$CD^V^ yaycjc&^iMd^ c±i^o^-5x ##cme#6|5lbr&6^c#g u/co &-C&60 C±i6(D##C(±, ##69##Q) #1 C^T##(± (7 r t PCD log-Log y°n yf yf--y 3 y&^m^T## v l/3CD#^^^L,RAm##^#^^ i)^^>

Si3N.(RBSN)(D K.,p = Y,cr, C,^2 (2) #####(±1.7 —2.7 MP°- 5U^^tzfj\ 4 > "T y T" — L/ 3 >(777 ^ ^ 6^R26 -r yf y^-y 3 y##cMf-5mm%c? /•c££H£:f±ffrp]frW± otl'fco ^L/c#(± 0.47 -e&5o (gl (:#3 (D(7r

@CD/cA6^#%^(±±:o 6 o #3 ty yfyf-'>3 yf^ y y -y [A-2-1]-10b

9 4 Mb Indentation Residual Stresses In RBSN And RBSN Composite

Kc — Y

where Y is a crack geometry constant. Material Type Description SiC type ic bulk volume fraction Kapp = yic/VS (2) where, Yi is the indentation flaw shape factor, 07 the post-indentation strength Type 1 RBSN and Ci the as-indented flaw size. The indentation flaw shape factor % in Eq.(2) Type 3 RBSN is 1.06 [8]. If no indentation residual stresses are actually present, A would be Type 8 RBSN Type 10 RBSN Kc = T) (3) Type 6 RBSN/SiC(p) 2pm SiC(p),17vol% where oy is the post-indentation strength, P is the indentation load, E/H is Type 7 RBSN/SiC(p) 2pm SiC(p),33vol% the elastic modulus to hardness ratio, and ij„ is a constant with a value of

(4) Table 2: Strength-controlling flaw sizes, stresses at fail­ ure site and fractography toughness of the ma­ where c is the indentation crack size (measured as half of the total surface terials included in this study trace length), and the value of xr i* 0.016. In Fig. 2, the fracture toughness by

Material Stress at Ave. flaw Ave. flaw Fractography Type Failure site depth half width toughness

A-0.47 0.65 V Type 1 RBSN Type 1RBSN 205.3 72 93 2.00±0.03 [4]" □ Type 3 RBSN Type 3RBSN 391.3 10 21 1.65±0.06 [7) 0.60 8 Type 8 RBSN 98 1.76±0.04 [4] Type 10 RBSN - Type 8 RBSN 185.0 63 □ ♦ 17vol% SiC(p) Type 10 RBSN 280.4 19 53 1.81±0.22 (3) 0.55 A 33vol% SiC(p) - Type 6 KBSN/SiC(p) 302.7 25 31 1.94 ±0.08 [4] Type 7 RBSN/SiC(p) 231.7 61 51 2.07±0.08 [3] 0.50 - O A ""=1""" * A 0.45 - • : Numbers in bracket indicate numbers of samples. V A O ° ♦ V 0.40 ♦ Table 3: As-indented crack lengths and post-indentation 0.35 - strengths for the materials involved in this study 0.30 . L. . 1 1-4 1.6 1.8 2.0 2.2 2.4 Fractography Toughness, (MPa-m0-3) Sample Indentation load, P Crack length, e Strength, <77 Type (N) (pm) (MPa) Figure 1: Constant A versus fractography toughness for various materials Type 1 9.8 38.6±6.6 [16] 133.24±8.62 [3] RBSN 49.0 124.2±13.5 [16] 78.81 ±9.96 [3]

Type 3 9.8 39.3±3.6 [16] 113.53±7.57 [3] RBSN 19.6 61.7±4.3 [16] 89.91±4.59 [3] 49.0 117.3±13.2 [16] 85.41±3.66 [2]

9.8 39.6 110.84±6.76 [4] Type 8 19.6 63.1 96.81±9.18 [4] RBSN 29.4 87.2 77.67±1.64 [4] 49.0 125.5 65.82±0.58 [4]

Type 10 19.6 63.4 80.30±11.20 [3] RBSN 49.0 130.9 66.38±6.75 [3]

9.8 38.1±4.2 [16] 118.6±9.3 [4] Type 6 19.6 86.9±6.2 [16] 107.0±3.6 [4] RBSN/SiC(p) 29.4 90.1±8.8 [16] 83.6±7.4 [4] Kc, Fractography (MPa-mO-5) 49.0 126.3±11.7 [16] 79.8±4.7 [3]

Figure 2: Indentation toughness results versus fractog ­ 9.8 38.9±4.0 [16] 147.7±13.0 [3] raphy toughness Type 7 19.6 69.8±6.0 [16] 115.6±13.9 [3] RBSN/SiC(p) 29.4 99.9±10.4 [16] 102.4±3.21 [3] 49.0 128.6±13.9 [16]

Numbers in bracket indicate numbers of samples.

-'>e r

-40- [k-i-im&ityn-txtvkn

CA-2-2]-1a

(fo#) S i3N4-C^TO0 4O0^^%^f$f^% $4 (3%) Whisker Growth and Composite Fabrication in the Si 3N4- C System j

Hongyu Wang and Gary S. Fischman (New York State College of Ceramics at Alfred University) whisker, composite, whisker growth, SiC whisker, *-n- k S i 3N4, chemical mixing, VLS mechanism, root growth carbothermal reduction, liquid alloy droplet,

0 ■ # ■ 0:3 8 : 0 : 5 ##$# : 2 2 MR# #E & vLSBwatmoT, O4oo/&&o£#o#wim# v ku v 04% o 4 % &#%o#mo^mc ye-c £ $ 7^ u, o <^T\ t,'£-oT%#7a 3 a#, mmmicmumma 0^074 kT-E3U, WMU £ k 3 5 T"C 0 4 o O o*&4kcE<^ ^%j@7G (carbothermal reduction) j: o T. H &$7akv\0, #UvWLS04O0/#&#m E Ok o 7 4 h itTU H UTua. k V v 0O^C0 4 6: oT^-5. ht^LF, f£3fe0' ^#W%B*a#OS%98^ 04 00^1# UTV\6. @o%#^eruv\mm^Mioa^a o a UTv\^. gl(:^k07O7 4b&^;i/ltTl : l(7)gj ^T#df, 77k=fo#OT, 1 5 8 0CT%mmL,, 3 ^t^A1203 (3wt%) , Y203 (6wt%) %^jaUTmAnU, 2 IMP a, 1 7 0 0T, 10 0# Rm#@^|6]tcSgLT AA&%<7)&u#-&\ ^t/%0 4%0(7)^%^:## ( liquid alloy droplet)‘odl4'vx3 kTb'tk 'cOVLS##^U 04O0^moMISTld:^n3k, 3(7)#^^, 0 4 O0 37X)^f SIEV'T, 3 7^@±/\O^#Cj:oT0 4O0#0:<^akv\0 2 #PBT 0 4 % * a 3 a, $£04 00370/$; iLohTRoo t Growth U f#&^ 3 h $rM^7cLT^a„ ^^c$0,£04O0^^ f M0:PlSk vm^%o2 ^4o^o^Pis%tcTua. mmcCoci2%mv\;&;M&g#UTv\a. 30 &/$:L/7c04 oOO^%kl$, 04 OOOEJ: UO: 30gj$#ti:S i^C ok^/uT^a 3h^#^^^£. 303kA'(k 3O#^O04O0 TOVL SMfkiak UT^a. Lrt'U E*Mo

aj # Proc. of 16th Annual Conf. on Composites and Adv. Ceram., P.723

-41- [A-2-2]-1b

Wh i s k e r Growth and Composite Fabrication in the S i 3N4— C System

1. Mass transport in the vapor phase;

2. deposition and chemical reaction on the vapor-liquid interface;

3. dissolution into and diffusion through the liquid phase; and

4. precipitation on the liquid-solid interface.

Fig. 5. A schematic diagramof the VLS whisker growth mechanism

Fig. 1. TEM bright-field image of a SiC whisker, showing the core and outer regions.

I Mass transport in the vapor phase;

2. deposition and chemical reaction on the vapor-liquid interface;

3. diffusion along the surface of the liquid alloy droplet; and

4. liquid-solid interfacial diffusion and incorporation of growth species in the whisker lattice.

Fig. 6. A new model of the VLS whisker growth mechanism

[_ SI j N ♦ C Powders j

[ Ball Milling "1

SIC (wl ♦ SUN,(pj Mixture ~~j

f" Add AlYO 1 i . _ResIdual Carbon Removal |

[ Hot Pressing |

f StC(w)/SlaN< Compo«ltc~~]

Fig. 7 Flow chart of the chemical mixing process for making Si,N4 500 nm matrix/SiC whisker composites

Fig. 3. A Sit whisker curled over the attached particles.

JTrM ftWK

Fig. 4. A SiC whisker synthesized with CoCl, as catalyst grew via the VLS mechanism.

-42- CA—2—2]—2a

h;i/ Surface Modification and Slip Casting of SiC Platelets in Al 203 Composites

£±1 m Proc. of 16th Ann. Conf. on Composite Mater, and Adv. Ceram., pp.121

# # P. T. Pei, J. F. Kelly, S. G. Malgham (Ceramics Division, National Inastitute of Standards and Techno­ logy, Gaithersgurg, MD, USA)

X- - X - F surface modification, SiC, SiC-Al203 composite, slip casting

0 • S • • ##*#©» 0:3 «:2 2|X:4 ttBCft

SiC^^(SiCp)^^ y Xx£±Jf 5 fc F0J:9^zK#m^^%T5/c366 A LTEtc^tt^n & t) ti <5 0 /;0 step/ai2o 3 ®ss> fg #%tx; v pH=5.8T A1 203$3C£: SiCp ltj£C 60 SiCp/Al 2O3 3 -9^0. SiCpC Al203e^^%#L# > F d 71/N PJ /EXf S: CD it i#x:E T? & 0 M3 /c#^0 SiCp/AlzO] X9V-C^(±6 ESA c(D#%T\ 6CDT& AKP15 XXT^#X5SiCp2: Alz03%f CD##^r# t6 tESA •^fco #C, SiCpJt (CA12O3 £n- Ft'S AI2O3 ©$:Jg#E> Stt SiCp (: Al203%f^3- ag^^^XAcjc^AizOgQ)^#. AizOi-u- SEM-eW^/co AI2O3X7 V AlzOiXU^y -(Dmmzm-rt, mm^mmitmLtz0 t^EiSiCpSAtCOt^TE^u Lfc0 SiCp0± SiCp tc*fu It (£E50A12O3 (C AlzOa^n- h L/c k©£ SEMirESA r# A 6 j:^l40%Sffi5>ElBE^#/co AlzO ft -? < sEM-em^/co AI2O3 CD#^^/c#J^r SiCp-xCDW^E$Bffl^S2 CZF L/Co E4 SiCp (i C-Axis Technology Ltd. Canada# X 9 C Ai 203 ©zijg^'f£^ X, AI2O3 ^3- AizO, cDgm^^< ^ O APK15, 50 (^AfL##) t Dispal-80(Vi 6(b3-hcD%jg^#Tf6o E5 U AKP sta Chemical Co.#) 0 3 EE^ffl WcQ C 5OAI2O3 01 wt% X V V :/& SiCp X V V X" 1 C^L/Co pHtHS^rS £ t3^C3- F £tl6 £ t&TFb ffi X ij - zt > (±%#(0.01n),T —T tz 0 (0.IN), MJ^nnx^>^|t3/;0 SiCpfCAl 2O3 FX5^&(± x 6 ph=5.8 XU-0 pH (3 7.7(:j#m^it/Co ^0^^ a ->m-a#:&sicpx9 v-cmmf60 L SiCp (Dfc'&ft'ptl (tfo tz0

Ei J: 9 c. #A®#0 sic? it— X'U ->^x-0 semSS(9 J: <5, SiCp© mmxu AizO, 3-FL/; AI2O367 h u *y X XPbJ0 Z2 (J.Am.Ceram.Soc.,Vol9-10 pp.2115-2123)£■ AKP50 #io E2 kL AI2O3 V -^- (d50 =0.25// ) T3- h U/:SiCp0XX V - XX'L/c SiCp CD ESA PJ^#T&6o pH=3 £ AKP15(d50=0.7n ) 05Owt% X U v 9°C# .3^@A6

~ 43 — [A—2—2]-2b

9 'i b )\/ Surface Modification And Slip Casting of Sic Platelets In A12 O 3 Composites

Table 1- Physical Properties of Powders Used In this Study Table 2- Comparison of SlCp surface coverage as determined by SEX. The concentration of Ai203 added Is In terms of ratio of surface area of Ai203 to that of SiCp In the dispersion. AKP 15 AKP 50 Distal 180 SiCp

Specific Surface AKP 50 Data AKP 15 Data Area, m2/g 3.6 10.9 144 0.54

Mean Diameter, Ratio of Surface Ratio of Surface pm 0.7 0.25 0.04 15.0 Surface Coverage, % Surface Coverage, % Thickness, pm - - - 1.2 Aroa. X 37 17 41 4 74 24 82 28 185 58 123 41 222 66 164 51 250 205 57 300 - 246 63

Figure 1. The ESA of two lots of SlCp showing large differences but also unpredictable variation of surface properties. Figure 2. ESA and pHle„ of; (a) 0.1% volume Dispal 180, (b) 0.1% volume AKP 15, (c) 0.1% volume AKP 50, (d) 5% volume SIC..

I###

ALUMINA ADDED, X 8.6 m2 SURFACE AREA

Figure 3. ESA of SiCp in the presence of increasing concentration of three different sizes of Ai203. Each unit of Ai203 added has a surface area of 8.2 m2 which is the total surface area of SiCp in the slurry.

Figure 4. Micrographs of SiCp surface coverage by AKP 50 Ai203 as a function of Ai203 concentration in the slip. (a) IX wt. Ai203, (b) 5% wt. Ai203, (c) 25X wt. Ai203 and (d) 50% wt. Ai203.

Figure 5. SEX micrograph of AKP 50 - alumina coated platelet using a IX wt. slip. Shows uniformity of coverage along edges and the face of platelet.

Figure 7. SEM micrographs showing AKP 50-coated surface of SIC, in a green body made by incorporating 10 wt. of SlCp in a matrix of AKP 15 (0.7 pm) as a 50% wt. slip; (a) AKP 50 (0.25 pm) coating on SIC,, (b) Morphology of coating of (a) at higher magnification.

44- [A-2-2]-3a

(#:%) SES^Al ,0,-TiB,CD«gft ^ d' h 71/ (^) Densification and Fracture Toughness Enhancement of Pressureless Sinterd Aluminum Oxide - Titanium Diboride composite.

Hj A Proc. of 16th Ann. Conf. on Composite Mater, and Adv. Ceram., pp.132 m m Timothy V. Lin, P. Darrel Ownby (Dept. of Ceramic QEngineering, Univ. of Missouri, Ro;;a, MIS, USA) 'U- 4- [\ 1 1 A1203-TiB2, Composite, Densification, Frecture tougheness Preesureless sintering

m:6 #:o ^%:o ##y:m:22 &>#R#

A1203 ©%###(3 ai2o3 m 2 cTiB2#w#6#@©m$§ejgc-^x.6 {ttt (SiC, TiC, TiB2 , Zr02 , BtC, ¥ 'f T S£#£aUIv/c0 TiB2^Wfi^itSny^ 6©m^{b(:ck!9#±^4tac6^ e®(if£Ty^»o £/c, E^rS, (# : 1 - 3 /Zm)(j;l|lyJi^V'>^fcJ$5/7^qEJ tekb^iW W 1$ E /£ E$(15 -36 GPa), 6o /j^ >y$(514—574 GPa)/D^#^©^,6^ 7Mj,n©mefbcMy6m#y)^ML;. -e© 5Sibti"©^l3 (cN $eE> 1K4fcs *MXA-X ®t$B ^mmmc(3@a j: «9 ##%-f ©# 3 v^o [d], Al 203-TiB2©^ "j h y 1/X^cBC ck «9. 7 h V 'y ^X(:E"<#^ EI 3 CTiB2©#:#%©MB6 LT DCM&C j: 5 Kxc^yn y b L/Co 10vol%^ T‘(iTiB2 yi/Xr(3. #4^, ##. 0-f%^-.©j:3(C± tttKicfimtny^o emit-? ^17X^7 b iz (3Eft7^& <9, hyi/x^r^iwiur&6o 3—6 /zm nDn^r m@3XHDA mfm^/j^V h y I/%a^|n|#^/c aa (3 E l> /£ -o /c o (3^^,J^±'r&6o

^ 6C. S^P0©^J%^S L/Co CNSB&T ^--y— wjnE’e^uy PJEL/c K1C(3, DCM j&(: j;5#3: 0#^C h £ b(C ClPEff^ L X^^o/:0 me (3, 1 -15/zm TiB2&{b /co m$»#:(±7xm^mm-ei6oo''c, ihr,# #©, by°]yXiihCDUmm ^rm^u/co CNSB&(:ck6 KIc^l/;0 h y VXtSr© K1C(3. 5 % ###'Mz(3 Direct Crack Measurement (D —E> SE'-^ISna© CM) h Chevron Notch Short Bar(CNSB)££■(? K1C(3, #/r (C±#y 6o 3—6 zzm TiB2% PJ^L/co j v f-(io.75mmj?:$©yd'y^> ET^^/c#E#^^

-45- [A-2-2]-3b

$4 b )U Densification and Fracture Toghness Enhancement of Pressureless Sintered Oxide-Titanium Diboride Composite

20 30 40 50 40 70 10 20 (°) A 1-3 pm particles ALUMINUM OXIDE / CORUNDUM o 3-6 ^im particles • 6-10 p/n particles a 10-15 jim particles □ 1-15 |im particles TITANIUM DIBORIDE ■ 8-12 n/n platelets 35-741 . Volume ”/. TIBj

Figure 1 X-ray diffraction pattern of an AI2O3 Figure 2 Variation of relative density with volume% TiB2 -TiB2 composite with 25 volume% inclusions. for sintered Al202-1tB2 composites.

a 1-3 urn panido* o 3-6 pm partdes * 6-10 |im particle! e 3-6 pm DCM (sintered) □ 1-15 pm DCM (sintered) A 10-15 |im particles d 1-15 pm particles A 1-1S pm DCM (hot-pressed)' ■ 8-12 pm platelets

Volume% TIBj Figure 4 Comparison of DCM fracture toughness Figure 3 Variation of DCM fracture toughness with volume% TiB2 measurements for sintered and hot-pressed AI2O3 -TiB2 for sintered Al2C>3-TiB2 composites. composites.

A 1-3 pm particles e 3-6 pm particles e 6-10 pm particles □ 1-15 pm particles a Hot-Pressed (1-15 pm particles) a 8-12 pm platelets o Sintered (1-15 pm particles)

Volume% TIBj Figure 5 Variation of CNSB fracture toughness with Figure 6 Comparison of CNSB fracture toughness measure- volume?^, TiB% for sintered Al^Os-TiB; composites. ments for hot-pressed and sintered Al2C>3-TiB2 composites.

-o fc„

— 46 — CA—2—23—4a

(3yo Silicon Carbide Whisker Reinforced Alumina

*# (pfflSUB) Bernard J. Wrona, James F. Rhodes and William M. Rogers Advanced Composite Materials Corporation 1525 S. Buncombe Road Greer, SC 29651

4f~9 — K SiC whisker, alumina composite, rice full, toughening mechanism, fracture toughness, high temperature strength, hardness, commercial application

El • * • 5$* • #%3«SK# W& S

?7??7" <7^3Xl7H?W7m-W@(n7 *" 7 4:3ga. SiCCm-CckcT7Mf^##&i$7' <7/ A#0 C k &:sic?m -% 7M77lV^^-f @#C«k a?77?7" u-y?" 7?" ^%A«o 3&f L7M7<06.6MPaV"m^\ 6: fS]± L /Z. C (0 J: t) ^^#$4fia#, ?m-A^7iVy?7(o$&f%&m#i- aA:A)tc;R(S a##2 < ^ *1 a/2t)c/Z. ^/Z U%#U/Z. t79,77h'J^%])$' y" 7KDW%^%(DMt: lO^TCD^-^DT 1500"CCdBH a?V-7" (Dt)(0J: 0—< ^c/Z. T9 CC 7M7i:^a?i^-(0#j^X)^# < %a#a"##(o% 7)^#%(07)li77Hj7?7/747d;-#A'#$4<0FB%%%*^982j^tmifsaac ?m-^i^fS]±$iia4C^ ACM#±#Cutler 6 &: J: c &a#m#*4%i-aaBbaao 67^ ?m-(07X

-47- CA—2—23—4b

h;i/ (%]t) Silicon Carbide Whisker Reinforced Alumina

-'*k*^&©fcS)©y}#IJX*» s, SiCWXHSWKt* EW XtoHV -IK XM%@oTVXfc6S, CjlS^SiCW; ®o fcS^toiSsirftT'&o fc. ’©ct 0 H&fl3’MtXMC3EA. fc c kCJ:o T^WW%5B#M b/;©i±. t-uHtitoc j; 5®a®tttt©isi± kisar *> e.aotfnssmx zzt&v § fc. -eur^fflr250000 ©5tg * =fc y=ia$* s*§ v' c k eni>„ #m©% r jKomsctt 0, 3ooo?##m%m©fmicm1 1=1^-a SI|X8Tl±I*t:tt|it©%®TttfS$6s1000-C £ISA 4 ck*s TS. g CkA%6. «£*©?»'7r7iH\‘-IKWatM, C0#K, 7JV?g 6KiS#©aSaaaCSiC')-fX*-^{t 7)K76S sic»jx*-5$jt7)v;ty]*iiiAi±9]6ija«%$OT Inconel 718©9]fil]CXA%, {±±lf 7XYo»x )R-ur$6? 1 g r -ttokic

Tabic 1. Properties of Alumina and Whisker Reinforced Ceramics

Sintered Sintered/HIP Hot Pressed Hot Pressed MATERIAL 7.5% SiCw 7.5% SiCw 15% SiCw 25% SiCw 100% ai2o3 92.5% AI2O3 92.5% A^Og 85% AI2O3 75% AlgO,

THEORETICAL DENSITY 3.96 3.92 3.92 3.86 3.78 ACTUAL, g/cm 3 3.96 3.73 3.86 3.80 3.72

FLEXURAL STRENGTH, 345 414 538 566 635 MPa

FRACTURE TOUGHNESS 2.7 4.3 4.5 5.1 6.6 MPa-m1#

WEARRATEP) 10-5 g 180 1 0.9

VICKERS HARDNESS, 17.0 17.5 18.5 19.5 20.7 GPa

YOUNG’S MODULUS, 380 390 390 391 392 GPa

MAXIMUM USE TEMP, °C 1100 1100 1100 1100 1100

ELECTRICAL RESISTIVITY 10® 3X10< 3X104 1.5X10® 7X102 Ohm-cnf/cm

THERMAL EXPANSION 8.0 7.7 7.7 7.4 7.0 10-*/°C

THERMAL CONDUCTIVITY 27 30 32 W/m °K

mm

-48- CA—2-2]—5a

Boron Carbide Whisker and Platelet Reinforced Ceramic Matrix Composites

## Jenq Liu. P. Darrell Ownby and *Sam C. Weaver (Ceramic Engineering Department University of Missouri-Rolla Rolla, Missouri 65401. *Third Millennium Technologies Inc. 120 Sherlake Drive P.O.box 23556 Knoxville, TN7933-1556)

^r-9-K Boron carbide whisker and platelet, alumina matrix, silicon carbide matrix, hot-pressing, fracture toughness

12 ##53K©I4 H:4 8:0 ^*:2 #^SCW::12 »|R# S

##L/cW%9'^T####D98. Mts -r til C #7" WhW11) j: b^74X*-&^74X*-± 7 Iz-l'W^'XXMjx -ftl6#@^#^lC@## < t£^tz0 ML7#?HJ v7X(D#AUM kb'Mim-CDMt) 0M1C IS —i——lC.^‘t^U/c7* lA-hW h ■s'r>,M7dHt t7 177? h !J 7?X

H

Proc. of 16th Annual Conf. on Composites and Adv. Ceram., P.

