Anesthetic Agents

Total Page:16

File Type:pdf, Size:1020Kb

Anesthetic Agents 14 OBSTETRICS OCTOBER 2011 • OB.GYN. NEWS DRUGS, PREGNANCY, AND LACTATION Anesthetic Agents ocal and general anesthetic agents low absorption suggests that it is safe. but the human pregnancy experience is ei- posed children had significantly lower are commonly used in pregnancy, Benzocaine and pramoxine are available ther absent or very limited. Moreover, the gross motor ability and more evidence of Lespecially for epidural or combined in OTC preparations for anorectal indica- animal reproduction data, when these inattention/hyperactivity. Moreover, the spinal epidural analgesia at delivery. tions, such as hemorrhoids. The human agents were used alone, were reassuring. level of exposure was significantly and Although surgery requiring general anes- pregnancy data are limited, but because Because nitrous oxide is a gas, con- negatively correlated with fine motor thesia is less common, such use is still there are more than 50 such products and cerns have been raised about the poten- ability and IQ performance (Birth Defects relatively frequent. hemorrhoids are common in tial for adverse effects on the embryo-fe- Res. A. Clin. Mol. Teratol. 2004;70:476- Local anesthetics are given pregnancy, these agents appear tus, as well as the potential effects on 82). This study supported the hypothesis by injection or topically, and to be widely used in pregnan- women of reproductive potential work- that occupational exposure to waste anes- include benzocaine, bupiva- cy. Systemic absorption may ing in surgical areas. Moreover, when thetic gases during pregnancy might be a caine (Marcaine, Sensorcaine), occur from mucous mem- used for surgery, nitrous oxide is always risk factor for minor neurological deficits chloroprocaine (Nesacaine), branes or from damaged skin combined with other general anesthetic in the offspring. Although more data are camphor, dibucaine (Nuper- with the amount absorbed agents. In animals, the gas is an embryo- needed, women of reproductive potential cainal), levobupivacaine (Chi- dependent on the dose. fetal toxin (growth restriction, structural working in surgical areas should consid- rocaine), lidocaine (Xylocaine, The local anesthetics avail- anomalies, and death), but the maternal er decreasing or eliminating their expo- Octocaine), mepivacaine (Car- able for ophthalmic use are exposures were sometimes high and pro- sure to anesthetic gases if pregnancy is a bocaine, Polocaine), pramox- lidocaine (Akten), propara- longed. Long-lasting effects reported in possibility. Moreover, postponing elective ine, prilocaine (Citanest), pro- GERALD G. caine (Alcaine, Ophthetic, animals include permanent brain damage surgery until after pregnancy or, at least, BRIGGS, caine (Novocaine), ropivacaine B.PHARM., FCCP Paracaine), proparacaine com- resulting in abnormal behavior effects in after the period of organogenesis, also (Naropin), and tetracaine bined with fluorescein (Flu- motor development and general activity. should be considered. Pregnancy tests (Pontocaine). For neuraxial analgesia, low caine, Fluoracaine, Flurate, Fluress, In humans, reports have described should be conducted in any woman of doses of bupivacaine, lidocaine, or ropi- Flurox), and tetracaine (Altacaine, spontaneous abortions, infertility, and reproductive potential before surgery. vacaine – with or without a small dose of Tetcaine). decreased birth weight in exposed preg- Although the data are very limited, small an opioid such as fentanyl – are common- In the above situations, with the excep- nancies and in women of reproductive amounts of some local anesthetics such as ly used. Use of injectable anesthetics for tion of cocaine, the risk of any aspect of potential working in surgical areas and lidocaine are excreted into breast milk. dental procedures also is common in preg- developmental toxicity from appropriate dental offices. Many of these retrospec- Because the amounts in the maternal cir- nancy. Maternal toxicity involving the cen- doses and administration of local anes- tive reports were subject to self-reporting culation are usually very low, any exposure tral nervous and cardiovascular systems thetics appears to be rare or nonexistent. and/or recall bias, as well as confounders of a nursing infant probably is clinically may result from inadvertent intravenous General anesthetics can be classified as such as