And Insulin Secretion (Blue Line) Patterns in a Person Without Diabetes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Critical Appraisal of the Role of Insulin Analogues in the Management of Diabetes Mellitus Ralph Oiknine, Marla Bernbaum and Arshag D
Drugs 2005; 65 (3): 325-340 REVIEW ARTICLE 0012-6667/05/0003-0325/$39.95/0 2005 Adis Data Information BV. All rights reserved. A Critical Appraisal of the Role of Insulin Analogues in the Management of Diabetes Mellitus Ralph Oiknine, Marla Bernbaum and Arshag D. Mooradian Division of Endocrinology, Department of Internal Medicine, Diabetes, and Metabolism, St Louis University School of Medicine, St Louis, Missouri, USA Contents Abstract ....................................................................................325 1. Physiology of Insulin Secretion .............................................................326 2. Conventional Insulin Preparations ..........................................................327 3. Insulin Analogues ........................................................................328 3.1 Rapid-Acting Insulin Analogues .......................................................328 3.1.1 Insulin Lispro ...................................................................328 3.1.2 Insulin Aspart ..................................................................329 3.1.3 Insulin Glulisine .................................................................329 3.1.4 Clinical Utility of Rapid-Acting Insulin Analogues ...................................330 3.2 Premixed Insulins and Insulin Analogues ................................................331 3.3 Basal Insulin Analogues ...............................................................331 3.3.1 Insulin Glargine ................................................................331 -
Performance of the Insulin-Only Ilet Bionic Pancreas and The
e118 Diabetes Care Volume 44, June 2021 Performance of the Insulin-Only Luz E. Castellanos,1 Courtney A. Balliro,1 Jordan S. Sherwood,1 Rabab Jafri,1 iLet Bionic Pancreas and the Mallory A. Hillard,1 Evelyn Greaux,1 Rajendranath Selagamsetty,2 Hui Zheng,3 Bihormonal iLet Using Firas H. El-Khatib,2 Edward R. Damiano,2,4 and Dasiglucagon in Adults With Type Steven J. Russell1 1 Diabetes in a Home-Use Setting Diabetes Care 2021;44:e118–e120 | https://doi.org/10.2337/dc20-1086 Reductions in blood glucose levels in with insulin lispro (Eli Lilly) or aspart (Table 1). The mean CGM glucose and people with diabetes are often achieved (Novo Nordisk), the bihormonal iLet for time in range (70–180 mg/dL) were 149 at the expense of increased hypoglyce- 7dayswithdasiglucagon(4mg/mL) ±13mg/dLand72±8%,respectively,in mia. A novel approach is to automati- and insulin lispro or aspart, or both, us- the insulin-only period, and 139 ± 11 cally deliver microdose glucagon when ing the same glucose target (110 mg/ mg/dL and 79 ± 9%, respectively, in the automation of insulin delivery alone is dL), in random order. There were no re- bihormonal period. The mean daily car- not sufficient to prevent hypoglycemia. strictions on diet or exercise. The prima- bohydrates consumed to prevent or The approach requires a bihormonal de- ry outcomes were prespecified iLet treat hypoglycemia were 16 ± 13 g and vice and a stable form of glucagon or operational thresholds. The key second- 18 ± 21 g in the insulin-only and bihor- glucagon analog. -
Byetta (Injection Pen) Usage & Safety Guide
Byetta (Injection Pen) Usage & Safety Guide - Drugs.com 04/07/2015 Tubeless Insulin Pump Tubeless, Reliable, Safe. Try The OmniPod®. Sign-Up For A Demo Kit! Browse all medications A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Advanced Search Phonetic Search Drugs A-Z Pill Identifier Interactions Checker News Health Professionals Q & A Mednotes Apps Home → Conditions → Diabetes, Type 2 → Byetta Print Share Sign In or Register Byetta Related Information Availability Pregnancy Category Generic Name: exenatide (Byetta) (ex EN a tide) Prescription only Risk cannot be ruled out Brand Names: Byetta Prefilled Pen CSA Schedule Approval History Not a controlled drug FDA approved 2009 Overview Side Effects Dosage Interactions For Professionals More Reviews Average User Rating Prostate Cancer Stages 64 User Reviews 8.3 