-49- CA—2-2]—5b

h;U (^SO Boron Carbide Whisker and Platelet Reinforced Ceramic Matrix Composites

l

▼ AljOj/E^C^j—perpendicular hot pressing direction

V A1z03/B

Volume Percent of Second Phase

boron cart platelet and boron carbide whiskers. 2.0 I 1.8 4 1.6

1.4 Volume Percent of Second Phase

1.2 Fig. 3. Flexural strength of alumina versus volume percent boron carbide platelet I and boron carbide whiskers. 1.0 uT

Fig. 4. Fracture toughness of silicon carbide versus volume percent boron carbide whiskers.

Volume Percent of Boron Carbide Whisker

Fig. 6. Flexural strength of silicon carbide versus volume percent boron carbide whiskers.

mm

roBffyitAW£"CIW&vn. u/it)tom

-50- [A-2-3]&aib7otX CA-2-3Ha

(##)$B7,nz-bX*t7;vst7 h V v7X%A##0S i C7 -r 7,ti-mmizRl$tfeW iSM HL (XX) Green Body Processing Effects on SiC Whisker Textures in Alumina Hatorix Composites

*# (miStSRD Michael S.Sandlin . Keith J.Bowman (School of Materials Engineering, Purdue University. West Lafayette, IN 47907)

x-ray pole figure analysis, alumina matrix-SiC whisker composite material, whisker orientation distribution, whisker texture, whisker orientation, green body consolidation, solids loadings,

:2 m.1 :l :6 *D E

[« S3 (MB) £ U fz 77VS77 h V'y7X-SiC7-f X7-#&##T SiC7^ X7-^. fiKSXnEX^. X^ V-7'n-b (1) ^-70l%% x. pH. ?5tibizfflmu. mm C0E^TU. (B2) oC(Ddf-;i/7Y^-h-GD#^U.#% ^7bx?s> exjsmwm l6(D^Sl*J7MV^TV^7i'X*-(DfMSE^, 7- U%, ^0%#. R%B7n-bx»^^W407-f X* 7'T(DSf.S^ h - 7;v@tST|iJ * h b t: ck *9 # &&#*407 ^x7-i*m. % & (2) #B#02&M d©^0Sfi^ii. 7-f X7-0#mgEib&^B7" 3o #2:pH. m#m^0^bl/T^f CbT^^» 2(a) mmm -2(d)*^e, . 2’O0'$HWb*>>3 » # U:. 9O6T0 (immm b-7^. ETj^m^ck 9#�:5W:#l'C^ 20voIX-50voI %0 77V 5 £179 . pH^E^T &e,2(a)T^.#^t3^-%T&'S^'9. 7-fX 41:m V & » ^ 0#Mt:25vo 1%t: & & 3S i C7 X 7-U. o 2(c)TU. cfi^0ca^^. 7 I^Ubfco pH<4T(i, SiC7-fX7~-l;t#ffcUTV£ d- X7-Eio]0jSVtis 7'atX0#t^:M#UT^ 0i:. 7;VSEtffi£$Air3Mfat:&3<> pH5-8Tti; #21:. %B^I«K:^ly7^X7-0 SiCV J ZiJ-*$>7 )l s.'fitmmt % * H$6**SiS¥®t:#B (2) EXj3iS& $^7* b XIZ & Z 0 b- 7 ## £ ft 3 b 7 B l (a)CE±5j@^0B^7Kf o EltikU lOMPaT ##W%7-f X7-Wl% & ^ o (3) ^%#i6^ (3) mm%bpH0%# S#0EC^7X^^^. Xf7bXO>;>^0 2(c)b2(f)0f-7^e>. ®#j^T0E7]5^A(: tt. *0ttn:ffi§*J5£WlT. tt7 E*%b-7&g&##Gft:5. cft^. #7x ()^gc^MgP8^7'r X7-0^^^ik7. pHi:i4M bX7;v0V>7£&r?£» IMUTVftv, B3i:^0¥K^^7o MSJtTti. (4) $z5S7*bX& 2(h)2(l)t:^7ckdi:. 7^X7-0#m^. pHl:R! E^3i&UMSt*£WU. *0®f*£lOMPa0 £ftl£. 6j@[#0bX b :/0MZ E7tT$£jt;7*bXU&o iite*. 7-f X7'-0$6ESt:^WUTV3b#*e> (5)X**^#r ft%*i. ^0EW%^. #9XV:/X'%#'3&ifm 7 -f X^-CO^MA^Ef mM%1550eC10#1£E«VT3to£Etf o Z tz077 -f X7-0C2-7-'7 ; 2(b)2(d)b2(J)2(k)&j±^!bT^^ b . 2(J)2(k)0 3>t;t£DTVftVo fiKEI6t:*tUT W(si de) b S b-7*^7 h UTl^Cb*ib>*^o Cfild:. X7 ®(top)®T®rM2.51A0b-70^-;b7^#>- ;i/ v :/? mgT ^ c ^ {fg%0E § c ck ^ 4) 0

E H Proc. of 16th Annual Conf. on Composites and Adv. Ceram., P.661

-51- CA—2—33—1b

b)l Green Body Processing Effects oh SIC Uhlskeh textures (^) In Alumina Matorlx CombosItes

Tffc*. 01(b)MU VUTV3o ttt k*

tdthlUn^#f ^ * >:7;b

Table 1. Sample Processing Conditions Sample Consolidation pH VoI% solids Viscosity Relative Plunger (Pa-s) Density at 0.3 Hz P. F. 3 50 0.71 0.68 b S. C. glass 3 50 0.71 Metal ring P. F. 4 50 0.06 0.69 d S. C. glass 4 50 0.06 z Dry Pressed NA NA NA 0.50 f P. F. 7 50 0.57 P. F. 4 40 0.67 y/y slurry h P. F. 4 20 0.67 i P. F. 8 20 0.58 Zr---A^ j S. C. metal 5 50 0.08 k S. C. mclal 8 50 >8 plaster.

Figure 1. (a) Pressure filtration device; (b) schematic of edge adhesion during slurry consolidation via slip casting.

Consolidation axis Sample cross-section | Top

Bottom surface

x^A 7*

7^

Figure 3. SEM micrographs of a hot pressed alumina mairix-25 vol.% SiC whisker composite with local variations in whisker orientation which arise during green body processing via pressure filtration.

Figure 2. Green body pole figures a-k (see Table 1.)

52- CA—2—3]—2a

cteti S i C^-fXA-airSSftlS i C-t27 5-y?X©fF$i

54 h 71/ (3t$t) Fabrication of SiC Whisker-Reinforced SiC Ceramics

## Kaoru Miyahara. Takashi Watanabe, Shin Koga and Tadashi Sasa Research Institute. Ishikawajima-Harima Heary Industries Co..Ltd. 1-15, 3-Chome, Toyosu, Koto-ku. Tokyo 135 Japan

57-K SiC Whisker-reinforced SiC, whisker CVD-coating, interfacial bonding, slurry-pressing. HIP. whisker bridging, pull-out, fracture toughness, whisker diameter

0 • $ • SX ■ 0:5 «:2 2|K:3 0>IRS fi

[Eg] ztz&csiM-fxa-ccv o.iymkio^iksttii^e,, %m©##ii-(t#Mem© D&TS-*' xx-xo)' *frv\ m-0)MEMi£ HIPC =fc o t> ©«*> 0 TUft < &fi««ftttR© t>©©*5® TSiW-UH^tSiCWiiMfcfraa-fraWSSfcfTofc. )« ©k.Sfcfta. CVBSgkt 5>7' 'JO' 7)' kT mi^#gC#Df 6C k < % 03-70)' ©SEECrfioTitO^&a*^ tia tiW^ahti. 3-70)" ®iS$©CVDSgS\ 3-70)" S Ck»9fAe>n, 3 6Ctt^fl»SBdttH©S^14%Kl 3 *% wmmc k"© 3: ^ Cg#T 6*\ *fc, ■)«*- S1" ackC)2-3T%E©®SBT)^:lS*3'8'at>©k fS©Ktr<\ ISMromcOR^ttC tea#)SiikUT) Xk UT, 15237P 61773KCjJtmL tiCVD?£C J: -3 Tfro 1X)-30%©W4&2023K. 200MPa. #M©HIPTf#K U. K fz, 3-70)' sg ttsimre^iaiSbTmL fc. seme *»MfflttSEPB^T*©ti. M7it-7 Wf 7)' tf rat, ec7 O-OwCtgHfcx-TO)' *5 x-Stick%BSUfc. ■MXH$»s*V'l3k®W!lttE»sia< &a„ 67-3B0)7-; X7Hi*-f 73-1 U tzO-ai-k SiCfftlf; (a-SiC-WStoS) )7 07)7370' IVTtt, -3 7;. uffluki'6 Ufc. Cil%200MPaffl»" 7X*r tMUPT$8§Uti, c ©&-m, )-ix»-7' v?)' 7)' *-*" )3-7-())' ©CV1WP SrSMtS7tT WSBJtttt©fc ak^xana. &©Mft«7-3ti. CVDiggfc 1523.1673,1773K. X?7 X7'HnEiilii©i$, )-tx*-6sz.itocCEiS)i'a. cnc SEtt-S(5%)»/**)kv, sicmi^t3-a-x» UT7-(XW 'JO' 7)' ©S6* 6stgD 0U titi© k@ton •5. 7'47»M±3-7O)'@3»st8T(5k'igJ)0LTV'ti. «*ISffil©S^*4^-J.*-t'7»3li> ¥i*ES2.2 M B. 3Fi$tR317.9 u nxW-IXHtitf UT* Jc^O.1 u.mX & akElMTSa. TEMTESUtiite*, cnk-gfcUfc. i m # Proc. of 5th Europian Conf. on Composite Materials, P.704

53- CA—2—33—2b

HI/ (35%) Fabrication of SiC Whisker-Reinforced SiC Ceramics

m ft [SiC Whisker } | SiC Powder |

[CVD Coat in: 1 -[Sintering Aids|

|Dispersion/Hixinc — |Pispers«nT~|

| Slurry-pressing |

|Glass-encapsul«tion| CVD Temperature H I P

Evaluation

Fig. 1 Fabrication process of SiC whisker liont «f cirfoi coitiit (!) -reinforced SiC ceramics. Fig. 6 Fracture toughness of SiCw/ SiC Composites doped with B and C as a function of amount of carbon-coating on whiskers. Table 1 Fracture toughness of matrix and composite materials containing whiskers of different dimension. Material Average Average Kic Diam., Atm Length, Atm ( MR a V"m) 0 volX Whisker 3. 4 CM CXI CO 30 volX Whisker A 17.9 1313 2023 2013 30 volX Whisker B 3. 8 23. 1 5. 2 HIP temperature (K) Table 2 Anisotropy in fracture toughness of SiCw/SiC Fig. 4 Bulk density of SiCw/SiC composite measured by indentation method. composites doped with 5% AI2O3 as a function of Plane Crack Direction Kic (MP aV~m) HIP temperature. N-Surface 7.4 P-Surface X 4.5(0.6 1) s)1523t Y 7.4(1. O)

.1 * Press Direction 5 * b)1873 1 P-Surface

» tl If — c)1723 (002)

:

» 11 m! 1 ti tt mn. 29 mile (dec.)

Fig.5 X-ray pattern of carbon coated at several temper­ ature on whiskers.

— 54 — [A-2-3]-3a

(#X:) m E # i& m ^

(*30 Slip Casting under Pressure tti A Proc. of 5th Europian Conferene on Composite Materials, pp.704

H. H. Grazzini, d. s. Wilkinson (Dept. of Material Science and Engineering, Macmaster Univ., Hamilton, Ontario, Canada)

S — *7 — K Slip casting, Pressure, A1203, A1203-SiC composite

0 • 8 • 3?n • ##£*;©» 0:3 *:1 SK:2 18 S-'E# ftiStft

Sfitt/jSo/co j%Et) 6#$§##^m5 teS L/c*?X SnEtjSr^r^ tit£\,'0

C kX\ A1,0, kAl 203-27vol% d,5oo°c SiC #^#(COWT#BL/Co $66.5% s 96%cms5),^mmte#ti/c i //m ©#fmkmm%am©ma#-c&^ %# 2.55 fi(D SiC^^i:0.41j[iCD A1203 /Co ^/to/c+f-fX. B4k© Sic%f-^A1203 U/c^K m^^m(lOOOOrprn) 55 tcSSnfS k, mm£iblcML -5 Z?s\ %) % — X'^)o/Co (#B l/:X7 'J -) tLtzo [Hi tcSt" k 9 teE# 1/ /: X ^ U — ©(5 9/?^ coagulated slipZ 0 #S#t:i&u pH$B|@(±^ coagulated slip ©(5 9 SjAV'o It©X7 U -£ o.l 4o ck CK 0.17MPa©j£ *^snx.r, m^##©mtemm#BmBu /co 650"c-c:5*m&m^L. (^v >x-. %n ^momu/co

< A12 0 3 -> e#L/cx5 v 20//m©±#%ST#& o/c o A^$(5Et)(e##it'f, SBL/cX 5u-^mwct)©ko#ej^'c&^/co c kite. mi pH©EYbte kaf6S©ES 'BtekS &©k?BSL/c0

^#L/cX5 U o/co c©mmt5, SBL/cX-t V --cm bnt^K65%-e^o/co

toEtik^eStetefflW^&SC mi ) 0 m3 St"k9tex m^#:t:(±#-fSt X©^

-55- [A—2—3]-3b

f < Wl/ Slip Casting under Pressure

: Coagulated : Dispersed

> 0.05 :

Frequency = 107 Hz 8.50 10.00 10.50 11.00 11.50

Figure 1 : Viscosity versus pH for dispersed and coagulated slurries containing 57vol% of Al20,.

Tf -

W 0.86 -

M 0.70 -

TIME ( mn )

Figure 3 : Al20, sample sintered at 1375 °C for 12 hours. Figure 5 : Effect of the value of the pressure applied during the slip casting on the sintering behaviour.

Table 1 : Green density of Al203 cylinders made with a coagulated slurry containing 60vol% of solid under different pressures.

Pressure .(MPal Green relative density

0.1 61.5 0.14 65.1

0.17 66.5

Figure 4 : Composite sample made with a green density of 67 vol%, sintered for 1 hour at 1 600°C. Final density = 88 vol%.

T'ti < , 'Pl&t' LtX V V o tz o

-56- [A-2-3]-4a

(fttic) T-y * VX hmz =fc4 A 1 2 0 s/Z r 02)Stta^tt

Tape Cast AlaOs/ZrOa Composite Laminates

## Kevin P. Plucknett, Carlos H. Caceres, Fabienne Fremont and David S. Wilkinson Department of Materials Science and Engineering McMaster University Hamilton, Ontario, L8S 4L7, Canada

Ar—— P AI2O3, ZrOa, flexible ceramic sheet, tape-casting process, laminate, hot-pressing, pressureless-sintering, superplastic deformation a • * • • mirnmik &3 $:2 n%A n a

»»Ito tzo ^^Cjc-oT, C7%6<7) 'i~rfc>fri{}\ )V/ tAh) x H^S®tii450°Cx ##(i#^:i00M M l/A L, T=. ¥a£UfrtftZo AKP-507)l/it#.i^-CU1300°C/20MPa<7Dtvyirk7X:’»W; @[CD98%l^U:t:tCc^. BD^^O^hTl/AtCck^T. misutr- 3/imT T=.7;K7/ 7" (Dwrnt: j: y' VXS^ttHM^SiCT § 0 /cltifi 1450T <, y;i]:7^io^ "TDT^jo=k^rlOO%(D^m#^^^L/, Wc^t)a A:ti2Ovol%^t3%<7)Ttd:13OOoC/2OMPar2B#FS0tvyh7" Vk Tmm^m(D97%iaTT&^ 7:*^ 1310"CO^h7" u*^^mi3oo'C(D#A'k^i;-c^'D (:±#

T4ilOD%(D0mo tz. iW)W?jtm45o°c om$u 7M7(#^AKP-50) ^7(mV-17-0^«tmZ-2Y) & 7) h 1525'C (7A,<7/30vol%/ ^z:7) T#e>^l7:. m#^uyzo ^g#l^6l400oCTi7ofco 7’ VAEti;20-40MPaT&£o %S#

th # Proc. of 5th Europian Conf. on Composite Materials, P.873

-57- [A—2—33—4b

^-'f S 7U (%^[) Tape Cast AlgOs/ZrOg Composite Laminates

cm

5 5

Is

wrrrm Figure 3. Microstructures of high density 0 98% TD) hot-pressed ceramic laminates; a) pure Al203 and b) Al203/20 vol.% Zr02.

d"

Figure 6. a) Optical micrograph showing the formation of higher density bands (arrowed) in pressureless-sintered AI203/5 vol.% Zr02 (27X). b) SEM micrograph of dense region of AI203/5 vol.% Zr02 pressureless-sintered at 1 480°C for 3 hours.

mu t xt n-rw&rp Z, tmW'itshoM'tmzmmtBfrnz.

-58- [A-2-4]EStt CA-2-4]-1a

i"/y $. "/ 9

9 A b )V Superplastic Flow in Nanograin Ceramics

ft # Superplasticity in Advanced Materials, ICSAM-9, Ed. S. Hori, M. Toki zane and N.Furushiro, (1991);Acta metal 1. mater. 39[12] 31 25 ( 199 1 )

# # Department of Materials Science and Engineering, Bard Hall, Cornel 1 University, Ithaca, NY 14853-1 501, U. S. A. i i X -Vr t> I I PVD, A12O3, ZrOz, tension test, grain sliding, threshold stress, serration, superplasticity, stochastic model

H. a. 5*. H : 5 ,m : 0 .5JE : 2 ,*#3* : 21 S-'K=# $#$fS

tix-i/gykL bcDT'li%< . #fe0BH#:4i'CeraW. $009 L-C£g-rS. 7 r 4 UT. AO5§%6g»iMl0j: LT£ ( 1 ) A shby—Verra 1 t S-f 6E#e%#09KM4x.&^h&t=. fit MSMcOfrt fOP£Ltz,

(i) mmm%5 oxi. i //m. y-yfi (2) £4mm?)7 7 4A-tt3l3ia@ifr£P VD "CEiSL/clry 5 -y7SK*mi ( 5 ) A 1 2O3(2 P t . s 1 02$r$inL4:«^h-e(4. P tiSrotOifr zfttiP t#ew

59 cn

M±W3»LOm:lV/=0!S%|OA0I U> 30 30

O o TRUE

STRESS,

MPa

95:5 :Pt 3 0 AI2 CA—2—4]—2a

^^-CCDAUOs/TiC $4 Deformation of Alumina/Titanium Carbide composite at elevated temperatures

& # J. Am. Ceram. Soc.,74 [9] 2258-62 (1991)

T.Nagano, H.Kato (Reserch and Development Center. Suzuki Mo ter Corporation, Hamamatsu, 432-91, Japan) (p/fK«M) F.Wakai (Ceramic Science Department, Government Industrial Research Institute Nagoya, Nagoya, 462, Japan)

- 7 - K Alumina, Titanium Carbide, composite, superplastic, grain boundaries flow stress, true strain, tension, elevated temperature

0, m. 3fX, 0: 8, S: 1. ?*: 2. 21 8>|R# ## &

mm (3) mmmm 1. H±#1.26T&6. Al203/30wt%TiC lZ£Z>m±10%-VfoZ>o (1) 66%##±#[/&7f;t. (2) 1500"C(Dm;t!^t±3.8 (4) x&m#T (3) 20MPa (D^#{MM(±853kJ/mol 0155O°CT(iTi2O3 (4) (DTi203 4. ElSC&y-a 2. &umo n ii

®2$M)ttl450°CKrFffligJST'i!3g5S$l-5. SEtCJ; 0 WJStoSo ®sao_hstc#^«eeiH*y;tt*s < &-e>as d)Al203/Zr02CDi§£x Zr02(7)WDa^^V\a $i*(t®fastt'hs < £-*>. ^EEll^^il^x Zr02#:##^ A1203# (2) *IC®-SiSSM« (04. 05) t nnti±#-r-6. XS® - . $$S%® #mm t a n imi- (04) t* ^f6^x Al203/Zr024rtt8 53kJ/mol T$> 0. AI2O3 ®fiW$£®( ^4©vjf-i5

— 61 — CA—2—43—2b

Table 1 Some propaties of AlaOa/TiC composite

AliOj 70 wt% TiC 30 wt% Grain size 1.2 Density Hardness (//v) Bending strength ' 780 MPa Young ’s modulus 490 GPa

2 20

Temp. 1450 "C 3.2 o 1500 *C 1500 °C AI203ZTiC 2.98x10 — 4 s — o- 30 1.19x10-4 s- 2.98x10-5$- Strain rate

Fig.4 Relationship between flow stress and strain rate in the method of strain rate changing

True strain

Fig.2 True stress-true strain curves for a constant crosshead speed at 1500 °C

1.19x10-4 s- a 1450 1 C Al203/ TiC □ 1500 • C a 1300 *C b 1350 "C o 1550 C C 1400 -C d 1450 "C e 1500 • C I 1550 * C Strain rate (s-1)

Fig.5 Relationship between flow stress and strain rate calculated from peak stress in tension tests

True strain

Fig.3 True stress-true strain curves for different temperatures at initial strain rate of 1.19 X 10'Vs

4®Id: Al20,/TiCS©7'-? vmftztiztk t)l:Ai20,/Zr02#kd)tk

-62- [A-2-5]yat%6#mi± CA-2—53—1 a

(#X)

Superplastic Alumina Ceramics with Grain Growth Inhibitors

ffl A Journal of American Ceramic Society, 74 [4], 842 ~845 (1991)

# # Liang A. Xue, Xin Wu. I-Wei Chen (^##M) (Dept, of Materials Scoence and Engineerong, The Univ. of Michigan, Ann Abour, Michigan, USA)

41 — V — P alumina ceramics, superplastic deformation, grain growth, inhibitors, additives

0 • * • 2|X • ##£ift

t&MMLX'v'&o MgO tciO b^b. ©E#EB MiiEht^bmnU Zr02(: j;

b/:o mi cmBm©##©m#^^#b/co m n%E Ai2o 3(±. ##©##&lBT&-±6 A:a6K\ ai2o3 (c tb5o MgO-Al 203 ©#^#(±^mEAi2o3 MgO, £Zr02£Sl}[J bT^Sfb/c0 (:hb^T#/b7V^©o zro 2-Ai2o 3(i. TX^^PjtcEYb A1203 MgO(N0 3) -o A:o (kZrOCL2^#^#t0 L/Co MgOCDSSmti 200ppmt:\ ZrOzte 10vol% tbtc 0 m4 CgC^fb ln(d/d)£7°n >y P bfcD MgO-Al 203 X7'J-(i 700°C t:\ Zr02-Al 203X7'J- CflkL MgO t Zr02 CEBf ©#l^&£# tiiooor-eiR^u/co 2:£#bT^6o 1000 ppm© MgO£P'-7°U Zr02£StJD bfc C©$;4c£, frWc. MI±f&ftZ b/c0 ai2o3 —^©M3tSE true stress^ ai 2o3 ©©EMx^njfB-e^a c HI2 Cgbfco T#/co

A#E Al20,kL :§: ^ © HI 15 ~C 0 Mg0-Al203(^ lE^ © 0.68 m flow St- ress(i 20MPa^b^I BOMPatCittH bfc0 Zr02&j20% ©Stints m©_k###I10%

1400°C(Cjo tt-E) flow stress

(Z. AlzOs©^^##^^^ -63 [A-2-5]-1b

9 4 b Superplastic Alumina Ceramics with Grain Grouth Inhibitors

Fig. 1- Scanning electron micrographs of polished cross sections of various aluminas (bar - 1 #un). As-sintered specimens: (A) pure; (B) MgO-doped; (C) ZrOi-added. Deformed at 1400*C, 10/s: (D) pure, < - 0.57; (E) MgO-doped, < - 0.68; (F) ZrOradded; « - 0.68.