lack of information on exposure insignificant. Mothers exposed to general administration or excessive doses. injectable, gases, or volatile liquids. The in- dose, type of anesthesia, use of other anesthetics will not be capable of nursing Topical anesthetics are commonly jectable agents include droperidol (Inap- drugs, maternal age, and smoking. Scav- for several hours, thus allowing clearance used in dermatologic products; many sine), etomidate (Amidate), fospropofol enging and ventilating surgical rooms of the agents from their circulation. ■ are over-the-counter (OTC) products (Lusedra), ketamine (Ketalar), metho- will lessen the exposure of personnel, with multiple trade names not listed hexital (Brevital), midazolam (Versed), but will not completely free the area of MR. BRIGGS is a pharmacist clinical here. Such agents include benzocaine, propofol (Diprivan), and sodium thiopen- waste gases. Fortunately, the data do not specialist, Outpatient Clinics, Memorial butamben, cocaine, dibucaine, lidocaine, tal (Pentothal). The volatile liquids in- support an association between acute Care Center for Women at Miller Children’s pramoxine, prilocaine, tetracaine, and clude desflurane (Suprane), enflurane or chronic nitrous oxide exposure and Hospital in Long Beach, Calif.; a clinical dyclonine (a bactericidal and fungicidal (Ethrane), halothane (Fluothane), iso- structural anomalies, but the news for professor of pharmacy at the University of local anesthetic used in lozenges and flurane (Forane), methoxyflurane neurotoxicity is troubling. California, San Francisco; and an adjunct throat sprays for sore throats). The three (Penthrane), and sevoflurane (Ultane). All A 2004 study compared 40 children professor of pharmacy at the University of topical cocaine products are controlled of the agents in these two categories of (ages 5-13 years) born to female physicians Southern California, Los Angeles. He also is substances. Because of rapid absorption general anesthetics have the potential to and nurses who were exposed to waste a fellow of the American College of Clinical that can produce toxicity in the user, they cause neonatal depression or adverse neu- anesthetic gases (specific agents not iden- Pharmacy, coauthor of “Drugs in Pregnancy are best avoided in pregnancy. Ethyl chlo- robehavioral effects if used close to birth. tified) with 40 nonexposed controls and Lactation,” and coeditor of “Diseases, ride (chloroethane) is a refrigerant used For most agents, developmental toxicity matched for age, gender, and maternal oc- Complications, and Drug Therapy in as a topical anesthetic. Although there during other periods of gestation, includ- cupation. The developmental milestones Obstetrics.” He had no disclosures related to are no reports of its use in pregnancy, the ing organogenesis, has not been reported, in the two groups were similar, but the ex- the topic of this article. Simulator Teaches Force Modulation for Shoulder Dystocia BY M. ALEXANDER OTTO Major Finding: Following training on a birth simulator, the then 100 N several times, to get a force-monitoring screen. “We feel for what those levels of force plummeted the heart rate and FROM THE ANNUAL RESEARCH percentage of clinicians pulling with more than 150 N during MEETING OF ACADEMYHEALTH simulated shoulder dystocia deliveries fell from 75% to 43%. felt like. At 100 N, Dr. Guise told tried to get everything as realistic Data Source: A nonrandomized educational intervention them, “this is the most you should as it could be. The actress was SEATTLE – Use of a birth force VITALS involving 40 clinicians. ever feel, so pay attention” to really acting it up,” she said. simulator taught clinicians better Disclosures: Dr. Guise said she had no relevant financial what it feels like: “If you’re start- Even under pressure, training how to modulate how much disclosures. The project was funded by the Agency for ing to shake, how your facial made a significant difference. Al- force they use when handling a Healthcare Research and Quality (AHRQ). muscles feel,” and so on. though 33 (82%) of the partici- case of shoulder dystocia to avoid To see if the training took, pants used more than 100 N, brachial plexus and other injuries. participants went through sur- only 17 (43%) used more than The pull should be no more emergencies are not very teach- with force monitoring, made by prise simulations. During their 150 N, and 11 (28%) used