Rate it! See the Progression of Stages for Prostate Cancer. Get Expert Info Drug Class Incretin mimetics What is Byetta? Tubeless Byetta (exenatide) is an injectable diabetes Related Drugs medicine that helps control blood sugar levels . This medication helps Diabetes, Type 2 Insulin metformin your pancreas produce insulin more efficiently. insulin aspart Byetta is a short-acting form of exenatide. Januvia Pump Byetta is used to treat type 2 diabetes. Other glipizide Tubeless, diabetes medicines are sometimes used in glimepiride combination with Byetta if needed. Lantus Reliable, Invokana This medication guide provides information Victoza Safe. Try about the Byetta brand of exenatide. Bydureon glyburide is another brand of exenatide that is not Levemir The covered in this medication guide. -
Effective Switch from Twice-Daily Pre-Mixed Insulin 50/50 to Liraglutide to Achieve a Good Glycemic Control in Type 2 Diabetes
Elmer ress Case Report J Med Cases • 2011;2(2):76-80 Effective Switch From Twice-Daily Pre-Mixed Insulin 50/50 to Liraglutide to Achieve a Good Glycemic Control in Type 2 Diabetes Hidekatsu Yanaia, c, Taro Yoshimia, Ritsuko Hondab such gastrointestinal hormones. GLP-1 is produced mainly Abstract by L-cells in the ileum. GLP-1 is released into the blood from intestinal L-cells in response to meal ingestion, and GLP-1 The glucagon-like peptide 1 (GLP-1) stimulates insulin secretion stimulates insulin secretion from pancreatic β-cells in a glu- from pancreatic β-cells in a glucose-dependent manner. Therapeu- cose-dependent manner [1]. GLP-1 slows gastric emptying, tic strategies for type 2 diabetes mellitus are focused on the use which may aid weight loss, and inhibits glucagon release of GLP-1 analogues. Liraglutide, an acylated analogue of human from the pancreatic α-cells [1], improving insulin sensitivity. GLP-1, has been introduced in Japan in 2010. We will show a Therefore, therapeutic strategies for type 2 diabetes mel- 70-year-old woman with type 2 diabetes mellitus achieving a good litus are focused on the use of GLP-1 analogues. Exenatide glycemic control by switching from twice-daily pre-mixed insulin 50/50 to liraglutide. Measurements of plasma glucose and serum was introduced to the market in the United States in 2005 C-peptide levels before and after each meal ingestion and daily uri- and in Europe in 2007. Liraglutide has been introduced to nary C-peptide levels suggested that liraglutide ameliorates glucose the market in Europe in 2009 and in the United States and metabolism mainly not by the glucose-dependent insulinotropic Japan in 2010 [2]. -
Study Protocol
CLINICAL TRIAL REPORT ZP4207-17086 (ZEA-DNK-02170) 16.1 TRIAL INFORMATION 16.1.1 PROTOCOL AND PROTOCOL AMENDMENTS This appendix includes Document Date, Version Clinical trial protocol Version 1.0, 08 June 2018 (valid in Slovenia and the USA) Version 3.0, 08 January 2019 (valid in Germany) Section 16.1.1: Protocol and Protocol Amendments Clinical Trial Protocol, final version 1.0 ZP4207-17086 (ZEA-DNK-02170) Clinical Trial Protocol A phase 3, randomized, double-blind, placebo- and active-controlled, parallel-arm trial to assess the efficacy, safety, and pharmacokinetics of dasiglucagon relative to placebo and GlucaGen® when administered as a rescue therapy for severe hypoglycemia in children with T1DM treated with insulin Sponsor code: ZP4207-17086 Synteract: ZEA-DNK-02170 EudraCT number: 2018-000892-33 Coordinating investigator: Prof. Dr. med. Thomas Danne Allgemeine Kinderheilkunde Diabetologie, Endokrinologie, Klinische Forschung Diabeteszentrum für Kinder und Jugendliche AUF DER BULT Kinder- und Jugendkrankenhaus Janusz-Korczak-Allee 12 30173 Hannover Germany Sponsor: Zealand Pharma A/S Smedeland 36 2600 Glostrup, Copenhagen Denmark Version: final version 1.0 Date: 08 June 2018 GCP statement This trial will be performed in compliance with Good Clinical Practice, the Declaration of Helsinki (with amendments) and local legal and regulatory requirements. 08 June 2018 CONFIDENTIAL Page 1/55 Zealand Pharma A/S ClinicalTrial Prolocol, final ve¡sion 1.0 zP 42A7 -1 7 A 86 (ZEA-DN K-02 1 L Slgnature¡ and agreoment wlth protocot Tltle: phase A 3, ¡andomized, double-blind, placebo- and aclivg-controlled, parallel-arm trial to assess the efficac¡ safety, and pharmacoítinetics of dasiglucagon rela¡ve to placebo and GlucaGeno when edministered as a rescue thêrapy for sevãre triposivcemia ¡n children w¡th TlDM treated with insulin we, the undersigned, agroe to conduct lhls trlal according to lhe Trlal protocol. -