MOOT

■ lindoped Alumina 1400*C A M gO-doped Alumina o Alumini/l0%ZrO2 d • 05 um Undoped Alumina 1400*-1450*C

Strain Fig. 2. Flow stress at a constant strain rate of 10"V> versus strain curves for pure, MgO-doped, and ZrOradded alumina. Stress (MPa) Fig. 3. Relationship between strain rate and flow stress at 2% strain at 1400*C for pure, MgO-doped, and ZrOradded alumina. 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.1 Strain

Fig. 4. Normalized grain size (see text) versus strain for various aluminas. Data of MgO-doped-1 are of this study, those of MgO- doped-2 are of Mocellin et at. (Ref. 5, do ” 1.17 #im), and those of MgO-doped-3 are of Venkatachari and Raj (Ref. 17, d, - 1.6 #im).

a Alumina-200ppm MgO • Alumina-10% TZP

1450°C J

Displacement (mm)

Fig. 5. Forming load versus punch displacement for MgO-doped and ZrOradded alumina during superplastic stretching at 1450*C. Fig. 6. Superplastic-stretched alumina disks: (left) MgO-doped; The average strain rate is 3 x 10" /s for the former and (right) ZrOradded. 1.5 x 10"‘/s for the latter.

bItB

ts: o tz o

— 64 — CA—2—5]—2a

(frit) MMtHl o#c*5 it 3 79 M&mt:7 V -7 *? 1 Y )l (#t) Shear Thickening Creep in Superplastic Silicon Nitride

I-Wei Chen and Shyh-Ltmg Hwang (f)eparment. of Materials Science and Engineering.Universi ty of Michigan. Ann Arbor.Michigan 48109-2130)

-t — '7 — h sialon.surperpi astic.shear thickening.creep.transit ion stress.compress ion.model

0 • m ♦ nn • ##^nK©m 0:8 ft|: l ##%i# : 4 o P> E # m m & *e

Hi v 7 7 7 7 /U©Mt$££t;7 V -7 kt-#@i)'%* Z ©m£MM3: &it% Is *t ‘7 i/-t B?-{iti % 4) C e = a a n©itTS£n>S. A ©iUi 7 7 ') - n a -i ©T&3. ft&. ^©~r =&t7Lz -U, S i >J5©$xf£ £ * TOMt -f 3 £ #>. >i# ft .X # - X A £ A I ON S©@4Bt4f*ayeM^it SCtS i oN^'x-tC UfelliStt'e* ♦; . #5-20vol An. b^b£5>C120‘C£^b. ^Ko^-jfc %H7 .*ffl**j oTt'^o ^0. ir)00~lfi00TT<7)E$S <06) o hi litlSC&OT^rbO 2/3 a c)

c C?aHtlEWfE;tlT$,'A. D L VO©@SAC?'@U%Uo U^b. ±15 ^i$ig-c©R^#%07]-Uir^m#%0 2 c ©tT3tzT##miB7](r**i@t yfst, ^*j|RVLM'-7*M*P£VT. t). An^d±C«k 9##cs%# --tea*). zz^/v^itWBcisurv (08) o Angh^2A,t:fc’btMW®b5 Ztmhh* a t tz . &!#m©1550T:c#(f 4 0f,&a ^^^%##"C©^tl©0f^^03 C^-f „ A©0C& (T*=20MPa^@t#30MPa©KCf]C%%^ h = 2 A,C (1/n) ©gfttfMAft*. «9tts^nr’ ' $%(,'%' fisc #©/j\^OOf n = 1 T&S©CMb. n~0.5C*!J£t3o ttz, mian\'X}ffri*JK© h = 2 A, = 2 £ =35M Pair % «) . ^lt{l30MPaCjgb 4SCfjfr»W:> Aft (ff*) tt#20MPaTS a , cco m % it £ ft * t i> ini m u&mv & ^0f#An/z-a- h >-r I) Afife (04) „ £ ac . Of aiie#rc&9. tmvs. RU7m^m(D^^nzm!B7u Tl'y fe », £ £ * £ t: ##c# o Tfc< . s i A 1 ON X ^Efril »)©k^f'l •> 7 i)i 7X3"} Y £ ii X O A A t ft ft

iti # J. Am. Ceram. Soc., 75 [8] 1073-1089 (1992)

— 65 — CA—2—53—2b

9 4 h )l (%%) Shear Thickening Creep in Superplastic Silicon Nitride

[0. 2?*] Table 1. Compositions,* heat Treatments, and Phase Assemblages of SlAlONS Composition Deiignttion' SijN, AIN AljOj Y,Oj Phase assemblage S0610 83.73 7.77 3.73 3.70 30% o' 4- 70% P H0610 83.73 7.77 3.73 3.70 100% p SJ510 73.71 15.42 1.01 8.91 90% (a 4 o') + 10% P 4 VAC H1510 73.71 15.42 1.01 8.91 >95% o' 4 YAG S1010 79.19 11.24 2.50 6.06 60% (o 4 o') 4 40% P 4 YAG S1025 68.50 14.69 10.70 6.09 35% (a 4 o ’) 4 65% P 4 YAG S0633 65.73 13.13 16.56 3.73 >95% p 4 YAG "Composition expressed in wl%. 'S—hot-pressed at 1550"C for 20 min: H—hot-pressed at 1550°C for 20 min, followed by annealing at 1550"C for 100 min.

S0610

4x10 V.

STRAIN RATE (1/s) STRAIN )• Stress versus strain rate at 15)0"C for several superplastk -strain curves at various slrali SlAIONs in compression {»» — slope ” (A In In *)).

S0610

STRAIN RATE(1/s) STRAIN RATE (1/s) Fit. 5. Transient stress-strain rate loop of 51025 SIAION tested at Fig. A. Stress versus strain rate for 50610 SIAION at various tern- peraiure# In compression (m - slope *■ (A In o)/[A In A)).

Pip. A. I’olvcryslftl with welled grain boundaries

Fig. ft. Interaction 4 between trains at a separation h, with two Stern layers on lhe graln/llquid interfaces.

Fig. 7. Predicted stress-strain rale curve based CA—2-5]-3a

(WX) b-$?;U3:ir«#f*©jgffitt # 4 b As mx) Superplasticity of mullite-zirconia composite

## (SrR«M) Takuayuki Nagano ,Hidezumi Kato (Research and Development Center, Suzuki Motor) and Fumihiro Wakai (Ceramic Science Dept., Gov. Industrial Research Institute,Nagoya)

— V — K mullite-zirconia composite, superplasticity, tensile creep test, grain-boundary slinding, the Dorn equation

0 • m • %% • #»XSt®B 0:8 a : 2 SK : 7 ##X8C: 1 7

[«$] f*iga®M#kmg.8®<%-5K»a. w# b (3Al2032Si02)(i«V'? U-T'if ©tb«*»&, fSE®5x$v (Fig.l,3#M) ft, SttStiSkUTSBtFATir'S. A7-f b£ izyXvi’ZWPV-'fAK &&#:'! me 1: ? b y y ni L,i?/yar.T*#@S!£-tt/iAy tt-rzikizmi-Do rn®SizmstTZb •f b-->';ya=r«£*Jti. ®@Bft^as»s fa±X5 5 X. -X;i/3r:r»ssST®A7'r b * - ^©'(§M-« ® * «nw-r 5 * »@agj:tmiasi58y k tirwrosis. ffttis®. l:«k5j@9Sft8»B t:oI,'t. ey y-Ayl-ftA ». QttE»xij-®Sttx*;i/^. Rfitfxjg 7-f bkj*«UT^IfUfc. ». AtijSSSt. P imE®@ »®s».) . ## lS»mntil-2. 6i@®iS5 A-M l- (71.8wtWl 203) »©#»plil-3©«&ke. (g# : #XW>bMP-20, mug : 16500 2hr) iSAflEnii. Fig.6*J;tf8®ai«®«*^ A?-f l'-'X;ya^rR-g-#(15*volZr02) 6>»8>6^. «StfTn=l.7-2.1, A5-f b (g# : ®cXW7PMZ-15, mtg : 1610=0 3hr) -?n=1.5~2.0kfty, ^•fftt,aai:i:t)t: •e#i<*L®faE^*tiFig.l*'yXftA7'f &m&w b©? y-X3$8-©g#. @E®i#vx®*t: #£5158 y Sift gB-rsifssux, 1550=0, S$S1.42xlO-‘~2.86xlO- 5s-1 vxT#E®am®#»P 1 bft sissy ? v--7&,m 5= L.fc*SoT, b--»3-ra^ 1400-1550=0, J*#10~40MPa #®y y-y@mi@*!i. ? vd®*m *ax-r. S2ffl#6®iee»ssa$i-etifti-x»s A?< b--X;i/3-ra£mi. fig.5t:s , CfflSli. y;kanr®@Eftt:3tf UTtl 1:15500, toX8Z>-f»$S2.86xio-5s- '®*a5l58yK#T122%®#!f&ai-. y##t:*-fy. A7-fb , toX8y=-f »RS®k t> ft o T MiiSA -y;P3^rit^-|#®#st:i5ti5aB## »sfBTu, ®K#yt»$-f y ft%m&*A: LT c »jSai:^5^Tt>, 0-"f6 k»sBfl»>l:ftofc„ ilfe. A9< b-i?;k=r.r«-g-#® 51589 * y-

Pig.6®*ty y^/y^%A b®S!5»y * y-^t:*(tsa»{£*2;0'

tti # J. Mat. Sci., 27 (1992),3575

-67- CA—2—51—3b

bju mx) Superplasticity of mullite-zirconia composite

0 1.0 2.0 3.0 4.0 5.0 Grain size • (um) Figure 1 Particle size distribution of mullite grains in mullite- zirconia composite. Figure 3 Particle size distribution of mullite.

Nominal strain (%) 0 50 100

Strain rate (s~1)

Figure 6 Relationship between flow stress and strain rate in tensile creep tests in mullite-zirconia composite. (A) 1400"C, n — 1.8; (□) 1450"C. n = 1.7; (O) 1500°C, n = 2.0; (•) 1550“C, n = 2.1. True strain

Figures True stress-true strain curves of mullite-zirconia com ­ posite in tension tests at !550°C. Strain rates (s'1): T1 1.42 x 10'4, T2 7.19 x 10-5. T3 3.60 x 10-5, T4 2.86 x 10' 5.

ffifL

t-2: itlS-T 5 Strain rate MMZ&MVT o Figure 8 Relationship between flow stress and strain rate in tensile creep tests of mullite. (A) 1400 °C, n = 1.5;(D) 1450 °C,n — 1.5; (O) 1500°C, n - 1.8; (•) 1550°C, n - 2.0.} CA—2—5]—4a

(mx.) E8tt5E;Fffl£fflH7tAx4 bOKiS

*7 A Wl' (^) Fabrication of Mullit€ Body Using Superplastic Transient Phase

& » J. Am. Ceram. Soc., 75 [5] 1085-91 (1992) HP Liang A. Xue and I-Wei Chen (Dept. Mater. Sci. & Engng. , (mmmm) The University of Michigan, Ann Arbor, Michigan 48109-2136)

K mullite, premul1ite, mul1 itization, superplasticity, mechanical properties, deformation

0. m.. ##£iK<0£fc E: 9,^: 0 6 ,##:£$: 29 is*:* 5 7!)A51 b <7)jB8ti$'B#tit4«T<0k 5 oMPaOT, taxm &i o-,s-,6i±r ti*)X'i>&' &BMXXZ & x ttf&mx&z , xvi b • 1 3 2 5°CX'&^yS.msBtli> tx\ *-r v-rttic$nr*5 o. eae t'T-f ^®E"f t/f MHtti o, A«-ft(4EE§lL5:VX XcntzHb, ■ SS^mtl 2 5 O’CitPJ/ 1 3 O O’CT b^®tiS/E®;fr££Sl% (4191 . 7. 1 3 5 0'C^A> 1 4 0 0X2 T(4 L*. *2 . lX't>&. C <7)¥i£l4. ( 1 ) 7;b 5 7#f k i/V* • 81$ltx*/K-(4. 1 2 5 0'Cid‘A. 1 3 ffiSr^A. SSK$®-T5” TVAx^ b” 2 5 "CT(4 2086k J/mo 1. 13 2 5 »®jt. (2) 7"V2.7^ HOESttlDl. °C*»<3 14 0 0°CCI4 1 15 0 k J/mo 1 ( 3 ) S®S.«E®aKJ: 5 A 5M ML. T&&. 3K@c7)7"n-feX»><9filE$:h.&. • «V'vSttltx^;bdf-(4jg»-WffiEfl|(C MfltBS^rn-teXiiLlTeOLtiDT&S. 13 VT. SMBk XI7xfficTjtttt^igttltx (i)r|ji»7'( Mo#m $/bjb-it(4-e(4m#T#-f. S$<9±#k O. 8wt%<7)V-77^E.3DLit. Ax^f k t, «w#7 c broaBaECSlS-t57/b5/ ( 7 2wt kALEB-C&S. %) Lb-U1 3 2 0°C • Xf7Xffii\«7yb5 7S^<7)SM(4e:?E T'2B#ra«teL. 7;b5i-fi^'f b®XS:*tr. SS5 //m. 1 1 . 6GPa, ®«®tt2. 2 MPa - miz\ ES56$(42 7 5MPaT 1 20 0tt«®4200MPa. 14 0 0cCt'(4@@7y7Xffic7)7tA. 5$®4 1 0 OMP aUTCGT-f-B. 7 U-T«H4 (4amiS^SX7-l bWSJM 6 o

-69- [A-2-5]-4b

02 S t r e s(M s P a ) R e la t ivD e e n s it y(%) i

TU2>7-f Pre-Mu 1325°C Strain

llite 1.4x10 1 1.7x10 .2x10

/s /

s Ay -70-

9M3

^^^ hwbsehw 7

-Y

hSE [A—2—5]—5a

>> )\y 3 ^ 7 A;i/ i? flal Hi/ Superplastic bulging of fine-grained zirconia

iti ft J. Am. Ceram. Soc.,73 [3] 746-49 (1990)

— V — K mechanical propaties, Y-TZP, grain boundaries, plasticity, bulging fine grain, biaxial tension, hemispherical shell

0. *. ¥K, 0: 7. *: 0. 2FX: 0. 12

[«g] (5) *6dis t tooxa; t ©ite 1 . ® 2143I3SX his? fAoxicj: 0 *rxEA';v (1) tiS2Y-TZP©*Si;*tur, ***>*!: =k 9 iBaittx vi'v *$nx£XS6 u. ¥S ©<# t± 75v y®#9$'kv©$6? OSDXGlttTO'-S*!. f®M(±7?V5 (2) *Xn4rxG£tt-5 2tt©JS*/gtt*|% ®©$®*5*n cti>e.75v ysiw* EiitsfeS). 9©A>*x hi/**1)0X1: tor AS. o) c®#fi©Eii%$asmo-3/sr$>.5. ©75vyw>f»b4;naill BEttg ®®e*i+5>GDox«ittr*e.-r, $® 2. tm*& M>5&!5* 5r 7 x > y® ce A 5 C t »s (1) #aw$4 • 3moi%Y2os-iE^a-»:-r rsr$>'5. ■ SWffik UTO.SmolX fflCuO (6) EM. $15. SiSE©fSSr • 0.3 um ®»fflfsyf»36ESJsti4Ee- gemst (2) iBE141Ht m 11 = 0.55 (1150°C,Comp.) *JKiS* (0 2) lig<-gtLTAS. (3) T/P ®tt 1*X320 mm (*ES3 1 «■) ©10# r |B) DIS*S®tt £ ii 2S. R. =6 X10-/S (4) ftgSS |*lSl6mni®ni8i^-f±KT/P * 43 J:C/C.H.S. =0.6mm/ min ©SfrtoBtffl t 56-ti, R=6mm 1WS. ${5t©M«*0 6IC^t. A'y*CTXB (tefc'U. T/P ®@6K*5iTtr-7lW*ttS.R. —$©*»$ 1£<£S. (5) • Sa 1150.1200 ”C @1150* • jSmmibfl-CiilAT, C.H.S.- • ilg C.H.S.itiiS.R. -£ S©B|ICid:T/P *l&S@g®#f S#A*l h-otzbK S.R. —$©)*•□ 1CtiT/P ti®« 3. •ti-r. rfcofc. (1) mmm (0 i ) (?) (2) E*- EtizfflS (02) • &&tt©E*- E(5ffl$l®tBiiSti. figt 9. T/P ©®«%£6t4. $ag©itn»>e>S6a9rS-5. ©t/p tciiittvix-xMcj:amiasu*tc (3) TM»>6©Sg«li:&*l6iE©M& (03) 6, 7 5* X 9 OTlT S fc.

IMi 9 2mmS-fn-5. 4. ten (4) #^m©BAk3k©M% (04) (1) asnsor • sa$irio-vs©sfrTr. QyVy^kmStoSKtt. ¥1$, HJB. *« mmsTzp ©2to?i56@si$G)$au*. ^|6]®^h-ent;, or, a 6, ot ©IS (2) ####1:4:9. fii'IWish, **#< . )$®&fr©3cll»s>fcS4afc. (DStoas^Htctior toe©15**1®<. (3) 6*6^6 ®o 612, fl.fiG !=]»> 9 GoU Tfr § (i. effittioxtirr-^i-/j.// 1jox ©sS£* Wft*;£i:>asr&s9.

-71- [A—2—5]—5b

Fig. 1. ZrOj sample after.forming at 1150°C for 10 min, with a constant punch velocity of 0.6 mm/min (shown in top and side view, with the punch). contact to punch

1150*0,0.6mm/mln. Fig. 4. Schematic of stress-strain states in punch stretching. 1150*C,0.3mm/mln 1200“C,0.6mm/min.

T»1150*C

V i 0.01 mm/a

DISPLACEMENT (mm)

Fig. 2. Load-displacement curves for punch stretching at temperatures of 1150" and lz00"C, and at punch speeds of 0.3 and 0.6 mm/min.

TIME (sec) ■ £r radial • Eg hoop Fig. 6. Comparison of load and displacement in two ■ £. affective forming schedules: (1) constant punch speed of 0.6 mm/min; (2) constant strain rate of 6 x 10-3, with the same final shape at 10 min.

die contact

punch contact (BtM> Uy&taXIZ ck o i/xEA/i/iJjpn; RADIAL DISTANCE FROM POLE (mm) txT^ZCti:. . DDIiS

Fig. 3. Distribution of strains c„ e#, e, over radial distance from pole.

-72- CA-2-6]f (DfG

ASSESMENT OF THE STATUS OF CERAMIC MATRIX COMPOSITES TECHNOLOGY IN THE UNITD STATES AND ABROAD C.Y.Ho, S.K.El-Rahaiby,DoD Ceramics Information Analysis Center, CINDAS Purdue University,West Lafayette,Indiana 47906

The American Ceramic Society:Ceramic Engineering & Science Proceedings,Jul.-Aug.1992 Part 1 of 2, Page 3-17. 16th Annual Conference on Composite and Advanced Ceramics

— h U V^%#-&####%)Ttxx y V —

E #

/K BBS Ceramics Information Analysis Center It <5 Ceramic Matrix Cpmposites (CMCs)CD^^T irX ^ > F ## ^KB(DCMCs(C#t)6# /rmfebx rcncse*]-biteioimets:e bft/c&j2.5s$

j?

/wtm&aw imj-x-t?? ?x£^#l/c£>© — fcu CMCs(ix %6'CDtv V y v

Me. CMCstiMSSn/cc/c 1g#M¥450 jS ^413% F . c0ck o4CCMCs0 ^ O e T # W36E • iW$9t£xMg;?& mm^cMcs ti. <>T&53o cMCs^igm(i3oo"CBt±) "C^jmef 66. Ii/Il3XFm'6J6fl,5o ErF#&. *###

1979## bl989#et)/6 <9 BBS(DoD) (tCMCsCDXE. Sffl. SS§Me*fL $ 1 #1,900 Jl (fo 160#M) Mb/:( 1) o NASA, DoE, NSF, NIST f - (CINDAS)^##-#" 6 BB#t 7 i v ? Xlf > ?- (CIAC) ii. 4%#5#a5. *BlWX:' F£fi#/c0 0 cMCsK^e^f a^B©cS^W©W^j-B 0 9 # ? ? j&ScdM

?