more than 100 newtons (N), a gentle able moments. Dr. Guise and her Limbs & Things Ltd. (Bristol, shifts, a nurse came running up than 200 N. “There was a reduc- but firm traction, according to colleagues wanted to see if train- England). Initially, they were saying, “I need a doctor, I need a tion in overall forces applied after Dr. Jeanne-Marie Guise, an ob- ing on a birth simulator would blinded to the force-monitoring doctor!” Trainees were pulled simulation training. Participants stetrician and gynecologist at help clinicians get a feel for how screen; 38 (95%) pulled with into a triage room, “but didn’t ex- were able to gauge forces ap- Oregon Health and Science Uni- much force to use. more than 100 N, 30 (75%) with actly know why,” Dr. Guise said. plied after
Recommended publications
  • 3-Local-Anesthetics.Pdf
    Overview • Local anesthetics produce a transient and reversible loss of sensation (analgesia) in a circumscribed region of the body without loss of consciousness. • Normally, the process is completely reversible. • Local anesthetics are generally classified as either esters or amides and are usually linked to: – a lipophilic aromatic group – to a hydrophilic, ionizable tertiary (sometimes secondary) amine. • Most are weak bases with pKa ( 8 – 9), and at physiologic pH they are primarily in the charged, cationic form. • The potency of local anesthetics is positively correlated with their lipid solubility, which may vary 16-fold, and negatively correlated with their molecular size. • These anesthetics are selected for use on the basis of: 1. the duration of drug action • Short: 20 min • Intermediate: 1—1.5 hrs • Long: 2—4 hrs 2. effectiveness at the administration site 3. potential for toxicity Mechanism of action Local anesthetics act by blocking sodium channels and the conduction of action potentials along sensory nerves. • Blockade is voltage dependent and time dependent. a. At rest, the voltage-dependent sodium (Na+) channels of sensory nerves are in the resting (closed) state. • Following the action potential the Na+ channel becomes active (open) and then converts to an inactive (closed) state that is insensitive to depolarization. • Following repolarization of the plasma membrane there is a slow reversion of channels from the inactive to the resting state, which can again be activated by depolarization. • During excitation the cationic charged form of local anesthetics interacts preferentially with the inactivated state of the Na+ channels on the inner aspect of the sodium channel to block sodium current and increase the threshold for excitation.
    [Show full text]
  • Evaluation of Liposomal Delivery System for Topical Anesthesia
    THERAPEUTICS FOR THE CLINICIAN Evaluation of Liposomal Delivery System for Topical Anesthesia Mohamed L. Elsaie, MD, MBA; Leslie S. Baumann, MD Local anesthesia is an integral aspect of cutane- infiltrative anesthetics, now can be accomplished ous surgery. Its effects provide a reversible loss safely and comfortably with the use of topi- of sensation in a limited area of skin, allowing cal anesthetics.1 Topical anesthetics originated in dermatologists to perform diagnostic and thera- South America; native Peruvians noted perioral peutic procedures safely, with minimal discomfort numbness when chewing the leaf of the cocoa plant and risk to the patient. Moreover, the skin acts (Erythroxylon coca). The active alkaloid, cocaine, was as a major target as well as principle barrier for isolated by Niemann in 1860 and applied to con- topical/transdermal (TT) drug delivery. The stra- junctival mucosa for topical anesthesia by Koller in tum corneum (SC) plays a crucial role in barrier 1884. The development of similar benzoic acid esters function for TT drug delivery. Despite the major continued until 1943 when Loefgren synthesized lido- research and development efforts in TT systems caine hydrochloride, the first amide anesthetic.2 and their implementation for use of topical anes- We review the administration of local anes- thetics, low SC permeability limits the useful- thetics, specifically the liposomal delivery system ness of topical delivery, which has led to other for topical anesthesia, based on a review of the delivery system developments, including vesicu- literature and clinical experience. lar systems such as liposomes, niosomes, and proniosomes, with effectiveness relying on their Anatomy physiochemical properties.