Inpatient Care | Lantus (Insulin Glargine Injection) 100 Units/Ml
For noncritically ill hospitalized patients with diabetes Lantus® as part of a basal-prandial dosing regimen ARA basal-prandialBBIT 2 BASAL-PRA dosing NDoptionIAL forDOS nonintensiveING care inpatients with type 2 diabetes from the RABBIT 2 Study1,a A basal-prandial dosing option for inpatients with type 2 diabetes from the RABBIT 2 Study 31 Calculate total daily dose based Total daily dose on BG and weight at the time of • For BG 140-200 mg/dL, use 0.4 Units/kg admission • For BG 201-400 mg/dL, use 0.5 Units/kg Dose administration Divide the calculated dose into basal and prandial components • Administer 50% of daily dose as basal insulin • Administer the other 50% as rapid-acting prandial 50:50 insulin divided into 3 mealtime injections basal prandial Dose administration Monitor BG, add supplemental • If fasting or mean BG during the day >140 mg/dL, increase basal insulin dose by 20% rapid-acting insulin, and adjust doses as needed • If fasting and premeal BG >140 mg/dL, add supplemental rapid-acting insulin • If BG <70 mg/dL, reduce basal insulin dose by 20% • Hold prandial insulin doses in patients not eating RABBIT 2 was a multicenter, prospective, open-label, randomized study (N=130) to compare the efficacy of a basal-prandial regimen of insulin glargine + insulin glulisine with SSI monotherapy (regular human insulin) in insulin-naive nonsurgical patients aged 18 to 80 years with type 2 diabetes. Patients in the basal-prandial group received glargine once daily and glulisine before meals. SSI was given 4 times per Aday basal-prandialfor BG >140 mg/dL. -
What to Do After Basal Insulin
BASALINSULIN What to Do After Basal Insulin 3 Treatment Strategies for Type 2 Diabetes These strategies can help you optimize glucose control in your patient with type 2 diabetes when basal insulin alone is insufficient. Lubaina Presswala, DO, Jay Shubrook, DO, FAAFP, FACOFP, BC-ADM iabetes mellitus is a complex, progressive disease that af- Practice fects every primary care provider’s practice. Major diabe- recommendations tes organizations recommend that treatment be ongoing • Intensify diabetes treatment D and progressive in order to control the disease. The American Dia- for patients who have a normal betes Association (ADA), the European Association for the Study fasting glucose but an A1C > 7% of Diabetes (EASD), and the American Association of Clinical En- and daytime hyperglycemia, and for those who are not at goal docrinologists recommend that patients be assessed every two to despite basal insulin doses three months after diagnosis and that treatment should be intensi- 1,2 > 0.5 U/kg/d. B fied if the patient is not meeting treatment goals. Using this ap- • Consider intensifying diabetes proach, all people with type 2 diabetes could be on insulin one management beyond basal insulin year after diagnosis.1,2 therapy by adding a glucagon-like While many clinicians have become comfortable with using peptide 1 receptor agonist, insulin once-daily basal insulin, such as glargine or detemir, what to do prior to one meal each day, or after basal insulin is much more complex. This review explains insulin prior to all meals. C three strategies to consider when basal insulin alone isn’t enough. -
Changing Lives with Next Generation Peptide Therapeutics
Changing lives with next generation peptide therapeutics Zealand Pharma Corporate Presentation May 2019 Forward-looking statements This presentation contains information pertaining to Zealand Pharma A/S (“Zealand"). Neither Zealand nor its management, directors, employees or representatives make any representation or warranty, express or implied, as to the accuracy or completeness of any of the information contained in this presentation or any other information transmitted or made available to the viewer or recipient hereof, whether communicated in written or oral form. This presentation does not constitute or form part of, and should not be construed as, an offer to