0 K#EMe6-o'ca^m^4ccMcs^ecD#%M#%(D^iPi -73- effl/ci6, CAicli, nrse*K9, LTWSL fco %-o T, cmS*T-trxy > h®#S$H^#©CMCsS#iCD^&m}8S69x^X^'"- hffl£ i: io/c*ft-C*So *ai49c®

CMC sSSIcyrSikHi&SSSmWSitt

£#W»£it§H£ It, #BKES^Ii. KBg>oS6$Kli:S8Snfc„ I979#*\bl989#* ?©io#M, *B©CMCs##li#gl:«# L, CMCs©E###©m#&as*/c@n,/c#**<## snfco c © J; 7 ics-#ffl$$l±a • nn-y g > • m#, swe*, f*in'cint)iSMt-85K */c^$»r-*5„ v y A • ZfxX-fex i -y 4? i 7 <£Sr#WM# £ ti, looo°cS K©f SK@%5/XxAI:%m$flT©6. Bttffl*5 Si,N,,SiC, 7A/i A"? h V -y X Xtm 7 7 *7 'f X Z7 — E^HttCol'T LiBZis L * "E©^^, * -5 #© S&rKX'f x;< > t-tttm («xii sic, Ai,0,)^»-f x*- <0tj ZLif sic) IC/E Zc„ 3I6MS* — SH-tc$t-5$*6)/j:«*«H4KI4, tbZinZ — i;i, r, ttfio/o-try>r, an, mse^ii^s-fr5isiE^3is«*#e>nri'5„ ? i6ooic(ii)Hiciii927 ,c(i2)$T'©fi$r-cMCs5ry;#r*§5SS»'iM^sn/c0 CMCsIi, BSEtEilB^ffliMfr - XD-75y, #1: TAyJ, #4 — fflMit, WfflcfSIBIiAEJZE, iooo ‘CHT^-S-t'* b t05 BEtrSIS L * 1i±, cMcs©#im/h#Ae,/i5#4/i:mA-c&6. me, sw, ##»#/cAiz:#o:»#?wm©mBm^&6cMcsu, #$, *B© BEe*A©@HTfi$^oA=TA/j:®SiJ*«r.5c irlc/t^T'&AOo *H®E©E9EM%8 A©;K#^i#a-C^, Z)'0##*rC*6C ili3E#(ljHST**5,> mu, ^©vsticttBL/iij-nif/ce./j:©, -enit, cmcsc-x©t, \H-CJi9rti-£WfcW$:WC£t 4CI4, CMCs^-xnlffitt^^c^lK-rSC tjb^sncc if* 5o iiStWffl?oxt-^-SiSt5i:ii, nm/EKti/"-I’ >x©;g£Si£, ?dx/ -,<-©*"y>XA, 9-?->3 -yy, joh-yi-•?■-< >yis mi:*-A-&/i/c#memL%Lmif#a-c*5y. Rjff/®*#©a5nDn*iiE^Drx a^*b© A#t#/cL*aNASA©#m##M%yoyxAit-e©#ej©—x •e*5o

MSSmaS33

4-©tc3, cwcsU*#Aie#L, S5>|ifibh,/c^#*$-#-xtci8S/j:V'»A ttBliEbO oo*i), <*^ < j$*rrv'5„ m#*^##i&/L/c darpas^ • *t« ¥ yD?'xAfflfe^, SEMaitLt LAV-25 8¥SteyWx?CMC»-i#ffldiiJ:o t L T©3(5) 0 %#S;5/ly- M5t©ti-tex c -y ? j''OKittMJ:lD56*)!hoeST-, Mb^ieR* i*3®n/cR»tt*wr5(5)o y<;i/y + ##%#?emg;fi/c#Kmys,j ayx-cit, ffiM tt7ihbB#$n5tt¥#$rlh»56fl©*x i -y X T-x-SSIttL/:(6) „

-74- t y ; y F V # y F % %^'©gm 1/-^ -##^Xf-AC#m^^TW6(6) o F U #y F ; C <#m%m%&#&61/-y-yxf-A&4F5/c&-tT7 ; ^ ^x#l/ K-A^#t)^lTU6(6) .

>#c, cmcs#x -< f--/jxE ^ tt-J ^(Dnyyyy-E'yu-?-, X;F(:#m©###^&6(7) o ;ti zvttn&mmtzt, ^yyy^mum • mn^m® Ip)±7^#£ft&0 Me, CMCs(±jt##%^AV^[Pl^E&e#^C 6^:c>;;>©ma/%;%&i5&&%6&%M#m&#^6#x.a(7). j: 3 ^ LTV^m^##^%TA, #e SiaN^hVy^X#^##^ SiC7FVy^X%^###, %@mty s y f ? F v y ^%%^##©yo F^

-r yvmm, #^©A###0#mi#m&e±[aa, uoo°ceii-r5&st-e8J!£ nr V'6o 1990^[^55E#jS#$^sfM(Army Technology Base Master PlanzATBMP) 1991#(#R$#!^ SK®EfE(DoD Critical Technology Plan)©Msf-® #, 12#^#%©^# ^X X A e^### ^O ck e^, tltl'-So DoD^7>{t 2005# £-ee# r%^©^#§>/ xtkvmmzfrmm&ttnftfcmz&mztizzt\ mw.y? >#, 2005# ^-ee 25%©?# ^ x f- A ©^ u T w 6 (14)o #, c^6©Bmamj&M#T&ao #%0r^6?#^%xA-<©s# ®&ftj&$jmizmi6t>nz> z. tv\ ^tow;bxefr;b;ftn#, Wi/%f-Ae^#6CMCs©# cMCs©$%#|^r#a66e^3E%cMCs©aM^-#, #Mifr#£: l^l#e, ##^fi6c 9 ~~ \l y 3L'y i? y ef® (integrated High Performance Turbine Engine Technology Program : IHPTET),NASA©5fei§f^^.^X > 'J >#>f4sf® (Advanced High Tem­ perature Engine Material Program : HITEMP)4o J; O'BESS^WfRfr^lf® (National Aero-Space Plane Program : MSP) it CMCs to X iZffl%-f6 mM&i£&v^z>o HiPTET#m(icMcs©##^i650"c^±e^366c ifa^cM £i|T, HITEMPe^^#mmx>^>^#—B#6 LTW6o IHPTET?$Sj©—O-e(tl650°Cffl CMCsZBmttZ t>©k&t), SiJ©%B’etiM^Sig^"e©Wffl^E'o/cCMCs©E%^#t>nr V^(15)o MSA#il$S’C^'B©iWdS* T J Z> C t ^##f#-e&6(i6)o

yy v tn£wmm

o sicw/Ai:0,EWiza6#2mm%,&m ^^C#Ee## L/'CV^ 5 o Avanced Composite Materials, Greenleaf, Cercon, Cooresfe }£% < © y^mtLhx^^o DuPont#: t Lunxidett©—#^#:#*tr y ^ y ^ SlbSx > ^ >#v'x;[/7"oPaa y ? a y F ES£-ii® L Td 3 <> Nicalon™ t UTRC Compgas™© X 9 & ckc/^^xty ; y ^x##^iooo"ci5#-c^m^^6An:^#gp^me# t>^v^©6 LTm#L-cd6o cMcs©M^^m#(i, ^©t:5Miify 7°, Bs^StSr, &6@©m^M"Mm

A — M2r LT%^-% y T h;U^ -T )lts — VfoZ>a x>^>Spo, F -A. m#igam%mty s y

— CMCs^tf — ©#####80007: $ ($^100 SF9)/1990 #x 2#(260#M)/1995#,

-75- 4^45007? $ (580ft R ) / 2000# tm^titz0 *B©ftafH?xS

0xot^>x. mmt) Kv 0:7 t '<'<-& X# - nx b©iW£ #mA#j

OTB©E%M^3x b©f^£ ©3x b

0 c mc s M © *° X > 7 7; b - - X ^ B M ft r & 5 #x GMCs^:W©IE^-BFFE^SSI^r 3E£H?:b:hT WjXx ^B©cMCsSSSS(iSiJ^d:nr5o iH/Lr^BK&^r fi, SEE -a (vertical integration)^^^ L T V ^ 5 C 2: t)—@r&5o 0|X_(d\ B -3L 1/ ^ |>n-^ xMtIbn§«t9C, ill^iK, *B*X\ ^B®c®#^#[ejcD/c36, ifrtm mu j:9 6X66. ^n^^B^©^X5

+izo sij®+-sK>f > Hi. B^r(i^^0*im#%^m%c^nnrw6c6r. *b©£ ttli. ^ $ C^©^*r^)6o

JieiliCMC s (Dli&ft*i#Sflli[LTSfc7J655i'? ffltffil'fr? ES©^fp]li?

dod ^t©e%0t, b^mebt. ^mmom^m^on^LCDCHCsommmmizm -t ZMf&lZij't'Z (5 iWS7^ t>©^& 0 , #Er(i Bf'0©#©##fbBr:Jt^#i&K:3%-o TV'6o cMcs®#e##cMr6#/r ©m#(±#cm/urn%. cMcs^##0#mmt5 % ^ ^xtcjt^ #^c#%©#n/c##r&6c ^^ArE^nrv^o cMCso^^^xat^/>xc-Dv^r©#

#%B#(i*/c#^^nrv^v^x 'pti < 6 6i2oo°c$r©##(i#6nrw6o tiiwx.. CMCsUC-D^m^A, ^]-^3Xb r#6^r(i, ?#. .kdwx^^o ZL-30m^AC(i^0

017 y -i j< — %s iiXJ’O 4 X^-©3X b ^?s rW V ^ d t ©7 y -r;<-n j;[b7y 7xm#6^©m##^ - ^7-(±e 6 U X^0&6#l#^fT7C(im@6gr&6o ffitc. m#&ckcm2MmmkL ^x b bib F^jy'Mv&Zo ## fciOXo-trx — — U tfrT£& d 2:J CS^ i't*«2fn5o ffe^. iifflMnxbctit^^o ££w. mm69^A(:#Lrmm

-76- ijmu-rzz tiz^o, o. «&amt/ts^w^sb© cMcsc^v^^a^u -y-y v oi#e^i#^6c ttezx&zoo 4»#. K#&#©fpl^3^lhl(j:. fH#6D&366#BrC 3o BLcMCs©##B#^i300TJ^±©jt#mmL^m##Cim6A5^6^. #cDee#A^^AT6C 6(i^Wc5 3o CMCs©SSffl A^Ertm. SSffl <>: LTt£tg(;£ji S/d^SSffl^r LT6DHX b • ####&%. fg^X b ©An-t? S/ > A'Clfcat£ ft£*m©^£

MMt-f% Z tl^tZXSZ? o iI#tti©^oxt-^-^Mt^C(i,

#^©m^E< M#.

■5 C tit, Z ti£l${CDm&ttnto X O'v b V ')/ BU unit, -e©#^&&catRfi&6^#r & o. ##AA A©^xAu - ac6cj;o. 4?^^c^m^i6CMCscD#am&e^'D £<3 fe. (±6&c#

CIVIC

AE^^rcMCs©E%E^^fiL^rv^^^ 5 y? >x, ha. f^7, Xx-T^-C&So :tLb5*itli, ^tf-87EM^CHCsCDE%M^^$(<9M/VT& 0, E2EM ~1.5 s$ (120-200 fKFgSS)XrS.iO. #A 2 %^®#A#m(i^#io% c SV^o C© 5 *E©i$EaSCMCs(CFCMCs)E%E5B^Wtt¥E6000^$ (800S$@E) 6#^^ h50 c©m. &J55% ^fr^CFCMCs©Sit&

|pMt6^lT^6(9) o CMCs©jAffliTlf££4oC£:oT^££tt©A'C\ &£F© V -y-(C(i Rhone-Poulenc(Franee) # B #( Japan), Pechney( France ) , Hoechst Ceramtec( Germany) J)*S%)0 CFCMCsjSffl ©^blS V — ¥ — \Z.{t Societe des Europeenne de Propulsion(SEP)(France) , Rhone-Poul enc( France) , H A tj — A > (Japan), ^o##gi=( Japan) , $#( Japan) , Machienfablik Nurunberg(MAN) Tech- nologhies(Germany), Imperial Chemical Industries(ICI)(UK) A*<$5 *E> 0 yy>x\t, ^‘N^Erid;5i)cMCs©ii^(cB^^B^#^bnrv^0 miBg&iz&izm Hf^|fl^ b A/ltEt-C-SiC, SiC-SiC, C-C Spd*^iJ jsffltt©Aia#mcMA&mK^ #A/-C©6o SEP%#©CMC#x > A >#^,9 7 V 'fftWatiil 7-^a2000jR^#"CA% b fco c-c#^ - AA-f -;l/. c-SicEV -Xn- x c-sic^ - Ax > X > X ^ X b A 1/ - K ©iSffl £>!>$<£• tl~Z l/' % o FJ"JX*lt, MAN-Technologiestb^ C-C#^##©#^CYb#^tfB^#&(Chemical Vapour Infiltration : CVI) A #^^"#&( Silicon infiltration TechniqueL "C V' & 0 C ©# £lt, CMCs©###(j:# - !M±©fgM(c%/v'esEP#6MAN%2'*#.&;f O X5 A ^5tS^n5o ?A©S^7°ny^uit, ^-;i/x;i/-xA#6A;b K-A#^©*EE%T SO, iffifcu Yb#89e&cA6 cvi©tAH 6 o A O y 7 A Groupement d1 Etudes pour la Construction (Alsholm) t Saint Gobainth^A AX^7- • #^##@#3© An t > A&(10)^M^ L 6 C t T&6o 3-n,<#E#(Ec)##4%###^©E%;a;&&m^m@ Europe/Europian Research on Advanced Materials (BRITE/EURAM) t cMCs^H-ratf-E^^rs* -77- fr;biiTX 0 BRITE/EURAM stMH, ZL#©^##T:' 445©:/n ^ x X h £+h*°- h Lt (10)o T##

GEC ALSTOHM Engineering Research Centre(^H), Bertin et Cie(777X), BHPCJ^l-?!/F), (i r-t?7;^n7MJ'^ tigft lt/c EC RRITE-EURAM 'X x X h £ 1991# 2^tcM^L/co coSHBtt. 3 #tf-®-eN »C©#S*M31S-r«c:i:^ttor^5(i7)0

* SEBBMcmcs

* E#^#CMCs * ©m## (] A?#(±26007]ECU(1 ECU = £j 1.2$) T& (X &6#%©^#CMCsCoXT, SKpnn1£fB. EiS

CMCsCD^mcM#LTV^5 B^©^#C(±B^ b*£-*'>. ; ^ ?X%2:#&6o ^ y ?X(±?7^/<-©;8%&?T')

tl^o E#(i, #@gYb#©t7 ; >7 ^ v ? ^h; £ CF-tr 5 S y ? x#^©ya tx>/^mm##©v - y--c& %, ©t?; v xx©mmm#

b^<, t; >j x«, ^7 ^ >y i7x©ii|-e(itbi)^7^t'j x>r ££rb> x-rxx-^^m bfrU A^69CM6 Mi&ViZ, yatXXX'©A^T ^ ©#^m b /c x x x - 61 v y xt? % ? ^xrm#^m6^a/c^, x^ XX-$#-t?X b^XvHJ ^ gt7tb Si3Nt ]%#(:&&«, C©#^M%©^%6X^XX-©]@#3X F # j:6, C©E©E‘B^Yb-t?7 ; v n^'iSim^ii^x F^tlEt 5mm©###tR© r##j (:^^oT#mt)&6(i0)o

*@CMC s

^t7fT7^bMci)5K # RV^&C(±&6 2:(±WX_ U &&o Xd' XX-m###©^erb, ^SliEb^(iWW^M(c^,^K B^/-^7-^ mme^^xxx-Ammm^mmbT^/c/c^. im#^mi#cmmb tb5o ^B(ix Sb<, SttXy >r^-*tT7 ; V - K£

— #CX 5 XX —

KmiZ, DoD, DoE, NASA, NSF >e ©fMEOT©$W5&#C: J; *9 , ii*10#MJ^±fC t> tz Q - FbT#TW6o bri'U ^©^^i/sXim #C

± t btii«i©x > >j > i^^©i^c j; o t, yrnzgit TU6o ®x(i\ < ©M^lt'Iffift^ntb^o £/cx mBTti,

as, darpa ti. jcm^b-D'D&a 6# bTX£0 770-tr7;^X, ###\ x ^B(±# —©&«u-^-T'tinci'o #4©m#mM##c#b. ^simm(im%#©e@c^^Tb ^o/c0 d ©IpfOffice of Science and Technology Policy, Department of Commerce, Department of Defence, The Council of Compentiveness ^ b £fc} c£ < ©!§,}£ 7 *t? X / > h ^TTX 6 (18)o -78- #bRW^##Yb#7 y C{&#b, & B # J: K< 7(ESK, h.c. Stark)C##LTV^5o SSCSftfcfflSK&S tlttn b'S'X.^^o c ©«k9(-.

^S©f4^ ■ M^fitcMCstD&^r-Sfc&^T^SE^Ba^tDZfriPi

(l)^Yb# a. ±^7 y b. 7 y -fv< —^x©3 —fM > X'

a. 7y^A'-/^®/7t'iJ7n 7 X T" A ©M W £ illE>fl; ■b7bn-t7; 7 xbe^^r ftlHKb f:blJIt'§§^? #4 ^ c t3&X a. 3 X h — 7° o -tr 7 > X'SK #(C Directed Metal Oxidation Process (DIMOXym) , CVI© j: 7 tk novel process

b. —7 *"J h 7 x -f 7°j&B&

6-b7if--##©;im b. ##©## (identification and characterization) c. ^ 5§©#^#Yb(hermonization) d. "T — X # o"©##Yb(data reporting format) e. ^#&©##

g.

a. Kt; t) j:cmm-mma# $P^,©m^#f©/ca6©3 7 A b. cMCsSpno©s$i'&E% tmem##c& #§m^m c. x-if>r >3 - Kmm©K#c jc&mE

a. J^^#%(errosion) b. c. #6

-79- 1. ~y v 37 x t

©K #

- ## - - mm# - /3^ - mwmm - x>7>sms - S’BfE 1/ F-A## - liiMSbgjAxr. v b - 3^3^^ b — A - (%#xc#m) - o >r v b J X)l - 1/—Ji/ - R^mxxxA

- 37- t: >X7>7>$;^ - ©BSj$ - ^\ V n t°37 — - y;<-9 - b®i& - SjAx x >> XSRtro ©^ m - OH aEi 7 A xl "X U — 9 — - / / - m#*s#^sSaD0 -t7;v37^X3^-t:> - mia-T 4 --tr ^ - — '>3 >

- - 7^^- (^mmbm) - 9 ~^n — 9 — - ###m (®^ew) - ;<7bx\ ;<7bX^/ — b - iMWBM

- 7^--37-^>X ©x V 9 b ox 37 x ©^<-Y 7:’& 7 i y 7 X - frM^JS I C^yX-X

- AX®. #. M# - - >bm& - E^-t? >th. #' X i? > th © — 7b - 7 >f Jl9 -. X 37 5s<— - v X7b - m%# (m#. T737-y<-f--)

- 9 'Jy y bf*^ — 7’ - 7'77>b7'i-f-% 7- ck £/y ^ — A — - — 9 — ©mmmm#

- -

- ^ n 7b X 0$ pp - mxs, y-r x ©XtejES - ;b 7 m# - ^CT V - 4 7b37-

- A#/'& 7 i y 37 XtirXlfSfJUXS - «Ib-^- - m^##

-

— 80 — REFERENCES

1. "Department of Defense Directions for Engineering Ceramics," Jerome Persh, Ceramic Bulletin, 68(6), 1174-1176, 1989. 2. "Advanced Materials by Design, New Structural Materials Technologies," U.S. Congress, Office of Technology Assessment, OTA-E-351, Washington, DC: U.S. Government Printing Office, June 1988. 3. "Congressional Perspective on Advanced Ceramics," P. C. Maxwell, Ceramic Bulletin, 67(8), 1357-1359,1988. 4. "Bridging the GAP, An Advanced Ceramics Development and Commercialization Program," United States Advanced Ceramics Association (USACA), October 1990. 5. "Made in Delaware, Tiles Shield Marines," Phil Milford, The Wilmington News Journal, February 24,1991.

6. "Ceramics at War in the Persian Gulf," The American Ceramic Society, Inc. News Release, February 11,1991. 7. "Structural Reliability Analysis of Laminated CMC Components," Stephen F. Duffy and Joseph L. Palko, NASA Technical Memorandum 103685, prepared for the 36th International Gas Turbine and Aeroengine Congress and Exposition, sponsored by the American Society of Mechanical Engineers, Orlando, FL, June 3-6, 1991.

8. "The New Materials Society-Challenges and Opportunities," Vol. 1: New Materials Markets and Issues, Vol. 2: New Materials Science and Technology, U.S. Department of the Interior, Bureau of Mines, 1990. 9. "Appraisal of Foreign Capabilities in Ceramic Composites," RCG/HBI Ref. Nos. 89-5073 and 90-3090, RCG/Hagler, Bailly Inc., Washington, DC, February 1990. 10. "Metal and Ceramic Matrix Composites Activities in Europe," Michael J. Koczak, European Science Notes Information Bulletin, Office of Naval Research, European Office, 60-66, January 1991. 11. "High Temperature Tensile Testing of Advanced Ceramics," Lito C. Mejia, Ceramic Engineering and Science Proceedings , 10(7-8), 668-681, 1989. 12. "A Test Method for Tensile Testing Coated Carbon-Carbon and Ceramic Matrix Composites at Elevated Temperature in Air," Stuart Starrett, Ceramic Engineering and Science Proceedings, \1(9-10), 1281-1294,1990. 13. "U.S. Advanced Ceramics Industry - An Industry and Market Analysis," Thomas Abraham, CLAC Newsletter, DoD Ceramics Information Analysis Center, CINDAS/Purdue University, 1(2), 1-4, March 1991. 14. "The Department of Defense Critical Technologies Plan," Committees on Armed Services, U.S. Congress, AD-A234 900, May 1991. 15. "Air Force High Temperature Materials Program," Norman M. Tallan, Ceramic Engineering and Science Proceedings, 12(7-8), 957-960, 1991. 16. "Ceramic-Matrix Composites," S. J. Grisaffe, Advanced Materials & Processes,!37(1), 43-44, 93-94,1990. 17. "CMC BRITE-EURAM Research Project," CIAC Newsletter, DoD Ceramics Information Analysis Center, CINDAS/Purdue University, 1(2), p. 7, March 1991. 18. "Export Control," Arden L. Bement Jr., MRS Bulletin, 16(8), p. 5, August 1991. _Ri_ B.

B — 1 . ® m

(1) m ^ m £

T:a©#^m cm, 0)

O Journal#^ ((B), (D) £IJljELTx 2 0 ^©iX'S^rfEl^ L Lfc0 mmt)j:

~t Dfrt^ti/co 1 StcIBL/co

Ira £ © ft

(X) Europian Association for Composite Materials : 5th Europian Conference on Composite Materials, Apr. 7-10, 1992, "Developments on the Science and Technology of Composite Materials.