    [Show full text]
  • Prolonged Duration Topical Corneal Anesthesia with the Cationic Lidocaine Derivative QX-314
    https://doi.org/10.1167/tvst.8.5.28 Article Prolonged Duration Topical Corneal Anesthesia With the Cationic Lidocaine Derivative QX-314 Alan G. Woodruff1,2, Claudia M. Santamaria1, Manisha Mehta1,2, Grant L. Pemberton1, Kathleen Cullion1,2,4, and Daniel S. Kohane1,2,3 1 Kohane Lab for Biomaterials and Drug Delivery, Department of Anesthesia, Perioperative and Pain Medicine, Division of Critical Care, Boston Children’s Hospital, Boston, MA, USA 2 Harvard Medical School, Boston, MA, USA 3 David H. Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA 4 Department of Medicine, Division of Medicine Critical Care, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA Correspondence: Daniel S. Kohane, Purpose: Topical corneal local anesthetics are short acting and may impair corneal Laboratory for Biomaterials and healing. In this study we compared corneal anesthesia and toxicity of topically applied Drug Delivery, Department of Anes- N-ethyl lidocaine (QX-314) versus the conventional local anesthetic, proparacaine thesia, Division of Critical Care (PPC). Medicine, Boston Children’s Hospi- tal, Harvard Medical School, 61 Methods: Various concentrations of QX-314 and 15 mM (0.5%) PPC were topically Binney Street, Room 361, Boston, applied to rat corneas. Corneal anesthesia was assessed with a Cochet-Bonnet MA 02115, USA. e-mail: Daniel. esthesiometer at predetermined time points. PC12 cells were exposed to the same [email protected] solutions to assess cytotoxicity. Repeated topical corneal administration in rats was then used to assess for histologic evidence of toxicity. Finally, we created uniform Received: 6 May 2019 corneal epithelial defects in rats and assessed the effect of repeated administration of Accepted: 15 August 2019 these compounds on the defect healing rate.
    [Show full text]
  • Prolonged Release of the Local Anesthetic Butamben for Potential Use in Pain Management
    Pharmacology & Pharmacy, 2012, 3, 291-294 291 http://dx.doi.org/10.4236/pp.2012.33038 Published Online July 2012 (http://www.SciRP.org/journal/pp) Prolonged Release of the Local Anesthetic Butamben for Potential Use in Pain Management Ashish Rastogi1,2, Salomon Stavchansky2, Phillip D. Bowman1* 1US Army Institute of Surgical Research, Fort Sam Houston, USA; 2Division of Pharmaceutics, College of Pharmacy, The Univer- sity of Texas at Austin, Austin, USA. Email: [email protected], *[email protected] Received March 20th, 2012; revised April 29th, 2012; accepted May 11th, 2012 ABSTRACT Continuous delivery of local anesthetics might be useful for management of localized and chronic pain. Controlled re- lease injectable anesthetics have been developed but they can deliver the drug for only few days and the release is not zero-order. A drug delivery system (DDS) consisting of a perforated reservoir for drug containment and release and its potential for management of chronic pain is described. Proof of principle is detailed for long-term zero order delivery of butamben. In this study, the DDS was a polyimide tube with a 0.20 mm hole and butamben release was evaluated in vitro. It is envisioned that the DDS could be implanted in proximity to a nerve, enervating the pain source, for long-term control of chronic pain. Keywords: Controlled Release; Prolonged Drug Delivery; Pain Management; Butamben 1. Introduction operated, and not suitable for everyone [9]. Persistent cerebrospinal fluid leak during its insertion is also a Long-term drug therapy for pain management is chal- known complication [10].