sell or issue or the solicitation of an offer to buy or acquire Zealand securities, in any jurisdiction, or an inducement to enter into investment activity, nor shall there be any sale of Zealand securities in any state or jurisdiction in which such offer, solicitation or sale would be unlawful prior to registration or qualification under the securities laws of any such state or jurisdiction. No part of this presentation, nor the fact of its distribution, should form the basis of, or be relied on in connection with, any contract or commitment or investment decision whatsoever. This presentation contains forward-looking statements that reflect management's current views with respect to Zealand's product candidates' development, clinical and regulatory timelines and anticipated results, market opportunity, potential financial performance and other statements of future events or conditions. Although Zealand believes that the expectations reflected in such forward-looking statements are reasonable, no assurance can be given that such expectations will prove to have been correct. -
Lixisenatide Injection, Subcutaneous
© Copyright 2012 Oregon State University. All Rights Reserved Drug Use Research & Management Program Oregon State University, 500 Summer Street NE, E35 Salem, Oregon 97301-1079 Phone 503-947-5220 | Fax 503-947-1119 New Drug Evaluation: lixisenatide injection, subcutaneous Date of Review: January 2017 End Date of Literature Search: Generic Name: lixisenatide Brand Name (Manufacturer): Adlyxin (Sanofi-Aventis) PDL Class: GLP-1 receptor agonists AMCP Dossier Received: Yes Current Status of PDL Class: See Appendix 1. Research Questions: Is there evidence that lixisenatide improves outcomes versus other GLP-1 receptor agonists in patients with type 2 diabetes mellitus (T2DM), including hemoglobin A1c (A1C) reduction, microvascular and macrovascular outcomes and mortality? Is there evidence that lixisenatide is safer than other GLP-1 receptor agonists in patients with T2DM? Are there subpopulations of patients with T2DM for which lixisenatide may be more effective or associated with less harm? Conclusions: Lixisenatide approval was based on 11 phase 3 clinical trials.1- 11 Eight trials were placebo-controlled and 3 were active treatment comparisons to either sitagliptin, exenatide or insulin glulisine. All trials were designed and funded by the manufacture Sanofi-Aventis. Limitations to the data include short trial durations (12-26 weeks for most) and insufficient evidence for improvement in any health outcomes. The studies are most applicable to patients with moderately uncontrolled T2DM (HbA1c around 8%) with few comorbidities. There is insufficient evidence to determine if lixisenatide has any effect on microvascular outcomes. One study provides moderate strength evidence that lixisenatide is not associated with increased risk for macrovascular outcomes compared to placebo. -
Delivering on Our Commitment to Patients
Delivering on our commitment to patients Zealand Pharma Corporate Presentation Forward-looking statements This presentation contains information pertaining to Zealand Pharma A/S (“Zealand"). Neither Zealand nor its management, directors, employees or representatives make any representation or warranty, express or implied, as to the accuracy or completeness of any of the information contained in this presentation or any other information transmitted or made available to the viewer or recipient hereof, whether communicated in written or oral form. This presentation does not constitute or form part of, and should not be construed as, an offer to sell or issue or the solicitation of an offer to buy or acquire Zealand securities, in any jurisdiction, or an inducement to enter into investment activity, nor shall there be any sale of Zealand securities in any state or jurisdiction in which such offer, solicitation or sale would be unlawful prior to registration or qualification under the securities laws of any such state or jurisdiction. No part of this presentation, nor the fact of its distribution, should form the basis of, or be relied on in connection with, any contract or commitment or investment decision whatsoever. This presentation contains forward-looking statements that reflect management's current views with respect to Zealand's product candidates' development, clinical and regulatory timelines and anticipated results, market opportunity, potential financial performance and other statements of future events or conditions. Although Zealand believes that the expectations reflected in such forward-looking statements are reasonable, no assurance can be given that such expectations will prove to have been correct. Accordingly, results could differ materially from those set out in the forward-looking statements as a result of various factors, many of which are beyond Zealand’s control. -