(0 The American Ceramic Society : 16th Annual Conference on Composites and Advanced Ceramic Materials, Jan. 7-10, 1992

(g) Scripta Metallurgia et Materialia, 1990—1992

@ Acta Metal 1 .Mater. ,1991

M$Lfc2 0klk®bis*)

fri'/ rH'-yJA iti$- i/ri'iWft ...... 301%

M-a-ltya-kXbBM ...... 2 iMft'h'/vH.-X ...... 7

Sffitt ------...... 3

%DirXt@Stt...... 5

( 2) tS $ © E 5 i . E-S-mmttKfc'J: VE^bStlij (JSAx-? fc/SAb&%m%) tcHLT2#©IF?E^«££tiT 5[1][2]0 cti!i^S*ffi'&tf!4©it^tttclM'r-S®a6T©a^tgt'n4o Sifc, %5®fcri:st)h6Bf%iBWU2]^ gametz 13TB# (»£-fti£#r©$iyret.86) CN%a#<©$g^[6] -UOWiBESft/cK cft-i ©fg#(i, % x ? h ©iSiSfiK^WS4'ifIgTfe6tf^0Ttr<. SJaMirtttom* muimw>V[P,oMW!.k%Jti $ tu* t&tz. c t fe ©%*>■?> -3» a-&{®«©«-55-Tii, -T*-y b^x-C/SUBS (#l:AS#a©) b VTtWito'-itob tlTV'5 Lanxide Process®iSEIftB9E%/ll|g-g'S tH ' 5 [ A ] [ 5 ]„ C©%□-trX(ix

-82 odp©-7t ■ mryn-t X"Cd»t)x Lanxide Process (iJKif,

#©#^{b7"o txic&#ML-oc*0, B*7®$#fc UiWc /£ tiic B g icttX 5 <,

ii. @@14, s@ttiaxi£«j

<, i/^ny-toicggiu f©m

S6mrrU/cE%[ii]^*6„ ;aii, BPSimc J; 3fflm«fctc<£ SiWM@14©mic -ifiTfe-f), i%a@##w#"pyotx©M%i:##^4-x.T©ao

[1]:[B-2-1]-l [A]:[B—2—3]—4 [7]:[B—2—2]—2 [10]:[B—2—5]—1

[2]:[B-2-l]-2 [5]:[B—2—3]—5 [8]:[B—2—3]—1 [11]:[B—2—4]—2

[3]:[B-2-1]-3 [6]:[B—2—2]—1 [9]:[B—2—3]—3 [12]:[B-2-3]-6

r&jSy tCpfiScL/T^i'Bo

— 83 — B — 2. 3C HR S> *

CB-2-tJ—T a (tot) ^ (^) Low Cycle Fatigue of Discontinuously Reinforced Metal Matrix Composites mm (fflmm) M.Levin and B.Karlsson ( Charmers University of Technology, Dept, of engineering Metals, Sweden ) ^—7— K Low cycle fatigue, Metal matrix composite, SiC particle, Saffil fibre, Fracture process, Surface crack B: 2 *: 1 2R«: 1 S^jOSK: 11 ##R# $*$3:

AljSfOMg-&A&7 b ') ft■£&■£& j; o T@ttii<£T b tz. Fig.3a,bt:#$#;^©,%*&*f. Fig.3att, ku^ziirmk, b»u IgO' ffr&'IS (total strain amplitude) t£f e-tMi-;i/*£CBEbTif AOEttT&S- £©0f 9f*'5f ?if ? ^CT-*l65:Ttt. -aEo^KSffi t'Jyt X©##«£ttf 9 -fCft.T<,'S. dbi:. $SS3£itffi-£tt (Kti -f>Sto (plastic strain 2c&i:«isr-s ckT-#alfc amplitude) k#A©E*T*&. COEif 9 vol.%) o SS&lrffitiUiDl^f?^ (flftb fi'Sf dif 6^9 K b$S tttilOU) A#kb2i. C@SF©I1^** b TSt)*# T t'5» Fig.laCSf- e^lig|i*65KdfT%ff^TS SaK^-@18i-VcSfl©$6S®@t:t)t>T5S Sbr^. sic Nr Tlffc?F:> 7 y :> *S|g^S#Lfc (S*T &~0tZa lmm2%>tz 9 3 7") 0 ss2tf TKEEmmmizz-iTwmLtz, c SiC @fB£(b6061^A (*# 1) T'fct. ©iS&Tif D?* —ASr-flsgf #^©#40%©^TT3a%®^ 7 y 5 = SOT. r;l/ ? ^SSSili (Saffil) t±nzk^5 TbTTfmif ? 7y2©S^fidSiiniin b-jfMtSBlBlbTt'S (Fig.lb) „ ##0#-# f-5„ ^ 7 y ^ ©&#.#. (BttOf> *ti:20vol.%T&$„ ^«4>1-5) Aj=^Kf6##b^@PD (fti-' liSO^mT-aboyi, S£Fig.lbJ:9, «#ti±±9 }>77i’®git*5) T&S. «•;>«* *ti35~l00/rm T&9. lmm2 *fc9®5'7 Ctt-btoSfl^SjVdiL-^riPl. £fc!£ft$la y ? ®$CliN=Nf TlOy ££gx_ 5. Sfe. C®K ft K 31 a 9 !$$it 43 J: tf *& KSfcIV * © 9 b ST if fflttEBISti®*# 2 ttjSftl' 7 y l' fe. SStiASTH E606 CJfiMbfc (lW7©f' ItoOiHMMi.k 9 Jit'fiiM5 -yastosttsee) . N#mc. Sit^fStij^ftitSllf $. m&mvtz. s»

a a Proc. of 5th Europian Conf. on Composite Materials, P.561

-84- [B—2—1]—1b

9-< Mi- (set) Low Cycle Fatigue of Discontinuously Reinforced Metal Matrix Composites

Table 1. Tensile and fatigue properties of the materials studied.

Rm Material E Rp0.2 \ °r b c (GPa) (MPa) (MPa) (%) (MPa) (%)

AA6061- 71 300 330 7.4+4 402 -0.044 21 -0.93 matrix

AA6061 91 320 432 1.0+0.15 456 -0.055 3.1 -0.61 Saffil

AA6061- 95 350 380 3.4+1 464 -0.05 4.1 -0.58 SiCp

AA6061 AA6061-SiC AA6061-Saffil

•«.x

Figure 1 - Composite microstructures, a. AA6061 with 15 v/o SiCp, horisontal direction

corresponds to the direction of , b. AA6061 with 20 v/o Saffil.

10 10z 10J 10 NUMBER OF COMPLETE CYCLES TO FAILURE. Nf

Figure 3 - Strain-life diagrams, a. Variation of total strain amplitude with the number of cycles to failure, b. Plastic strain amplitude versus number of cycles |------to failure.

-85- CB-2-1]-2a

* 4 Y ) 1/ (*£) Corrosion Behavior of Metal Matrix composites

S.L.Coleman, B.McEnaney , V.Scott and K.Stokes* (School of Materials Science, University of Bath) (♦Admiralty Research establishment)

corrosion, metal matrix composites, carbon fiber, nicalon, dp — *7 — K saffile, SiC, aluminum alloys, galvanic corrosion, fabrication route, interface.

(«S) %WZ%Vtzo »C, #&3ftfb*:&'?& 5 2 1 247iK-’)A$S^fi^tlt |2ffi bb (CuFeMn) A16, A 1 2C u M g ##&<% ft 2® *Mnmb u cnz&mw t O T $ i/ tz o wcgsfbm*. MtfififcJoTfc**#»«**<»ft #6. i^y7'f;i/ (r;M t)tzo f) mmm. ^fby < /<< y df7^T?#6. £ id 7 ;i/ 5 - ^ 4, A 1 - titzo m& @ tr ^ ^ s * r 5 c i: tc * 5o c ^ 6 (i. & K ti 3. 5wt^NaCl««H'6ilfe,

ttz, mmm ci:i:gSbT^5. £fc, ^ - df > 3ft f b # by yno» 5 KSftfbttb-r b y y ? X(7)#ffi htitz. CAl 4C3##& U T ^6 i:. C ® J; 7 ft # gftfb#^ cdu±% <&*'*£ is 6 it 6. titzo JSA». 6. c *Ui, A^fb#»: , ^ W:. 3ftib#(: «k y v * J#*tfiftf5*T S fc *) 6dt6. * - df>3ft/b%^##T?K #(:# L < I//:. CitkL Sftfbtt ^ ^ b y y*X®#IM::#&*r<5A14C3tf

*.*:. t&*> s. mmm. #fb%^## T W; :* # ft it Wi J1 £ tf, ft ^ fc i)\ Cii 6

tmv ittitit&mizm<,'&%#> 6titz<, mz

c tfc**

"*-%*) S, A »i, vbyy)X^i2ffliaot7;t

aj m Proc. of 5th Europian Conf. on Composite Materials, P.493 C B—2—1]—2b

M (&£) Corrosion Behavior of Metal Matrix composites

(EL m, ¥50

Matrix Reinforcement Fabrication Type Geometry Diameter Route 357 Carbon cont' fibre 8pm LMI (V90

357 Carbon unidirectional 8 SC 357 Nicalon II 16 LMI

357 Saffil 100pm short fibre 3 LMI planar random Fig.l. Corrosion at the fibre/matrix interface 2124 Carbon cont' fibre 8 SC in squeeze cast 357-carbon unidirectional after 3 weeks immersion. 2124 SiC particle 3 PM

LMI: Liquid metal infiltration PM: Powder metallurgy SC: Squeeze cast Table 1. Details of the composite systems used in the investigation.

Couple Current Corrosion (pA) RateCmm.yr" 1)

357-Carbon 465 5.0 357-Nicalon 72 0.8 2124-Carbon 320 3.6 Al-Carbon 260 2.8 Table 2. Results of galvanic tests on matrix/fibre couples.

MMC Maximum Pit Depth (pm)

357 *45 357-Carbon 6000 (LMI) 300 (SC) 357-Nicalon 350 357-Saffil 35 2124 35 2124-Carbon 60 Fig.2. Aluminium carbide 2124-SiC 40 at the fibre/matrix Al-Carbon 150 interface in squeeze cast Table 3. Maximum pit depth recorded after 3 weeks corrosion. Al-carbon, ai p a fi^re, b matnx, c AI4C3

mst

Fig.3. Preferential corrosion around (CuFeMn)Alg in squeeze cast 2124-carbon; a Al2CuMg. b (CuFeMn)Alg * it T V' a.

-87- C B—2—1]-3a (WO h;v Environmental Influence to the Fatigue Behaviour and Damage in SiC-Fibre Reinforced Aluminium Alloys m (mwm) K.Schulte(Technical University Hamburg, Hamburg, Germany) , K.Minoshima (Kyoto University, Kyoto, Japan) 4r—*7— K SiC fibre, fibre reinforced aluminium, fatigue behavior, tensile test, corrosion fatigue, immersion test, corrosion damage, NaCl solution : 1 #: 1 4 ##30@U 2

iu&m&m \z&'oxim\,tz vf 55% osi-n-c-mm -aoSiC^mr&'STyrannomma^ mm. (Tyranno) Sfcft 1070«7;l/S-£A*BV\ '«&!?&9, b y y >7 - V by y 7 % y 7 2#gn, £«■«&«>. TO^o.27^m os i c&^&mmcotfr 7byy^xo^jmgS^»(0^(:«koT, 'o*t*)£'<'T'<'z>o steftfomtimx\ imsm,

y- '/£$4mn<7)%(0t6S3.45mm, y- $?*$^5mO *i/!:%&%####' < #&T3 c ^ . mm ^>a;% fcttHKMfcfc© (TK»n) ©2*|ftlKJiDXUfc. %uv^#a%cy^^. ^bvyfx&me# tnxiz£z&ffi5. xy iS*ifcRj&so.l 7 b y ? f % o%#a^ v\ ^ c a J; y A%^E#ia i?% (3I»-3I»«S?) ^R^-0.1 (3l»-flE««») ®« La'oy=^Al?$^. &####<-?&, 3EV'#m:K: 3l*@m • &### & if - u tz&m(Dmmt>m,<\ fcJSt'Ttfofc. «#Katt£a&£*t4»*Cl~10Hz® Figure 4t:. ^A*^3.5%NaCl^%*^%^#OS *;W5»»T?m\ JBA«#£»tt3.5*NaCl -nmzB-r* Lam#-?#, ««#?2 5rT0.1Hz®£#-tM *;W8i£»W^fc. j; y (Fig. 4a), u T'tt, Ka^^EA, a>u, Tgm#<9#3-, **y 3>OTTn-^ ifi&btitz (Fig. 4b). LK !§*£-©#-£■£&, 3.5%NaCl%%*0#*0T;l/^z:^ 2 3r) T'3.53!NaCl*T^^^eo/c= K##E 2±^&titz0 $m #R^c^C, ft\z.tfxtitzXm&&&& blitz. Table 1 £&•£ ur^-s. T*a^o%Ec#&#*uo^ma^ y , tt

69GPa, g|%^ aUTv^s. A^^o^yy^(±, b>^;yo ^%#E#& vm C a>t> tz = ##### ^/tTyranno/Al 3.55KNaClSf«^l?0if Afe®s$a'6t>a»««fc3c, ?7“/M©iisi± ^ifc0 \z\mr)u$&, ^mm&ma^#E I:zbyynil0*iot41if:. HMtfLZtlZtzfr. JKACtfUTtt&^as. Tyranno/ 4lOS&*tt, C(D%^(DZ b y y ? }&£}&&& Alfc^ttWAttCSSoT^fc. T, S-f ti\Z.f&&%10LT)]/S.=.'!7&%:

[0] Specimen [90] Specimen Tension Compression Tension Compression

aB (MPa) 867 1605 167 204 (%) 0.95 1.77 1.31 7.80 E (GPa) 120+10 118 101 90

Fig 2b SEM micrograph of the specimen.surface immersed in 3.5% NaCl solution for 72 h near liquid/gas interface Fig 2c As 2b, but far from the liquid/gas interface

♦ Tensile Strength o Air R - 0.1 ‘ 3rd Mater H - 0 1 « NaCl Soln. R - 0.1 NaCl soln • Aluminum JIS A1200 R = -10 Air

E—01 IE+00 1E+01 1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 E+00 1E+01 IE402 IE+03 IE+04 1E+05 1E+06 1E+07 1E+08 Cycles to Failure Cycles to Foilure a) longitudinal specimen b) transverse specimen

Fig 4 S-N curves in a 3.5% NaCl solution [B-2-2]&iHb-7n irx

«B5S(t7 45-7 A^^CDiliSEtoa k 4 l$ttK;cD|6i A

^ d" bVb (##) Heat treatment optimisation and improvement of tensile properties of fibre-reinforced aluminium alloys

ft A Proc. of 5th Europian Conf. on Composite Materials, P.773

# # F. D, N. G,M.G. B, A. B.M (University of Surrey - Guildford Surry - (mfmmM) Great Britain ,Universidade do Porto - Porto - Portugal)

^ - C7 - K Al-5%Cu-0. 5%+Ti, squeeze casting, binder,solution treating, critical temperature, G.P.zones age-hardening a, *, ?*, #^SEroa: 0:8 *:2 ?*: 2 1 1 ##R# 3$K*

*-Xffi2$-ftlc2oTl@7<4. (02, 3, tt, v v%#?##&o 4) 14 0°CT-li, 7MJy73ffl«Sliti TV'S. -ig{*{bffiakBfStiE-fkvD./ A - X Icifinbl 0#|M#|c$^b4. M&tfl2, 2 ixzmM-f&^tcx u, &s»a-&*m 5~3 OBfPemicHv 1 9 0t-*$Lfc. 18 T-roa^4'«sffia%i,v'aj^T t^aj*s OTIT'12, 5 Bf Pal, H v 1 4 0f®£ „ S see 4 (7)7 h V -y 7Xfi)$lc An. 12, 7 P U -y 7 7C1.S Afc®-fbE'fb4 < , 8 7A#T)#474A 1 - 5%C u — X%M s mimic A- 7 cm u 4. a-x&t g-Ti^t 8-7)i = j-mm7rLAtD@*6#SUT 2%l:z*$L 7 4 -A#0TI2, 4%fflSiOJt#S 4. ATV'S. Efflattli, i#V'7T'*An7AiT;fcAI2’ Vh'J T , »#MiaT-3fc#TS::k4T'S4. 4 7 0 roS@(Dt$*tt. IS«ftt£«£z&£ 7 xm#1t#&%%ftlc . LA'U-srogstt^roSSA'UA. (STSti-S. S 2 ic 2 %M g Tff S A4?l?8#tt7)te*s «MttfcAl-5%Cu-0. 5% 7r:"t. Al — 5%Cu — 2 %M g C07 h U -y 7 Mg + T i «*£, S i ttiSfrftffia^ro XI2, A 1 - 5%C u - 0. 5 %M g 2 U islV' HI8k7 h V -y 7 7 tfroStik cOfitStc . -£-A letj 4 4 A ST, 2%7A2vAnA$:# 2oTB£S AS. CASH. ZU-y NS #U4-&AT®HB%{bl2, 1PSlcAv'IS*4 6|ST'%£T S 7 W A-7 7 7 7 -IcfllA f#S A4. itoti:, ft4 0 0MP aT'&S. 7 *SA 1ZS i ZA 1 2C u, AlZSi T'ZAnlAmgtiroti, llfflifttttMB# ZA 1 2C u/Mg2S i 4"BHS A4. ■£ ttroiiiD65Sti)4. ASroiiati. 5 0 9 . 5 0 0T1T&S. A 1 - C u A All, 0 . 5 %M giU 2 %M Hk4LTttA£®ltS4». SiffiaS® g ®4?4'®A48i#fc4'f#S AS. -5-AI2, ISA £E{fc5-tt, W&44V' 5 1 sr&mv'm 4#I4AV'- >4fcf b -y P A#lcAbT V'S. Ltz. <%###. is«® 7 7Z43.7All, BBroiEAtt^iSias ti-s SlciiAS6(mjlcB#4<^t7)ffiElc j:-oT 4'ltT4<, A7>k|sI«IC7 P U -y 7X&« STS 4. IBftTS. !S#1t»a«ro^AA14tt 14 0. 18 Al-Cu^iT-ll, 7 7A2a1Aj)fft 0. 2 0 OVm 3IImiSlT-a». tf I2#hTAT-&S. -90- CB—2—2]—1b

# 'i h J\y Heat treatment optimisation and improvement of tensile properties fibre-reinforced aluminium alloys

AJ-5%Cu-0,5%Mg-TI + 20%Sa(Hl Al-5%Cu-0.5%Mg-Tl + 20% Saflll o Composite 515°C Stepp ♦ Composite 525°C Stepp Q Composite 520°C*2h ■ Matrix 515°C Stepp Hv 5 Kg ♦ Matrix 525°C Stepp Hvl Kg ■ Matrix 520°C * 2 h

120 -

0 1 0 20 30 4 0 50 60 70 0 10 20 30 40 140'C Aging Time H. 180°C Ageing Time H. Fig 2 Fig 3 Al-5%Cu-0,5%Mg-Ti + 20%SafIll

Composite 520°C*2h Hv 1 Kg Matrix 520®C * 2 h 160__ 150 140 130 120 110 100 90 10 20 30 40 200°C Ageing Time H. Fig 4

Matrix Treatment Fibers /binder Rm RO.2% R0.02% E A% (MPa) (MPa) (MPa) (GPa) AJ-5%Cu T6 5h at 470°C Matrix 323 226 165 71 6,63 2%Mg Water quench Sail'll / SiC>2 458 413 55? 90 6,35 Ti 8h at 180°C Sailil / Low 448 3§4 565 65 6.55 SIO2 T6 5h at 470°C Saiiil/ 430 346 324 88 0.75 Water quench Low SiC>2 5h at180°C

Table 2

m m

^ atomic

-91- [B-2-2]-2a

'M'izha"Al:7£tC£ Z>7 7 /f F vu (% Z) AN OVERVIEW OF THE DAMAGE EFFECTS RELATED TO THE PROCESSING OF ALUMINIUM MATRIX COMPOSITES BY LIQUID INFILTRATION Y.Lepetitcorps, J.M.Quenisset,; T.Stephenson (Universite de Bordeaux) G.Leborgne, M.Barthole, Y.Rouaux and R.Moore (PSA Etudes et Recherches)

^ - 7 - K squeeze casting, infiltration, aluninium matrix composite, preform, fiber/matrix interaction, spinel interphase, binder, aging response

3 : 0 ##£]&: 5

C.

#±AC##&rm.W£'&M&&tz LtO^o ^ F V 7 7 X V

? F V 7 7 7 F ##©-i( f A#]TMg#^7)Z^Ac{gTb#CT&tK >

') 7 7 Xc|]©Mg6B$#6©KfG4Cj;6#V\X k:^;i/48© V A /< 4 y VC

Fig. 2 lix v f >; 7 7 %©###&&%:;&# AcMg#/<%" y/-i©S b"4;^1$bMgigj^©^f LT ^ , cft^,© J£tc £ o SActZ K0#ofgZ/\' /f y/-&m - 7 l\ A:i&SicE^T < AC 6o t;-? F V v 7* y 7 * - a mm Fig. 3 F V ? ^mz\$frtz t) ©EZ7«gr& tz mfr^ztUA e ^Mgggi©##(a) ©EZ (ills’ 5~10MPa ) T'EUtiSB^5o FA# LfrU FELJa±"eEtui’S TMg^^^

*HZ^ F ') 7 7 £ Ac*Z E#'^^«k6 7* *; 7 ^#^lj:Mgzg^©fmT^I3)b^^AC^^\ F V #)—fbO(3-b^mAAcMET&5c Table 3 »*§&£•&

7 7 %jKJ&itlz EthZ)%L T ^ t), ? F V 7 7

x * (DMgl:^/LsAc t'k: tis ^E^BEZ^ F V 7 7 V h v 7 7 xcp^MgliuOcbdtcE^T^E'i^^’^V X 6 © ^iEV^SEZi^^M (EAc6o

Alloy composition Interphase (atomic %) Composition Ea/2(kcal/mol) AJ (99.5 %) a-Alumina 53.5 A 3 % Mg MgA^Oa spinel phase 11 Al 3 % Cu a-Aumina 49.4 A 10% Mg Mg AI2O4 + MgO 15.1 A 10 %Cu a-Alumina + small amount of Cu AI2O4 73.9 Al 4.5 % Mg 4.5 % Cu MgA^Oa Spinel phase 8 Table 1 : chemical reaction between silica rods within liquid aluminum based matrices according to the following experimental conditions : 670 < T(c°) < 800 et 0 < duration < 30 min

tb # Proc. of 5th Europian Conf. on Composite Materials, P.667

-92- [B-2-21-2b AN OVERVIEW OF THE DAMAGE EFFECTS RELATED TO THE PROCESSING OF ALUMINIUM MATRIX COMPOSITES BY LIQUID INFILTRATION

750°C

735 767 100 150 200 250 300 Temperature (°C) Time (min) Fig. 1 : Extrapolated incubation periods for the reaction of SiOa Fig. 2 : Mg loss related to spinel formation in Al-Mg/Al20.3 composites 121. with various aluminum alloys. (670-800°C) 121.

UNREINFORCED TOP OF THE MATRIX PREFORM

2.2 -

T6 Ireiled

Distance from the top to the bottom of the Infiltrated DISTANCE FROM THE TOP TO THE BOTTOM OF THE preform(ntm) INFILTRATED PREFORM (mm).

Fig. 3: Chemical distribution of free magnesium within the preform : (a) AI-7Si-2.2Mg,(b)AI-7Si-0.3Mg original Matrices

Alloy Composition Unreinforced matrix MMC Silica MMC Alumina binder(20% fibres) binder(20% fibres) ♦ Cu(matrix) AI-5Si-4Cu 321 337 381 * Cu(Silica) AI-5Si-4Cu-1Mq 342 415 428 AI-5Si-4Cu-2Mq 338 404 439 Cu(AluminaJ Table2 : UTS (MPa) of materials in the Y93 conditions versus the amount the of magnesium tested at room temperature showing the influence of the binder chemical composition.

Mg< Silica)

2 2J2 Pressure of solidification (MPa) 50 100 140 AI-5Si-4Cu-1Mg Alloy 345 349 340 (Alumina binder) CMM (20% Vo) 397 428 - 3.8 ® 328 AI-5Si-4Cu-2Mg Alloy 329 334 337 (Silica binder) CMM(20% Vo) 415 428 403 Tables : UTS(MPa) of the materials in the Y93 conditions versus the pressure of solidification showing the influence of the binder chemical composition.

Distance from the top to the bottom of the infiltrated preform (mm) ?lr ft:

Fig 4 : chemical distribution of the tree magnesium and within the preform (Vf « 20 %), AI-5Si-4Cu-2Mg original matrix (as infiltrated) silica and alumina binders.

-93- [B-2-3]#-n'{by a -tr x

[B—2—33—la

(WO 7 jv i ±M##fb7vP ;

9 -i h vP (^:) Forging of Short Alumina Fibre Reinforced

G. Durrant, V. Scott, S. Clift, R. L. Trump* (University of Bath-School of Materials Science-Claverton Down Bath BA2 7AY - Great Britain, *DRA-Maritime Division-Are-Holton Heath Poole Dorset-Gret Britain

4-—7— K forging, short alumina fibre reinforced aluminium alloy, commercially pure aluminiun aliminium-7%silicon alloy, liquid metal infiltration, flow characteristics, fibre breakage aspect resio, flexural strength, calculated composite strength

0 ■ A • W-M • ##£«©» 0:7 * : 0 #%: 1 ##XK : 3 M>IR# MS *

cm #] 1 . #a /Z^©{i^S*5E< tZY) > LMO/Saffil X 180MPa, LM25 /Saffil?(i240MPa ttZZ 0 ^B^JS£±ifTV < ffl(iPS£ftTWco cntt, itcN #^3 % ^BLTV/XV^^dDtiif^izS-d'S N LMO/Saf ^ c 6: (C&2ELTU& o f i 14?625oCe(i250MPa t tZ 6 o -7 4 V h 7 i 4 y©IEa^nX 7° p -fe X 3.3 S 7 vW®. muttt wmimmv 7 vl/ ; f ^##^{b7vP ; L T &t^E&BET7 y^'ALTi^o Cfttc^fLT, O^B(i, fr 2. ft D o -7 h 'J -y 7 x£&(is Xmffl^Tvl/ S (LMO) tk\-l% ^B5ETV/ M:&jl1W&TS&a5 &0/C0 ^Bm®LM25/Saffil tlTl'§o Rm£©SS25mrni6£ lOmmCDlABW> SL/Z6C6. 20T. 500°Cx ^'SSRh©585°CTa Fig.l(c^j;3(c, tU6£o^MW}UX£ilX\<'6o Fig.6(c^7X^7 hitto C LT'12%4 TOEIffl^B^ 4./Co CO#O##a^ULM0/Saffil T'te20~625°C s 4 . Discussion LM25/Saffil-e(4:20~585 0CT'|fo/Co 4. i mm®mm 25 x 4 x lmmOl^M'^nl L N ##07X^7 hEOS'J$^b> 12% O^BT##® ff-o/io SEM.TEM -emx ## 3 c ^n/co S®©$B-ett. 3M ®7j# TX^ LMO/SaffilOj#A31. 5&&6. 5(C, LM2 iti- h ') 7 A-/g?g(c3 BFbIS LTtiE L > SEM£{$-oT4> 5/SaffilOii^22.4^b3.8 tt< $ljAE/^ b 7 X ^ 7 hJt^Sb/Zo £L. ^jx.(fLM25/Saffi I«S|07 h V .y 7X015/]^ l©10%H&*ef;U 350°CTm00MPa, 550oCTti30MPaT£> 3 x LMOTSOMPa, LM25T110 c /: o 2 . LMO/Saffi 1 O^A^BEd MPa6MMh&tmm$.ckD^^D/hd: < x LMOT160MPa /J^S V o LM25-e260MPa6f&^5 —%&%> 0 3. 2 [ft {456cF CCD^S^Fig.SfZ/jxf o E«B^ J fX \'tZ\ liLMO/Saff i 1 T240MPa, LM25/SaffilT'(i370MPa X&^tZo ...... ______1______m # Proc. of 5th Europian Conf. on Composite Materials, P.639

-94- CB—2—33—1b

? 4 b jv ($k3Q Forging of Short Alumina Fibre Reinforced Aluminium Alloy

450 C

660 C 460 "C 585 C 600 C 600 C 625 C 626 C 660 "C

STRAIN, % Fig.l Fibre alignment and sectioning Fig.2 Deformation pressure versus true strain for for four-point bend tests. (a) LMO/Saffil and (b) LM25/Saffil.

Fig.3 Flexural strength as a function of deformation temperature. V LMO/Saffil □ LM25/Saffil Undeformed values indicated by arrows.

;-----LMO/SAFFIL

----- LM25 /SAFFTL Fig.6 Mean fibre aspect ratios ▼ LMO/Saffil ■ LM25/Saffil (-—) Al-Si eutectic temperature Arrows indicate undeformed values.

TEMPERATURE, C

X 200

Fig.8 Flexural strength. □ Experimental data (a) LMO/Saffil (—) c '=50 MPa (—-) a ’=160 MP (b) LM25/Saffil (—) o™'=110 MPa (—-) 0^=260 MP

?m T)\si $&(f ©MUK&g LTimStlTjo V) , iSSTCDigitT

V -y ? XCDSSSti^fbLTV/XV-v F V y ?

-95- [B-2-3]-2a

(WO ^SMTS&fbL/cA 1-Si7l'j.y 7 x#^#y V *-A2)g5tit

7 -i h sis Manufacturing of Al-Si Matrix Composites Preforms Reinforced by C-fibres

# # (Bfrmmii) S.Pelletier, M.De Sanctis, J.MASSOL, Y.Bienvenu, H.Vincent, C.Vincent (Centre des Materiaux P. M. Fourt-ENSMP-Enceinte SNECMA RN7BP87-91003 Evry Cedex-France)

4=- — 7 — K carbon fibre reinforced aluminium, reactive C. V. D, carbides, fluxing, infiltration process fluoride deposit, physico-chemical observation, monofilament, wires preforms

m: o m-. 3 = 3 : 3 pi& m

m m M^ba0 *^Al-Si^OAS13^\ (gV^(575°C Introduction *-y h 7°VX(Cf 5j^SBS’CWtLfzTfr 2 ^”es> a o ;7MJ y 7 X2)7°V 5 C d:(t 7 y itWi LThU vlity)\>V* 2)V h u y 7 X(C(j#fb#lx 7 y{b%x MClx(g) + x/2 H2(g) + C(fib) -+ MC(s) + x HCl(g) 7^v h V y 7 X L T3 I5S^ L tz 100°C©K2ZrF6ISfn7j<'/§OT^SS L > 100°CT 1 M#^table IKtk?o K2ZrF6 M(*B!l©3M(i:BIS ^zM't a o L. C. S., University of Bordeaux (C Z -otl L%Vo T300##(cTiC 7-x^f y 7*L/cElt(t x TEM ^^fLTVaCOX? -y 7 -y 7 ^§(d timirZo /c^'/Lx ±# ac6##&ao 6mm%60^aT^WD^i6ccTvaMm?x s. 2. Wire preforms strength Schamm 6CD-I'Sa o AS13/K2ZrF«#^#)2) 2oO&M=T77t/S ^2 7^-031^$2) &0T&a <, table 3 (d/jN^o 3. Discontinuous infiltration process Effi(t7 7 -y FT#V##&MLx f#2)[pT600°CM#!$fl,x 2) 1 oOgSTx v h C/LT^) a 6E7] ') y 7 X2)AS132)ES ^B^LTVao i ft # Proc. of 5th Europian Conf. on Composite Materials> P.651 CB—2—31—2b

Manufacturing of Al-Si matrix composites preforms reinforced by C-fibres

Table 1: fibre characteristic* (L.P.C.M. source, gauge length 2 cm) .

Fibres

Cl 3 0 0 3150 210 6.9 CTiC 2100 208 5.5 5.5 Csic 2650 210 3.2 3.8-5.8 CB4C 2650 210 4.7 5.7

Table 2: monofilament tensile tests (C.d.M. source, gauge length 2 cm, cross-head speed 5mm/min).

Fibres & (7 «T (Pr 0.5)

CI300 2679 2602 2675 6.5 41

+0.3mg/cm 2395 2626 2595 6.1 61 K2 Z rF 6

+0.5og/cm 1051 1060 1050 3.8 57 K2ZrF6+ASl3 disc. proc.

CT1C+ 0.25 1809 1819 1810 4.7 49 K2ZrF6

+AS13 disc. 1466 1469 1472 CM 00 49 procass

cent. proc. 1385 1385 1389 2.7 55 1 4m/h

7 5m/h 1442 1385 1585 2.6 54

Table 3: wire preform tensile tests (gauge length 5 cm, cross-head speed 6mm/min, average values on 8 tests) .

Elaboration conditions err MPa Sections mm2 Vf %

CTic + 0.25mg/cm 263 0.87 28 K2 ZrF6 + AS13 / 38m/h

CTIC + -lmg/cm 2 K2ZrF€ 320 0.57 43 + AS13 /9m/h

pm PcSWTi&fkLtzTJV S 7 h V y ?

s R.C.V.D.

-97- CB—2—33—3a

Sgjfitc AS#e##ma:B

% A h )\> (^) Forming of magunesium matrix composites by forging

ffi A Proc. of 5th Europian Goaf, on Composite Materials, P.665

J. S, K. U. K (Institut fur Werkstoffkunde und Werkstofftechnik-TU Clausthal Agricolastr. 6-3392 Clausthal-Zellerfeld-Germany )

* - 9 - K magunesium matrix composite, preforme,forging,sqeeze cast, alumina short fibre ,segregation a, 8, 2PX, sejtttrost a: 6 *:0 ^*:3 ##*«: 4 SES*

"7 X * i> x 9 A$E'a#fl' 4 5 0X 5. SS®tiJtt4Ra@{4, XtcX#6Xh^X#6. 00. 1 6-0. 4fi8Jh#tcJ;.E>Sitei:®EtSX'&.5„ -e 3 5 coEi'$®*-nmiiintix iSt'WXii: 3 0 04AAe4##4#6(=«. il«4lg® 5GPafti;ffl?ISiJAkl<„ kZ6#\ *Ei3ctt WSOTtix 1 % «t 0 '>41 '#S$ % S U 4 „ . Sites #®E-o £ a £ & MMta:, v mmEK, tLrmBtc&dm&comms. h u V -7x/m#smx-&A{bg^.4@#x& zfMWt t Wt W WttW t o i-' x Mi li x i' i>. 5. Sfc, h U'V ? 4 x 2/ x o7vi,s±m #H2 0%toE’V'7:*-AtC7X'4.:yx. 17 2 0 0T3K£rt5 3l*ESsl21to, E®Sfeff£1$ X 4 -f — Xi$®tCct; o T (as) EjSS*i&„ rro#ir*mi8j8tc,j:u l 0 4 3 0nx-i8®LfcE-&Mtt. X X -f - X# . 1 o Ommfc+iaanisftfc. S8®*<4 ®# 9 A £ £-f( L X h' 5 *8*£ X 1X #iSt 2 cm3 roffi£**tf1$»x-;fcS4\ EirtiroSS ti-s, mm/-? h u y -? xsaxait^E ®£

-5;»'X'$>-5„ ®®fmX"

#£. «6ErorXA-7 Httix B3T-li %{b%*4#<*C6. iSv'S8;BS*4 7 OXIX-ti. -7 h U -y -yxcD+^Stotti:

a4tt, -7*v h ^i-f^llfflli i:*S®-6-®KHM4iS'*„ xEU >X*# * -v 7 :/# ro ]I$cd i® £ $Si$X (iEWtl

£}X- lotnj, S^#tctit45®S$ LXU&. 88®#ro3l$Ptil8!kU 197 OGPatfW %4-f-x#®az#o

# 'i b J\/ Forming of magunesium matrix composites by forging

high deformation zone ► fibre damage Fig. 4; Microstructure of a near net shape component a) high deformation area valve spring with fibre damage retaining cap b) low deformation area

Fig. 5: Vicker's hardness of composites dependent on the condition a) matrix b) squeeze cast composite c) forged, degree of de­ formation: C> =0.16-0.35

kd&l heal treated (T6)

Fig. ,8: Tensile properties at 200°C as function of the degree of deformation (heat treated), degree of deformation: <> *= 0.16 - 0.35

mmc ± z mm t mrn&w

{z o ^ X H'^ £ ± \z \ T -k ^ # # £ & o t- CB—2—3]—4a (»£) mm6®E4bmKj;%Ai2o,/Ai-sia^##KMi-s3m • mtktomm

mx) THEORETICAL AND EXPERIMENTAL ANALYSIS OF Al203/Al-Si COMPOSITES PROCESSED FROM Al-Si-Zn AND Al-Si-Mg BY DIRECT METAL OXIDATION as # 16th Annual Conference on Composites and Advanced Ceramics/Am.Ceram.Soc./ 75-C-92P, P.485-493 m # S. C.Khatri,M.J.Koczak(Dep.of Materials Engineering,Drexel University) (SrJSEW) T. Chou,Y.Kagawa(University of Tokyo,Institute of Industrial Science) ^r-7- K direct metal oxidation,Lanxide,ceramic/metal composites,growth rate,growth mechanism,oxidizing atomosphere,AI2O3/AI-Si,Al-Si-Mg,Al-Si-Zn, 0, K ¥*. ##3C#©K 0: 4, m: 1, ¥*: 0, ##3t6t: 9 ##R# »* Hffi tt&EIbiSSiL Lanxide Inc.K* 37*‘S/”7F©ft®i±^©5 xWK^yT^x-S t7l7?X/XM 37*' i-"7!"CD$? L V'SiSiST* 5. % ® M-x-Y£&£tb«toi6& (>ii73K) (ommm XT77"1-Xf#©4® : % T«ai, &®M %ElbU WiUfAlsO, ,TiO •6-^EK#3U$©XfWS^®$fL5, 2, Zr02t557*X*£)££-ti-.S„ X (#[*.(£. Mg,Zn) 2MgO(2Zn)+Oz=2MgO(2ZnO) it s-?Ltt©xr*» ££j&u. MgO(Zn0)+3/202+2Al=MgAl204(ZnAl204) « 6Bihu ®Ybsjs*»(ts. ^ATbmtto* Xf77'2-to##m : © i®i*)14~-£ffi-F£-ti\ toff©«i2%eaf-5 xt‘4»2:mf©7-f)ii frm &muT©^&to# o (®«#7'!)7*-A. m«SiC. *S@«B-r4Ul ©#mx$s. ^aswKAysssii. 3 ffi<7)37if2-"7ht,g3®U#5- ) *#$•?{*. 37 ©SK£$£*tfe. SifK-X©# EJSaWtfri, m=71^C©E&m-3 BSt©ES£ffti;. 0.1,0.2,0.5 atm i: U, SA TSi&ABKffiirfS, C©#x*K*-5'<«* i"X©«AiS«ii. 5 liters/min tUTi, E-fbii ®S©#i$®i*. 0.12 gm/cmVhrk&t). 1573 K*E#§*£-gt-r£. Xt77"4-ES©6£E : #Ha,^6©EAi*. a®©Mgo Fig.IK. KS^EfcA^M tbT, S&*tol iscrs. MgO ff-e©ES&»«ftflc«r687£»$. . 2Si©Al-2Si-5Hg -^AT© SSSiD ti. ©JtiD k 1: t, KitiD U T A' tr»©ESTtiB®T$,5. 6. 10Si©Al-10Si-5Mg ESdMtic# X777'5-ETb#©&#: 6kto<. bXio T)R37ij:ES©fl5ES*Kck *3. m*©£j£)£ Fig.2-c Xi>6. Al-5Si-5Mg 'nlitfi, Al-2Si-5Mg SttASK®<. 5.5 to ■?, 37*'7'7F©17nm%&Fig.3Kaf. a7mv 3 fkrG<lW-t biMlt 7-i7BiY7iA* b®ti( ctlT A'«„ Al-2Si-5Mg A:Al-5Si-5Hg ^KAt'T. 3> * • y'7 i&a#® K S’HttHgOi Am® atitz. 7Ai-H£±coia.m±mmtK&»?>Tjrr-)m ftX‘m©«S0^Fig.4K5ti-„

—100- [B-2-3]-4b :M h7L (36X) THEORETICAL AND EXPERIMENTAL ANALYSIS OF Al20,/Al-Si COMPOSITES PROCESSED FROM Al-Si-Zn AND Al-Si-Mg BY DIRECT METAL OXIDATION

TABLE I Chemical Composition of Various Alloys used for the Directed Oxidation Studies

Alloy wt % Si wt%Zn wt%Mg

Al-2Si-5Mg 1.9 . 4.8 Al-5Si-10Mg 4.9 . 4.9 Al-10Si-5Mg 9.8 5.0 5.1 Al-5Si-2JZn 5.5 2.5 Al-10Si-2.5Zn 10.8 2.5 -

Al-4.8% Mg-1.9% SI Time (Hrs.) WL of Alloy-30 g.

10% Oxygen 20% Oxygen 50% Oxygen

10% Oxygen 20% Oxygen 50% Oxygen

Time (Hrs) Time (Hrs.) (a)

AI-5.1 Mg- 9.8 SI WL of Alloy -30 g.

02 03 0.4 10% Oxygen Partial Pressure Oxygen (Atm.) 20% Oxygen 50% Oxygen Figure 2. Growth rate as a function of time and oxygen partial pressure for (a) Al- 5Mg-2Si and (b) Al-5Mg-10Si alloys and (c) growth rate 2 hours after the start of the reaction Time (Hrs.)

Figure 1. Weight gain versus time plots for oxidation of (a) Al-5Mg-2Si and (b) Al-5Mg-10Si alloys

Figure 4. Schematic illustration of growth process during directed nteul oaidation of aluminum alloys

1. ^7‘Dtxts. mito/m

Figure 3. Micro* true lure of A! jOj/AI-Si prepared from (j) AI-5Mg- 25i and (b) Al-.SMg- lOSi alloys

101- [B—2—33—5a (WX) Al-Cu-Hg,Al-Ni-Mg SSAtf Al-Si-Mg -g-^yf5-"7b©ESdSETb©Sltff £ 'i mx) DIRECTED METAL OXIDATION ANALYSIS OF Al-Cu-Mg,Al-Ni-Mg AND Al-Si-Mg ALLOY COMPOSITES as A 16th Annual Conference on Composites and Advanced Ceramics / Am.Ceram.Soc. (76-C-92f),p.494-502 m # S. C.Khatri, M.J.Koczak (Dept.of Mat.Eng.,Drexel University) (3rR««) T.Chou, Y.Kagawa (University of Tokyo,Inst.of Industrial Science) I ( v3 * ■7? directed metal oxidation, Al-Cu-Mg, Al-Ni-Mg, Al-Si-Mg, ceramic-metal comp osite, AlzOa/Al-Ni, AI2O3/AI-CU, growth rate, Lanxide, DIMOX, 0. m. ¥X. ##XK©@& 0: 6, m: 5, #%: 0, S#XSt: 7 ##R# «* LanxideitCS: 9 MH£StfcDIM0X7'pntS, 7)K Fig.4 IS. Al-5Cu-5Mg ^6C A6A1202/Al-Cu 3 :»i^©SS*aS6ti:E'(bSii-. t)Wx 7Hb y* >7F ©XRD7'B7FT*S. amt,m:»A,HC CuAl2,NiAl2SJS;tFMg0,MgAl204*s©»?>Sl-S. Ta (T>1200 K) T. SlSifX (SSt blelVC, #3yO"7l©)iW fYy*AC#aS*?M^ StStl iHISC&as $St Tiffin m-fo Fig.l C Lanxide '7h@|$$4ElzKUTic Table VIS. 7'PMSBCS3ttS#3y*’i'"7b©^ 77-f n"A% SW L TSS IS tS. 3ffi 3>*^"3ht, A120=/A1, A1N/A1,ZrN/Zr,TiN/Ti * #:|S. 1473 K©7‘PtXSaT 22* (A120VA1-Si) Aftf. WmtVT& Al20„AlN,SiC,ZrB2,TiB2 7?* 9, &glZ&TL. 1673 K7?IS 10* Al-Si-Mg -&&&6©3yirr NESTIS. AC Al203/Al-Ni.Al202/Al-CuC 7HS, teA:LbRUT#TLEffi*i6tx CStlS. 3 Mi--53^-r7h ©m*#m. a«*®^ifco yO"7b© AScS*j£k' Sc to. A12 02 ©&# S *%j$ V'TH-f -So Fig.6 IS. Al-5Cu-5Mg,Al-5Ni-5Mg *6©3yf mss i-"7F© ^PE8$Tto9. Al202/Al-Si 3y*"y"7hj; A120s/7W 3>r5-"7Ky^S^86MStt. Table 'onnnmv»z><. pyf r7b©m%ism%?to 9 I C/hCS; Al-Si-Mg,Al-Cu-Mg,Al-Ni-Mg a'^% S-TLtito&SPTto-S. ffifBU Bm-fblS"FE©;6#C*:„ S® : 1473 K-1673 K / 50 k mtliT : 60 min. SBISL : IZ®Sit (SSS 51iters/min.) : TMi

tablenCHlSJSBCH-f-SIIlfetS®*. Fig.2 C*Si§iDi^Ht©i8 ®cD«S«l*S:-r. S* ©J&RSSBIS. Al-Si,Al-Cu S&T-IS1573 K, A1 -Ni £&TiS1473 KAl-Cu,Al-Ni •£ ^cdsk'T. sats-sa ^ss-risa©*asit- l.i$CE6$at*ffi"Ff 5. SIS©ilffttAC. Al.Mg £&IS Cu.Ni.SiiiifSDAS- C©^&ma©aibCd; 9 smuts ±xi,. sffi©to6tsit*-r$= c?v\T©a#%^. 7'bk ©aktofflss^ti'g #©s«mi:©@am. %aaib. ras»7©ja 6 % tablelUCzRL/Tco Al-Cu,Al-Si -6-ifc-etS. AT©SHblS/J'$ <5IR ts##^rmef5. U*U. Al-Ni •£&© AT acts*# <. mere*

—102- [B—2—33—5b M (MX) DIRECTED METAL OXIDATION ANALYSIS OF Al-Cu-Mg,Al-Ni-Mg AND Al-Si-Mg ALLOY COMPOSITES

Oxtizhg TABLE I MgORm Chemical Composition of various Alloys used for the Directed Oxidation Studies Alloy wt % Si wt%Cu wt % Ni wt % Mg