Dynamic Approaches to Improve Glycemic Control and Primary Diabetes Care 1‑Or 2‑Or 3‑Or
DYNAMIC APPROACHES TO IMPROVE GLYCEMIC CONTROL AND PRIMARY DIABETES CARE DYNAMIC APPROACHES TO IMPROVE GLYCEMIC Figure. CONTROL AND PRIMARY DIABETES CARE 1‑OR Characterizing Clinical Inertia in a Large, National Database CORI R. RATTELMAN, ANUPAMA ARORA, JOHN K. CUDDEBACK, ELIZABETH L. CIEMINS, Alexandria, VA Objective: To characterize clinical inertia in the treatment of diabetes using a large, geographically diverse clinical database. Study Design: A retrospective descriptive analysis was conducted in a clinical database containing 22 million patient records across 22 health care organizations (HCOs). Population Studied: A total of 281,000 patients aged 18-75 were included during the 5.5-year study period (1/2012-6/2017). Patients had an outpatient visit in the last 12 months of the study period, an HbA1c in the last 24-30 months (index A1c), and a diagnosis of type 2 DM on a claim or EHR prob- lem list at least 6 months prior to index A1c. A subset of 47,693 patients with an index A1c ≥8 and a prior A1c ≥8 or lack thereof, was observed for Supported By: National Institute of Diabetes and Digestive and Kidney Diseases four 6-month follow-up periods for actions including a new class of diabetes (T35DK104689); Yale University medication prescribed or an A1c <8. The absence of observable action fol- lowing index A1c suggests potential “clinical inertia.” Principal Findings: Six months following an index A1c≥8, 55% of patients 3‑OR received no observable clinical action ranging from 45-65% across HCOs Influence of Diabetes Complications on the Cost‑Effectiveness of and 18-96% across individual providers. -
New Pharmacological Strategies for Protecting Kidney Function in Type 2 Diabetes
Manuscript Muskiet, Wheeler & Heerspink New renoprotective drugs REVIEW New Pharmacological Strategies for Protecting Kidney Function in Type 2 Diabetes Marcel H.A. Muskiet MD1 David C. Wheeler MD2 Hiddo J.L. Heerspink PharmD PhD3 1 Diabetes Centre, Department of Internal Medicine, VU University Medical Centre, Amsterdam, The Netherlands 2 Centre for Nephrology, University College London, London, United Kingdom 3 Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands Corresponding Author: David C. Wheeler MD Centre for Nephrology, University College London Rowland Hill Street, London NW3 2PF, UK Email: [email protected] Running head: New renoprotective drugs Key words: Type 2 diabetes, diabetic kidney disease, end-stage kidney disease, renoprotection, SGLT2 inhibitors, incretin-based therapies, GLP-1 receptor agonists, DPP-4 inhibitors, mineralocorticoid receptor antagonists, endothelin receptor antagonists Word count: Summary: 164; Manuscript: 5343 Figures: 2; Tables: 3; Boxes: 2; Supplemental 0 References: 117 The Lancet Diabetes & Endocrinology Page: 1/26 Muskiet, Wheeler & Heerspink New renoprotective drugs [H1]Summary Diabetes is the leading cause of impaired kidney function, albuminuria and renal replacement therapy in virtually all regions of the world and places a large burden on health care systems. Current treatment strategies rely on intensive glucose-lowering and strict blood pressure control, targeting blockade of the renin-angiotensin-aldosterone system. Such approaches may slow decline in kidney function, but many patients progress to end-stage kidney failure despite optimal therapy. In recent clinical trials, two new-generation glucose-lowering drug classes; the sodium-glucose co-transporter (SGLT)2 inhibitors and glucagon-like peptide (GLP)-1 receptor agonists have been shown to improve both kidney and cardiovascular outcomes in patients with type 2 diabetes.