Al-5Si-5Mg 5.5 . . 5.3 Al-5Si-10Mg 5.6 - _ 9.5 Al-5Cu-5Mg - 5.0 • 5.4 Al-5Ni-5Mg - - 5.1 5.3

TABLE H Reaction Rates as Measured by Weight Gain during Oxidation via Stepwise Heating Figure 1. A idiomatic ill m (ration of (he LanxMe"^ proccu of various Alloys Temperature Al-5Si-5Mg Al-5Si-10Mg Al-5Cu-5Mg Al-5Ni-5Mg (K) (mg/g.hr) (mg/gJir) (mg/g.hr) (mg/g.hr)

Temperature 1473 15.6 51.7 50.1 71.3 1523 73.4 98.6 68.1 50.4 1573 100.7 101.2 92.6 14.1 1623 94.5 99.5 30.6 10.1 1673 - 99.5 22.9 5.9 1 Weight Gain TABLE HI Estimated changes in the Alloy Compositions, differences between Liquidus Temperature and Processing, Viscosity changes and reason for Reaction Termination

Alloy Final AT| ATf Avj Reaction Composition (K) (K) Termination

590 Time (minutes) Al-5Si-5Mg Al-22.16Si 723 T Alloy Depletion Al-5Si-10Mg Al-23.45Si 723 595 T Alloy Depletion Figure 2. Weight gain vs. oxidation time for a At-5Cu-5Mg alloy during Al-5Cu-5Mg Al-19.37Cu 752 702 - Alloy Depletion stepwise heating Al-5Ni-5Mg Al-19.39Ni 660 483 rr High Viscosity < Al-5Cu—5Mg alloy > TABLE IV Phases Predicted and Detected in the Metal Channels for Ccramic/Mctal Composites formed from different Alloys Alloy Al-5Si-5Mg Al-5Si-10Mg Al-5Cu-5Mg Al-5Ni-5Mg

Predicted Si, Al Mg 2Si. Si/d Al, CuAl2 Al, Al2Ni Phases CuMgAI; AlMg,Ni y

Detected Si. Al Si, Al Al, CuA12 Al, Al2Ni Phases

TABLE V Metal Volume Fraction and Porosity of the Ccramic/Mctal Composites at different Processing Temperatures Alloy Temperature Metal Porosity AI2O3 (K) (%> (%) (%) 28 (deg.) Al-5Si-5Mg 1473 2157 1.38 76.55 1573 11.14 1.82 87.04 Figure 4. X-ray diffraction plots for AliOyAl-Cu compoiiic from AI-5Cu-5Mg 1673 10.58 0.84 88.58 alloy Al-5Cu-5Mg 1473 16.46 0.79 82.75 1573 13.94 0.39 85.67 1673 7.61 0.38 92.01

Al-5Ni-5Mg 1473 17.55 0.72 81.73 1573 12.19 0.51 87.3 1673 8.71 0.20 91.09

9rE 1. isr'mii. n

2. SsiKai. /nwcomirh%

Figure 6. Microstructure of alumina / meui composites fabricated by oxidizing (a) AI-5Mg-5Cu and (b) Al-5Mg-5Ni alloys

-103- CB-2-3]-€a

(ft X) mm^

Diffusion bonding of fibre-reinforced aluminium

tti # ECCM-5, P. 645—650

m s R.S.Bushby,V.D.Scott,R.L.Trumpert(University of Bath-School of Materials and Sience Claverton Down-Bath BA27AY-Great Britain/ tDRA-Maritime Di vi s ion-Are-Holton Heath Poole Dorset-Great Britain

4^ — 9 — K diffusion bonding,fibre-reinforced aluminium,liquid-phase, solid-phase,bond strength,micro-indentation tests, inter layer

E - & - 4% ' ##]%:iR©% E : 4 m : 0 : 4 : 5 S>SRW ± JE

tft 184±84MPa, &Aa$&lftfc3B#'rti « H 3ft 4fc T ;u $ -1) AOli^^icout 72 ± 9MPaT & -o tzQ £ fZs S ft ^ A ft 4 > «s^t^ $ & zmzm (80%) T? © it A, m & ft ttN 50 i\ cxmm&ft j; %, gtitu^o ^X/ ± 5MP a”C £> n fz0 EPMA^It^^ & A L t t' t' as # ft m o m o fco #X/^r^#ftctsmm©B0(d:, ZJN E 41 ft £ e PMAici:^^ u&mm © ^ A % J; K)|Kft/=#B^Ti6#TU/=o CO Rtfxm&fckm&akftiz~D\''T%mifco J; 9 ft m # & ^ # A, ft E ft i£ v $ # T- mUtt It 1/CifcO T * 6o m o R fb ft «k t), • #A## 7 h V y 9 X Tfj & to 7 ;V S Ciftt^ o Tl> So %ib# --h o >mm (s i c) (2) 2124A A 7 VI/ ; ^9AAAftj:S#A S 1 5 # m> Vf = 0. 4 500° C, 34MPa, 60#©% A^#T, % A# mmSBlS] 0°&tf90° #^#AL/=6#0#Amm^E5 ft^-To ' < > th - h # m (to^ 99.99wt%), 10^ m $ %A$©E:*#S£E 6 ft, EPMA Al-4.2Cu-l.5Mg-0.6Mn ##T©toM£E7 KfnLfz0 %Affl ©?§ ©* (2124A&), 200 /z m fcEKTx tti Slit *m%T'n i Marshal 1 (1984) tc LTl'So $ E PMA##rtf&S-ti:S 4; smm/? h u y nfsio^ffiommsftK k 2124A A4> © t; 7 /*i/9A©?hV ©£Fffi^&Tr£>ao tfy *-x©EE£E@ y ?X~©#%A, K3; <£ b>, ^6 b % 6 %A##©%A^®*#? (i, 7 / * y ft So 9A /$t i 5o *}x (i, 54± 9MPa7r h So $ #A#©t!rX,BrB%&©:f@i#, E 2 SI E 8 ft^t- 500° C 550°C, 20MPa, 30#© & A£ ttT\ % A# mm©#i'a#-?a##@A*%-p UL m\zt>tz K> };:&£;&*) ft Bfi£ * Pel ft A W ft S 7 / ^ y 9 A ft J: M. tc $ ft T v /Co $ bft&am?@*&ftJ;0, li$ftS:ii:t^ #8 ©^ A##^\ ©% ISit5iE4®J:)i;7ilun0lSf KA<(Bm$ftS^b-C&S6^X.TbftSo ft ?& -a T> e ' fgotfrtbfcS?, J&bftfco & a$t

-104- [B—2—33—6b

9 -Y h )V Diffusion bonding of fibre-reinforced aluminium (££)

C Ek &x 1 Load

Indenter

Matrix Matrix fibre

Fig. 1. Marshall fibre indent Fig. 2. Schematic diagram of method. shear jig.

Matrix Foil Matrix

Coppe r

Magnesium i-j 1.4

Oxygen

Distance from centre of joint (|im) Fig. 7.

Figs. 6 and 7. Hardness and EFMA across the 2124 composite joint . £ 6 izmt z

Zo

-105 CB—2—33—7a

(%X) 7 )l ^ ~ 7 M C MO> X >SR& ■- &j&a v K ©BBSS. 2X bJl (^) DEVELOPMENT OF ALUMINUM MATRIX COMPOSITES CONNECTING RODS.

F. Girot, ° P. Conchez-Boveytou, 11 A. Munoz, 2) J.Goni,2) 1) Laboratoire de Genie Mecanique, Laboratoire de Chimie du Solide, Universite Bordeaux. 2) Inasmet, Barrio Igara.

^r-7- K • carbon fiber •ceramic binder •3D finite element analysis •aluminum matrix composite (AMC) -alumina filler • preform manufacturing -mechanical property

[##] : AX yy—^HZTfr *\tiZ> C t (^) * ymmnm u £ $ -^mm c -YXXyXt^ F V y 7X #13$ (Ell)

co###X U 7 * -Ag&aXn -b 2. , 7)i^j-7^7 —SE^itoDM^t: ax x-(DE^i:b (M) (#D 650 MPa (?HMX (:#L250##) ^StiOToiiO- 160 GPa (VMM* lC*fU1003tff) •Vh'J'y 7 X#(Clt^#WM^%#. ^ /c±ET - ^ t: j; 6 uv F (DMW'rttetDtifzo • ^ttivm&^yfm* 2 m±.

3. iSSny K0EH- (3&5tWP£ES&) t3vsmmmmz&0 1. 7*V 7 A^(D^A0#rXo-bXBB3%. (IStHW:-02) 2. A^>y- , 7;i/^ ^■7-f ^-E£jt©«atft. 3. KEIt.

1. XU 7^- -AEiicD^®ir7n-bX^

ax yy-t$HZ7)i'^j- 7 -y 7—^JMr-S.

##&7^7?X

XU7^--A^#x mE#mi:ckOMMC

tb m Proc. of 5th Europian Conf. on Composite Materials, P.677

—106 — EB-2-3]-7b

hVl/ (^) DEVELOPMENT OF ALUMINUM MATRIX COMPOSITES CONNECTING RODS.

(El#)

Sample Binder : Binder : Additional Al-13%Si + 35% M40 Reference Water Filler Thermal fiber c

IS 20 100 20 : 40 no 375 130 1 A 20 100 20 : 40 375°C 14h 375 130 3S 20 100 20 : 60 no 495 160 3 A 20 100 20 : 60 375°C 14h 650 165 4 A 20 100 20 : 80 375°C 14h 300 140 5 A 10 100 10 : 20 375°C 14h 400 150 6S 10 100 10 : 40 no 600 165 6 A 10 100 10 : 40 375°C 14h 585 165

Composites properties for various preform conditions.

13(1 2 : Design of a carbon/alumimum connecting rod

^MMCtoSiaesvvr. yy-/7)\>5d-Kir

-107- [B-2-41SStt [B—2—4]—1 a

(%i) ON SUPERPLASTICITY IN SILICON CARBIDE REINFORCED ALUMINIUM COMPOSITES F;F S^

^r-9- F superplasticity, A1 -SiC composite, threshold stress, grain boundary, activation energy, diffusion creep,volume fraction dependence a b 2p«, *%*«©a 05. ##jai2 s>irs

sic^ibr ;u < x ^AS^OTtogrttHtC) r f % (7Xb%%# k So c AS##k UT^iSU 1 Of£#fco MX*> P#%? 0X0 IZ^Tfr-gtlfZo 300% ^6450%(D#@(D#a^im log a 0 = 3.4 log Vf + 2.37 (1) (2)jUC20VolWbWH-*fTS G,(Dio '^F^to U £ f C#iS@#td:^^+eT&S. In a 0 = -31 + 24778 /T (2) 0^-^^(DMm"e^i^mmm'en=2-3k T^,So ta UK (SSMJSTtin) 8^n(DtijbD*^6n (#^) So c:©ffi&3n;fc0^ftfptttti®aBE (i) m&mzizftbffifrommzm^T &mmx* EEtiES ic*hTS tt ( e kT/GDb) = A [(o-ob)/G] n (b/d)p a0«L#El&jJ. GLt-tf/u bttA-^-^nA dttlgli

A(j:^-e&So ^Svx7cEEtt jerf;Ftin=2h (/X So p=2£fcte3£-^;iSo £©Hfi¥$JrHn=2fc313 (laM) KJ/moKTDS'S^^^VF^-^^xTco nffili C(D##Cjo WT PM64-SiCp^2124Al-SiC viCD7s— *? L fzo U # (A# < (0 @ ^ 71/dF -142KJ/mol t: fcjjiDtz&b&Z Ojei/tl0nlli2f^>5 Fb^iSt/X, CobleStiSiCOEB^ V -i<7)?S hiSSUT^So LSWtJZt}%&Z>fz#)lZ -E>ftx^;F^-(i305, 300KJ/mol^||^LT VxS^ C(D d; o V hZtifzo Sk%R^TUSo Al-SiC#^#$4(DEE#C Fig. Hi 7 9 8 K ~C CO 2124A1-20Vo 196SiCw jbfu V F U 'y C#iS#^09iO y F£/KUT(/xSo i'E^^ns^msnSo SOMMEE 6 ^0^] o a u yc 2(Dn#C%oTWSo 10WPa(Df8^C6^'r #&Ti#$ftTVxSo Al-SiCiMA (7) & kl/Tk(7)M'*^yD y F ^Fig. 2C7]\^ ##(7)EE#C^^smm3 V F n-;Flig tlX V^So ZtlU 3 1 3 KJ/mol<£>n§M:x^ «7 f v y ^ % a ^ (7)^mr (D wm# o 7Fdr — ^ -^-X. /Co <£> <£ 7> (C,@xt>nSo EiA ^CDVFU'V^X ^mm^mm^Fig. ^ ^ a t)^7cCa6(D#A##0EE%Cd3 WT# Sfc&aifcSfcLT^So fiTUS. sa6 2o0)gJ^(7)#(d:7FV^

-108- [B—2—43—1b

ON SUPERPLASTICITY IN SILICON CARBIDE REINFORCED ALUMINIUM COMPOSITES

(2) (DJ: 0 : L S 2 o© nj|£'|£ o (Mahoney 6 M (C iSV ^/JxL/c) = #2c, -ttr, o u s wijr^>i$/u £ oizzoxo FD-;L,T& foilt *§0*0 < &6(;$L d(DL£ WEETJid: §LS^n§o fiTOtO Ei/'E^E^-C db 6 (B# ) CGcff'faK-fT&ao L&U

6 u e u ###3; U^U ^OE@ LtBEBTii&vx,

212t Al-20 vol. V. SiCw (STEPHENS .1. »l. (ref. 12) 10” STEPHENS et * (ref. 12) 798 K 212A AI - SICw i t7SeC , ■ 500*C j 20 vel. V. 4 Id” - • S25*C MAHONEY ANO GHOSH WIT) . PM «(. - SICp O S16*C - 10 vel.% A ■ A 516*C - 15 vel.% O 516-C - 20 vel.% ■ 10" ‘ 0 500*C - 10 vel.% A O ■ 313 kj/met H

10" _ A # (T . MPa oc \ C3 ♦ FIG. 1. A plot of i1/2 against the applied # stress. - vU * 401 0 / STEPHENS •» ai A 43)0*2/ 21UAI-SI Cw 6 Z_ f - «• • N HPa • &

» AD

a . 313 kj/a»( £D»

□DO

AO 4------01 |(T -(To ) . MPa

FIG. 3. Variation of temperature compensated strain rate with effective stress.

FIG. 2. The temperature dependence of strain rate at an effective stress of 10 MPa.

-109 CB—2—4]—2a

(%:&) A RHEOROGICAL VIEW OF HIGH-STRAIN-RATE SUPERPLASTICITY IN ALLOYS AND METAL-MATIRIX COMPOSITES f-r Hi/ 6 A k AMa#6## ic & W a gamm# m i% # o - y - M A

ft m Scripta Metallurgica et Materialia, Vol. 26, pp. 703-708, 1992 # # T. G. Nieht, J. Wadsworth*, T. Imai+(*Lockheed Missiles and Space Co. , Inc. , {Government Industrial Research Institute, Nagoya)

jp-9- K rheorogy,High-Strain-Rate superplasticity, non-Newtonian fluid, shear strain rate, tensile elongation, viscosity, strain rate sensitivity

H, *. 9%, 02, 81 , #fj*2 4 #IR6 4#1ii«

m^x Al-6. 5wt%Si££(D£Stof££$IJSl//co M tt^'l 02OSL< SjMT£ Cx MoontiY 0 OrT-ti-AEilScDMEa L -fz>zt%^Lx^z>o zm^mt\%'Mmm TU< "3*>#SiC%:pSa{t:Al-6. SwtXSiMMC ( tt (hsrs) tztfuznrA# 10, 2 Ox 3 0%SiC#?) <7)¥fit££?!lJ£ (mmc) , MA^t btzo znzom&mfr6m^ntz^\t tf^K'ifrcDtt'MvmzgZtlTgfzo mi* m2\Z^7K'£ftT^Z>o mi 6-f h s R s#&?aB?#s##ama*tfmmznzo ztizom&motirfrftm fzB±L-£tiTb't£b\ —ocofiETjOT&S C6#t)6Tx AAkSOXVolSiC^^em^ S R ##(0%i4#li0. 88i;0. 6 1 XhZ>0 (CM&£±,§,$fl (^jl Atm) 10XVoia20%VolSiC^^em^##(7)pfmd: ztxfoKi, & o— 0. 4080. 5 8T&5= Ztl^(Dpim± ^i#<— 10Vol%, 20Vol%, 30Vol%^r#eSiCi#A##C ii-7 h v y f o±-em#s3fi& 0. 6, 0. 48, 0. 39 ZtX&Zo ZCDl^SCCDBUMU^U i/ — (D 0 —Jj, e,5>6h s r sMm%mmirzz£iz$>z> mao. i 2x&z>o 0 -entiisiiEE-ttm, mwim#### (r- itif %Z£ tlZ>frt>X&Z>o 200-1000S-1) xm*>nx^% 0 c h v v?x\zh%> n6o h^nz^^m o 2tmimzjE trni&Ltt^o e-nst v\ (0. 3-0. 5) X&Z>o □ § 6o u 4 n v — ^ Hilii&ft^0it A/Sirf614 v ti £%mmitfn(Di&mzmm-r 77 = t / r (l) (T^-y-Ay^rlD^x yti-d-A/ v x y o ±L^>tifc&-r£ t, z z t ju- h >(7) crt<#m?a. 7?tj:-'^"e^o ZZX\ m = 1 - P c a n s

MoontilM&flWO. 40^ h%U&X #:#^W#(:*t%x ######/]'*(/'#

-110- LB-2—4]—2b

f ^ Hi/ (^^C) A RHEOROGICAL VIEW OF HIGH-STRAIN-RATE‘SUPERPLASTICITY IN ALLOYS AND METAL-MATIRIX COMPOSITES

tcommit, ttmvmmm. (%%##) Capillarity^^# <2 £ &V S #0 b&TjxUTt/^o Sifix Pharr £ Ashby It, £^L^

b * U < # Lfzo mK>£

♦ SiCp/2014 • shN4w/606i 600 " a SiCp/7475 O SbN4W/7064 • SbN4W/2124 • SUmg/6061

STRAIN RATE, s

Fig. 1 Elongation as a function of strain rate for several metal-matrix composites. (From Mabuchl et oi [11]) Table 1 HSRS Test Results and Conditions for Various Materials*

material test temp..°C solldus,eC strain rate, s"1 elong., % reference P SICw/2124 A1 625 502 0.3 -300 Nleh et aL 161 PSl3N4tw)/2124Al 525 502 0.2 -250 Imal et aL 1®I a Sl3N4(w)/7064 A1 525 -525 0.2 -260 Imal et aL 1^1 P Si3N4(w)/6061 A1 545 582 0.5 -450 Mabuchl et aL 1^1 IN 9021 475 495 1 -300 Nleh et aL U2) IN 9021 550 495 60 - 1260 Higashi et aL U®l IN 90211 475 495 2 -500 Bielcr et aL U31 MA SlC(p)/IN902 1 550 495 10 -500 Higashi et aL U®l 7475Al-0.7wt%Zr 520 <538 0.3 -900 Furushlro&Hori I®1 * Subscripts (w) and (p) denote whisker and particulate reinforcement, respectively.

30 vol% SIC

AI-6.5 wt% SI

20 vol% SIC

10 vol% SIC

Data from Moon [22]

1000 SHEAR RATE, a'1

Fig.2 Viscosity of Al-6.5wt%Sl alloy and its composites containing 10, 20, and 30 volume % SIC particulates (from Moon 122]).

-Ill- CB—2—43—3a

(SIX) #m-a##2o%g

* "f F )V (%]K) Superplastic Behavior in As-Extruded Al-Cu-Mg Alloy Matrix Composite with 20vol% Si3N4 particulate

M.Mabuchi,K.Higashi*,S .Wada*, S.Tanimura* m (Sf@«H) (Government Industrial Reserach Institute, Nagoya) (♦Department of Mechanical Engineering, College of Engineering, University of Osaka Prefecture)

superplasticity, aluminum matrix composite, Si3N4 particulate, dr - -7 - F Al-Cu-Mg alloy, hot extrusion, small grain size, high strain rate, the strain rate sensitivity, strain hardening behavior, free necking

0 rn:2 m:o ¥Jt:3 ##^#:12 mm ^

(##) #*:. lO-'s-'TO, 5 <90f *i$g&g -«fc, 0. 3 m± 2 o %&&&* j n( A 1 -c u -M g £&) mm&$}mwi&&?>titz£ t#t>frz0 ^fflAl-Cu-Mg-R^tS)S2 124 * tz. mmtzt ?<9#o (£#o) *m (%#i ^ ^TfrZb. 1 0-3- 1 0-2 s-'0t&V"ffr m ) %ffi|U £#Ofi2 0 0 %MTfc*b« fc fc 5 £ 7 K * ii * ft S U & T # S f£ ft&V'o CJifcL ttiS-i::#B1"S So — A # O li 3 9 0 MP a ^ ts m f$ # m si f Of j: 9 sof i o-5- i o-4 s -1 ?& fig 7 8 8 K, s, i o 2s of #.$g i o'3- i o s ±©*th'r»a«fli«*(?aiitt^«a u fc. tzo c^(iMA%m^3 A* tZo &-Dtztzib£% yLZiiZo #& L&e#*##&##&?%. fe&m a 3 o%0Mix<*tfzmistz&,mK0mm &0teW*mmbtztii%. I v\ T^fc, of #B U T S c £&t>frr> tz„ ttz. < * y * > tz lb £%tl Tfr& £ 0 & li MT z> fz„ 1 0 -3- WJb> C<7)0f^Ttd:Sfb^-fStiE5$fbA 1 0"2s - '<9#*#@Of »####?&, <> mm b©S^IH5MilO-2s-'m0l &0mm'ffr&8u§'$:&m%. ttttO. lV^'otzo -15. Of»ifi&<9** Bfl 6 $ *i /Co bu £ tbicM®} 1&0 0 1}? &&&.&#&#*$ iniu i o-2s-iJ^±(D^r»as^^To .3 Vk±0T>'ffrmg.S,3&ft&&&S>titz.

as # Scripts Metalluria et Materialia, 26 [8], 1269-1274 (1992)

-112- CB—2—4]—3b

SuperpJ astic Behavior in As- Extruded A .1 -Cu-Kg Alloy Matrix Composite with 20vo l# S:i 3N4 part iculate

Figure 2; A typical superplastic microstructure of the SijKap/Al-Cu-Mg composite annealed at 788 K for 1.8 ks.

Si3N4p/AI-Cu-Mg(2124) Composite Sl3N4^/AI-Cu-Mg(2124) Composite 6-0.1 788 K

TRUE STRAIN

Figure 3; Typical true stress-true strain curves for the SijNap/Al-Cu-Mg composite at strain rates from 10-3 to 1 s-' at 788 K.

STRAIN RATE, s ' Figure 4; The variation in flow stress (top) and elongation (bottom) for the Si3N4VAl-Cu-Mg composite at a fixed testing temperature of 788 K as a function of true strain rate.

Undeformed

788 K 4xl0- 2 s"1 830 %

% lb ^ # % -T R r- ^ lb T ;i/ r. ^ A ^ % A M ^ ^ ^ f h t

Figure 5: An example of the fractured specimen of the SigN^AI-Cu-Mg composite.

-113- tB-2-5]7n-fex£E19tt

CB—2—53—1 a

(#:%) 5 0 8 3 A 1 - S i CpWS«^#SrofiS6i:'|4HlcBLK-t^r=1iIlXtD

# 'i V JV Effect of hot working on the microstoructure and properties of a cast 5083 Al-SiC,, metal matrix composite

ft A Scripts Metalluria et Materialia, 24 [7], 1233-1238 (1990)

# # I. D, C. F. T, T. R. M (Department of Mechanical Engineering Naval (Bfmmn Postgraduate School Monterey , California 93943)

4-9- K metal matrix composite, SiC particle, hot working, hot forging, intermetallie, recrystallization, equiaxed subgrain, concentration

0, *, 9%, SeXttroS 0:1 8:0 ^*:8 ##%!#: 2 5 8>ES

05, 6ti, Xy ?• >T-<7)6tp;#t:an 32«-6-#roE«$65*5:m?„ 05® flfttrofeffltt, Mgc#/u^#eK#T&6. s 4 tf / of#C L 6. i C$SE©#< U, Vl-U'V^^t-it13i*8> 3l£#< (DMMC(DE;B£k4 Hg|^' 0 BrotoXE-S- ftxtt, -6ro4: ■) 4-SttlBia®®8W&-t'„ 3$ h u v j: vm#k#»*LTV'S„ 0 5 i; 6fflfctR«, 0 (Al, Mgs) P/M^mLjc^^W^-ycNz^ (T tox#(4At'®yer-$5.„ tox#mg#^, s MP) kL #<(D#^2#Cj:oTMMC(D rifi®'ofes #R#T44, ESStlfc+h^jjg ^m(D8 i CR?% 1 0%mtDL^^# #5a#o'#/i,Xj#toLX=. kL ^mo%CJ:UO. 0 7 5 X 0. 0 2 #K#ktox#-&-#m? h U v 5 X 0. 0 2 5m(7)Ma^V^h^#[mL Htt, WaltoX (C £> V x T 51Sg& "7 h U V ^X(D /%. 2: $®6Sr L£„ 6 2%k9 1%CEm^^,yz#, 4 2 5X, 2 4#|iam7gW:&mL&. o-;wtom-tN' ^A/T-tD-y-^esesroii EBilroSm, A 1 -Mgir&T"$ge£;h.T t'-S, A'4UtoXUfc#(7)fi®T*t4, iHSIOfc 3cD*S4'®alSo))$S tolB, *Pa14J$tlfi*T-CDffiEttESAtai5R ^#s i cRf^m&b 6##x&6. tox#A#x#/c»^Kamm P) dt <5 ;b\ ^^iJOX^cd: U^fbMCD^#^#tttt, 4 2 5"C, 0. saeroro^SifeT-lbiKto'S El 6 it, $6C^fW1Emr^^4U(D^# $LTV'4„ El 3, 4L#^#kADX B9tt, #K#ktoxm-�#A, §!*» u< s, ^Peitoxcoittott, mm 44cDdUt!U;i, fflt&lifalzfa-D TEES 4m&#toA(M6A&. K*i:^l5E5ast4, #& it, gi#mkmfb##mx%;Bi:z6?)Tv\ PalETlroiitotc^u r $r*& •£> „ m 6. Ei4(D91 m ttroiitoH, 2*#m#l-B-, —'^f&cS itii-F-7t\9f KP^cdx'f 4 n StPifitoXtcJ; u 5-7 D/fD^f-f -a.VKE|A| ^7(D^<^^^itTn6. xmCJ:6M KA%< 4o/%CC a#A64i.y=. gkatt, v4'4^>cLA(7)^#^ 6 L 5a*roiitot4TaistLfcA<, *W9ST-ttiSA , #mm#(D7 h U v 4A'ofc„ U^zZ v\6. —114 — CB—2—53—1b

Effect of hot working on the microstructure apd properties of a cast 5083 Al—SiCP metal matrix composite

Figure 7 : TEM micrograph of the as-received MMC Figure 8 : TEM micrograph of the 91 pet. reduced MMC revealing an ill-defined subgrain structure revealing a well-defined subgrain structure with very high dislocation density with relatively low dislocation density.

Jg 150

% Elongation

Bt M tc felt-s Mitt3 Figure 9 : % Total Hot Reduction

Yield strength (YS), ultimate tensile strength (UTS) and percent elongation to failure as a function of percent hot-work.

-115- CB—2—5]—2a

(ft ^ >/i:«kOftKLfcS i C & f 3# ^7;K - 7 A % ^ ##©®E##% 9 4 h Jl (3550 Superplastic behavior in a lechanically alloyed a 1uiidub composite reinforced with SiC particulates

tti & Scripts Metallugica et Materialia,Vol.25,No.2,1992, ppl85~190

m # K. Higashi, T. Okada, T. Mukai, S. Tanimura, T. G. Nieht and J. Wadsworth* (College of Engineering.Department of Mechanical Engineering, Uni­ versity of Osaka Pre..Mozu-umemachi,0saka591,Japan/iLockheed Res. and Development Division,3251 Hanover Str.,Palo Aito, CA 94304,USA.

+ — 7 — K superplastic behavior,mechanical alloying,SiC particulates, IN 9021aluminum,"positive exponent”superp1asticity

El • m • EI : 3 m. : o : 1 : 13 #2R# ±E

[ESI flu l 5 ~ i o o s -'©ismasmm-?#) 5 0 0 y *-*;VTn^f 1 5 % & © # Cf A< ft b tl T l' So 6 1 0 % © vol. % © Si C& E £ £ &' IN9021 T ;U ; - 7 A te *> 5 s-‘©issmasm-csB^ lt v'*o c n % A##© 8 2 3 KK fc # * 313SSB&HJS b©Mm(i, iN902i©@mm&mck D ns L, 5 - 1 0 0 S “CDliiaK^ It U 6 T ^iamtir^^: So 5 0 0%J21±©#C5^%#$-(t, SiCK? tzfzL, SiC&Etc J; S t*&##4©tt£s v 6 a a % u IN9021©®E%K# x - * i ifc tSSE h U -y ?xSft©IN9 021-C©$*%<£;t>> # O' Lx, It /Jn $ Vo ## b ti> c©#AT^m^mT©#m^ Ei 3 & "positive exponent"itE5Bti'£ PF A/ 7? V* So mmigm-e © 0. 03©#% 6 E # Cf A< ft b tl S#%(cM^L/cm#A<0.5©^/:"3©#% m&ttmt, tii-iihXujy 7 \z&*) i)< £ s c 1t> A' So c © {& m m m m x &, Al-4. OCu-1. 5Mg-l. 1C-0. 80(wt% ) © W t5 IN9 021AA1C 15vol. %©SiC*&E&^% V So 15vol. % SiCp/IN9021tt&W t v h 'J $ it12. 7bij&' b 1. 7mm tc # HE v 7 X 1N9021 6 t)lc#g©EttES^$l^^ SU $ lmm£ Lfz L T u S Ak iE & © T & S = m^mmsmrn, #g4mm6 U r v So es^Ale5p^ic^^* r% mam i o < & So :nit 6. mM?©G#©#mic#]t-s#a&%i$m El 1 kL *W$LX'& b tlfc 15vol. %SiCp/ «t as: bta'fcfcti So ttz, ism^mffit] 1N9021© mis ts - mmfimx to sD mamT T©Em#m©#mLTusA<, sic^f©

V S0 £ f:v I/M7475© £ 7 t£ & E ft t£ ® E >/$©sm«Stti b (C # # f S $ Er £X(DtiL& ;&3A<& So @?S^##%-e©ESy gizm^t z ±% z. zn zijaxmitmML&B i6 b tl •So tt^Rcf«tt^^omamftfiFiti:oi't El 4 (iK#%©##^%?&So 5 ~ E! 2 & [5 3 CiiLfco 1 0 0 s-’oiimiimiiT'i^ * ? * > 7 E tc S e L /c IN9021&&7?© H — SBiam i>nz nr, ^5 0 o%&©E;t#cfA<#b C © "7 h tl T So u v 9 x&&x it, 5 o s -'©lamam-e x y>, "positive exponent”® Et£ (t /J\ $ <. i# t fit ffi o' tf b tl So

—116 — CB—2—53—2b

9 -4 h JU Superplastic behavior in a mechanically alloyed aluminum composite (3£X) reinforced with SiC particulates

[Ek 3k

15 Vom SlCp/1N9021 Composite TEST TEMPERATURE 623 K

TRUE STRAIN Figure 1: True stress-true strain curves for the mechanically alloyed S!Cp/IN9021 aluminum composite.

TEST TEMPERATURE 823 K

15 VoN* SICp/lN9021 Composite IN9021 Alloy ■Iui-|i>ui>iii|tiii|iiii|liii|Mii|iiu;i:i),ii• > ’"100" '» ‘ 1st Figure 4: Examples of the fractured specimens of SlCp/IN9021 composite O 10 deformed at various strain rates at 823 K. Ruler in mm units.

STRAIN RATE, s ' Figure 2: Elongation vs strain rate for SlCp/IN9021 composite and IN9021 alloy.

: TEST TEMPERATURE 823 K c-0.1 • 15 Vol% SICpAN9021 Composite „/ o IN9021 Alloy tr 10 y - o' m«0.S ___ 8'°^*

i o" 10" i ow STRAIN RATE, a Figure 3: True stress vs strain rate for StCp/IN902 1 composite and IN9021 alloy. Wx & y * — > y tc fp mttiS i c & ^ SMI 5 ~ 1 0 0 S “OStotili

-117- CB—2—53—3a

(»£) »aa5*tfffasi/jDx$*ifc806i ai -ai 2o , 7F©»-{/a:a»%ai: * 5 am© »Wb £ 'i mx) MICROSTRUCTURAL REFINEMENT BY THERMOMECHANICAL TREATMENT OF A CAST AND EXTRUDED 6061 A1-A120, COMPOSITE

a # Scripta METALLURGICA et MATERIALS, Vol. 25, (1991), P.853-858 * # P.N.Kalu, T.R.McNeiley (SrBSH) (Dept.of Mech.Eng. Naval Postgraduate School)

^—17— ^ aluminum-matrix composite, 6061, AI2O3 particulate, microstructure, cast composite, extruded composite, thermomechanical processing(IMP)

m. »x. 0: s, m: 0, 9 %: 0, : 20 ##R# s* am P/M 9!t5£U;feffi£: c©7' i/m acKitmasfts. ##%#©%&(:, c nMT?©SJ®rM>m~fc©lfc«%Fig.7aR:jR-ro -ikMXHtiZck#26 9. «i9titf"»j;-grr5= c©E®Hb©(g| 6i(i. ffi asterni. ttamfe'-fctfffffliiDistifceo vtm 61 Al-Al20stt£tm©Hya=;M 7'BM (IMP) ffl mb J:5S©i: 465.647,5= acistj’ 55»BE«!SE-fb**iE6<)(:Me V fc. ^®sk*m-fr© M#&Fig.7b £5*1% C©f-»#6-12^m©% 8 $Stoi$ f©#^. 2(W©Jai®SrS-rS. «§$#«. «SI~12/ii©7Kf8f?' 1043 «' Xtm» #8 #&^©bb#!h ©M# &Fig 7hti. 7H7>x©igK-fb©7i©f;:560°c©#§ BM£E$SK5-

AlzO.^f &10 vol* ^TTSttStm. *P? #mMKK#rr«# (Fig. 2a) . #M#*U l:j;9%#^4T6#. -gP@I?T-S (Fig.2b) . «t^«C^©BMJ£j®©K*Sr. Pig.3kPig.4 Kift-f. 7"DM ©cfJH®Pit?tt*(g^fe«! 1?. * 7i'm*-©

WA"ttS‘(b*<. 64b% v\ m-mtgmomtzm&vk (fie.5 ~ e) „ MBSPSTti:. Fig.5aK5x-f F77F *#r**#* rw> 4/ #itiELT<5 (Fig.5b) . Tfi’l C© BStii5bb-&v'-= ##77-r?K. m##m^'W7#*#et: k t (Fig. 6) = 7"H7»-fX"(i. #e© volXA:A:%K#$<**.

—118 — CB—2—5]—3b fij hsu MX) MICROSTRUCTURAL REFINEMENT BY THERMOMECHANICAL TREATMENT OF A CAST AND EXTRUDED 6061 A1-A120, COMPOSITE

Figure 1. A schematic of the sequence of rolling posses Illustrating the accumulation of strain during the vara rolling. Rolling temperatures and annealing times between passes are indicated.

Figure 2. Optical micrographs of (a) , an as-cast 10 vel. pet. Al*0, material and (b), a cast and extruded 15 vel. pet. Al,0, material. Arrows In (b) indicate particle clusters remaining after extrusion of Figure 5. Micrographs in polarised light from electrolytically etched samples these comoosltes. of the 10 vol. pet. material (a), lwdlmtely after the third rolling pass and (b), with 30 min annealing after the third pass. Here,

Figure 3. Optical micrographs of 10 vol. pet. material after three rolling passes («*.,,* - 3.1) (a), at a higher magnification and (b). at a lever magnification, shoving clustering is still evident at higher magnification.

<*> (b>

Figure 7. In (a), the grain sice attained In fully processed material is rigx Optical micrographs of 10 vol. pet. material at the conclusion of similar to that predicted by PSN theory (9.19); (b), the dependence rolling (*(,;,( - 3.1) . (a), at a higher magnification and (b), at of PSN on reduction and particle size for Al-Sl (19) shoving that a lover magnification. Increased temperature Increases the reduction necessary for PIN.

kUT. LTM'W: ftkit

rtgv tge of particles stimulating nucleic ton of recryscalllzatlen v as the number of rolling passes. Nucleaeton commences after thi passes (

-119 - [B-2-5]-4a

(fa#) £ d1 bib (AS) EFFECT OF COLD WORK ON THE RECRYSTALLIZED GRAIN SIZE IN A PARTICLE- REINFORCED ALUMINUM ALLOY ft A Scripta METALLURGY et MATERIALS, Vol.27, (1992), p.549-554 3F # G.M.Vyletel, P.E.Krajewski, D.C.Van Aken, J.W.Jones, J.E.Allison «r**B8) (Dept.of Mat. Sci.and Eng. ,The University of Michigan) ^r—7— K grain size control, cold work, recrystallization , particulate reinforced metal matrix composite, pinning model, TiC, 2219 aluminium alloy 0. m. ¥*. ##£«©» 0 : 2, m: 3, 9%: 0, ##%R: 27 »|R# ** Sffi

i&j-iS.-itTA• */'iwrwm~ 3>hn-)toE%i* TableUIiCtt. Zener, Hillert, Anderson et. ai. wjcmH'U' > xr • -j-'j/i" **>>•- rwm~a i,4-y»47‘ "©its m#+'y '&mzH ® MSrznbfc, r r7htc * if &t• >;^"5a*tr o t'■x Sfft b fc o * %rw ^"n-xlflitKBSfS'FSa tf'A hbbKf SChl: *E%tr*'()■$. J$MJBX**bfciK-?-3l-fbrAU

Zener : D=(4/3)r/f (1) 4JUR3>*Y'7hC*5l»'Tt, l®#iDXSm±X Hillert : D=3.6r/f1/3 (2) iOX$§r© t m *. h ttSMti. 2219 volSto A5- iDXg#i6;k-f 5 2:tS»©;k8fc5M\ #X TiC#f (%# 1.7#»m) *£«3-frfcX'*'*~3r,F T&6. tHWXiSMctt. 6.28*Cu,0.3*MnT*y. 8xl0 8 /mr>WMWf Zr, V fct8siDS*VtWj: bunk**' #m«li 30^m T tx 3>i6Y'"7Ki. A MAX RSDKAW'T XD™j£TSl *y. CCDffifi, Jfffib SStv/i = iDX-^#**b«)i©lIA:%-SS(b, 3>*T7h $6tc5632o T 535°C©@MH&il£24hr ru&ws e'x>r«tt*a-rj)©A:#*.e.#i«. V-M-fX ©ffl(£, Anderson iK#*sbtt. ai2cu ©#raj*>#tt et.al. ©tf")l©MH8b-g(bA:= Table Oi'b 5fc»(r53S°CWofc„ g6#fc*bBe«ti 100, ^SAiC. TiC«b?tt9y*"A£#-m*<. 9~ 300,1000mini bXi,

S^SfcgSfflm. 535°C,lOOOmin.©£#?# Fig.i ^6^^5Wli, JtlXM 3.0* *$£: lW±T#»6,A/i„ inis 3.0%k5.0*©MT jmttrwB-x^xb, idxs»% 3.o*(ct 530^m©rK'm"fc*ofc. 9~UV >\~W')

-120- [B—2—5]—4b t-iYfr ($?£) EFFECT OF COLD WORK ON THE RECRYSTALLIZED GRAIN SIZE IN A PARTICLE- REINFORCED ALUMINUM ALLOY

Figure 1. The effect of cold work on the rccrystallizcd grain size in XD™ 2219/TiC/15p. The grain structures resulting from a) 3.01%, b) 5.08%, c) 16.77% cold work are shown above.

1 .Grain density H every TiC panicle nucleated a recrystallxed grain: E 1 Table 11. Number of Particles per mm of Grain E in 1 Boundary as a Function of Cold Work c "5 1 Grain density assuming panicle pinning Cold Work # of particles / mm o> (%) of grain boundary 1 0.00 60.4 ± 6.29 "35 1 1.02 68.7 ± 6.90 6)c 3.01 69.1 ± 11.8 o 1 Thermal History: ! 6.10 48.8 ±6.14 _C re So* Tr 535* C, 240 min 16.77 68.2 ± 4.08 1 Cold Holed ] O Be-So*Tr 535* C. 1000m* ■ Random Line 33.1 ±3.13 1 density appeared to be relatively constant with respect to grain size or amount of cold work. % Cold Work

Figure 2. The effect of cold work on the grain density in XD™ 2219/TiC/I5p. Also shown are the values assuming every TiC panicle nucleated a new grain and assuming panicle pinning.

Table III. Limiting Grain Sizes Predicted by Various Pinning Models

Model Formula Grain Size (pm) 95% Conf. Level BiM A.S-extruded — 30.71 ±2.12 16.8% Cold Worked — 26.15 ±3.67 ©SfSET&O. LT# 4r/3f 15.43 ±1.38 Hillert 3.6r/flO 11.55 ±0.39 Anderson et. aL 9.0r/|9JI 27.62 ±1.87

-121- CB—2—53—5a

(too r a- 5 - 7 a iz u /;^ss?M/iW4fflfiffiaa:afig& !)3'Stt©atst aiMsac^f f 4" h;i/ (^) THE EFFECT OF THERMOMECHANICAL PROCESSING ON THE STRUCTURE AND MECHANICAL PROPERTIES OF AN ALUMINUM BASED METAL MATRIX COMPOSITE

## (pm«) C. Styles 11 , S.M. Flitcroft21, P. J. Gregson 11 & P. D. Pitcher21 f1) Engineering Materials, University of Southampton 1 l2) Materials and Structures Royal Aerospace Establishment J

* —7— K • Metal Matrix Composite • Mechanical Properties • Particle • Thermomechanical Treatment • SiC • Micro Structure Eh 3 5 1 4

(±f&) 20wt% SiCp/2124 (;oi'T©iOX.«Iifc ? • mEEtt (Route hi) : wmt

(i) *©£$ • «s©;8f*7x©S©i#ttr6]E. r. Msmmi:z o at*®© 9 1© < < & 9 . t=e$ 0.2% Bto>500MPa. #[F>3% e*«l Jn USilW'T 5. © © W4littI5H W *si*tx (^S) • %mfi@©$iim*:m%ai:%KEa©m*6j3tt-c oJ|g(Route I,II) (1) (SS* • (KFalEiEW© Ftyfflffili. * —A- • ©y XfflScfc 9 20wt%SiCp/2124 (BP Metal Composite?!!® ^sfi-tt-r x©r#©(5*\ aesaei© =t-s3®-ft*! • SiC fits : 3 urn • K ?i : P/M iiT* 5mm* ®6y%fB& • ME®m Msms-ett@m»sv%s»/i*. m «»*+#& CSTtfcttJ; 0 . (Fig. 6) (2) gMuteaa • Msr K#T©mMEa#©m*m#e©(a]±(j:. a 5mmt©(SM'fe Fig. HCt/X 3 iS 0 ©XllllT 2mmt fiE©£*F=‘Hfc;irW$ CSTtt«©B#J: 0 fc/J'S < & tcEffi. f©#. Fig.2©^)iitiltttt. -oT©-5©i:tCt)J:-5. i, n • MEEtili. ©%*, % Fl/yf#©^a*#<. £ tilting <&.5„ 0) irnmz ttmys tem) 3l?giS®S (BS-A4 tC*K5 : jSBSlfg)

(1) @$E8$ (Fig. 3) • VbXEM&f&mm (Route I. II) : #$Aam*$Tfi Stil, Il-tn-fil 3~4|im, 30~40»m.

iti ft Scripta Metallurgia et Materialia, 25 [8] (1992),1833-1838

-122- CB—2—51—5b

HI/ THE EFFECT OF THERMOMECHANICAL PROCESSING ON THE STRUCTURE AND MECHANICAL PROPERTIES OF AN ALUMINUM BASED METAL MATRIX COMPOSITE

Figure 1 Holing schedules employed to produce 2im sheet in 2124 l*K. Figure 2 Final solution treatment employed on 2im sheet from each rolling schedule.

HOT ROLL TO 2mm SHEET Bran plate

ROUTE(III)

COLD ROLL COLD ROLL

THERMAL NATURALLY NATURALLY TREATMENT II AGED AGED

COLD ROLL COLD ROLL CST * Conventional Solution Treatment. MST * Modified Solution Treatment.

2im SHEET 2nm SHEET

Figure 6 Mechanical property data from each rolling schedule and final solution treatment.

ttz. $es®

-123- 3$ t> y ic

f- • %#&*#.-& MR## (NEDO) CDrjg*ObirT\ ff$E5fc&5f%«M £li b AM

#*&© t as* 5r#rii»rs/cNED0$E»* • ra^y-S$rEBS«©E5EM

R GS86¥RSffiSliti-»ISK*MR)J ®¥)$4#E rgA M$gf5£j ®j$$6Sj55;LT. M#*&©c:iSKi:#b3 63m:Wc^/cc

SS-^/critSirrasbiry L, HATS^^btea^Lifelf 5RSX'*5o

«fflttJnxa*®affl * I it Uffi-&W»©)ffiBR#*MR b J:-5 t-r 5 c: © 7"n y X ?

E#4-m? u, -e©$EfeSw #*#^-e©xg^%K#b/cc© is-s-sk *@fl-sirv'^t J'*:ynyx ? EisaotxasistEtni'tjs %$©m©m%

wattA

s«av

$ s fi I ® |p