    [Show full text]
  • 15-CETY-040, Cetecaine Gel Sell Sheet FA No Crops
    Cetacaine® TOPICAL ANESTHETIC GEL (Benzocaine 14.0%, Butamben 2.0%, Tetracaine Hydrochloride 2.0%) Proven more effective than benzocaine alone1 Cetacaine® Topical Anesthetic Gel is a fast-acting, long-lasting prescription topical anesthetic. Applied directly to the mucous membrane, Cetacaine is primarily used to control pain and ease discomfort at the application site. The protective pump-top jar controls the amount of Cetacaine dispensed while keeping the remaining contents safe from cross contamination. The outside lid helps to keep the pump surface clean and intact. Please see the Brief Summary of the Prescribing Information on the reverse side. You are encouraged to report negative side effects of prescription drugs to the FDA. Visit www.fda.gov/medwatch, or call 1-800-FDA-1088. Cetacaine Gel is indicated for anesthesia of all Description Size Item No. accessible mucous membrane except the eyes. Cetacaine Topical Anesthetic Gel 32 g 0217 Cetacaine is not for injection. Features & Benefits • Onset of action: Approximately 30 seconds* • Applies evenly and consistently, tissue need not be dried • Duration of action: 30-60 minutes* • Reacts with body temperature to melt and absorb quickly into tissue • Controls pain and eases discomfort at the application site • Made in USA • Pleasant strawberry flavor • Study shows Cetacaine’s triple formula is more effective than • Lubricating qualities Benzocaine alone Important Safety Information • On rare occasions, methemoglobinemia has been reported in • The most common adverse reaction caused by local anesthetics is connection with the use of benzocaine-containing products. contact dermatitis characterized by erythema and pruritus that If a patient becomes cyanotic, treat appropriately to counteract may progress to vesiculation and oozing.
    [Show full text]
  • Procaine Elisa Kit Instructions Product #103219 & 103216 Forensic Use Only
    Neogen Corporation 944 Nandino Blvd., Lexington KY 40511 USA 800/477-8201 USA/Canada | 859/254-1221 Fax: 859/255-5532 | E-mail: [email protected] | Web: www.neogen.com/Toxicology PROCAINE ELISA KIT INSTRUCTIONS PRODUCT #103219 & 103216 FORENSIC USE ONLY INTENDED USE: For the determination of trace quantities of Procaine and/or other metabolites in human urine, blood, oral fluid. DESCRIPTION Neogen Corporation’s Procaine ELISA (Enzyme-Linked ImmunoSorbent Assay) test kit is a qualitative one-step kit designed for use as a screening device for the detection of drugs and/or their metabolites. The kit was designed for screening purposes and is intended for forensic use only. It is recommended that all suspect samples be confirmed by a quantitative method such as gas chromatography/mass spectrometry (GC/MS). ASSAY PRINCIPLES Neogen Corporation’s test kit operates on the basis of competition between the drug or its metabolite in the sample and the drug-enzyme conjugate for a limited number of antibody binding sites. First, the sample or control is added to the microplate. Next, the diluted drug-enzyme conjugate is added and the mixture is incubated at room temperature. During this incubation, the drug in the sample or the drug-enzyme conjugate binds to antibody immobilized in the microplate wells. After incubation, the plate is washed 3 times to remove any unbound sample or drug-enzyme conjugate. The presence of bound drug-enzyme conjugate is recognized by the addition of K-Blue® Substrate (TMB). After a 30 minute substrate incubation, the reaction is halted with the addition of Red Stop Solution.
    [Show full text]
  • Cetacaine Gel Prescribing Information
    colored skin (cyanosis); headache; rapid heart rate; shortness of breath; who are hypersensitive to any of its ingredients or to patients known to have lightheadedness; or fatigue. cholinesterase deficiencies. Tolerance may vary with status of the patient. Hypersensitivity Reactions: Unpredictable adverse reactions (i.e. hypersensitivity, Cetacaine Topical Anesthetic Gel should not be used under dentures or cotton including anaphylaxis) are extremely rare. Localized allergic reactions may occur rolls, as retention of the active gel ingredients under a denture or cotton roll could after prolonged or repeated use of any aminobenzoate anesthetic. The most possibly cause an escharotic effect. Routine precaution for the use of any topical Only common adverse reaction caused by local anesthetics is contact dermatitis anesthetic should be observed when using Cetacaine Topical Anesthetic Gel. characterized by erythema and pruritus that may progress to vesiculation and oozing. This occurs most commonly in patients following prolonged How Supplied Cetacaine Topical Anesthetic Gel (Strawberry), 32 g jar Active Ingredients: self-medication, which is contraindicated. If rash, urticaria, edema, or other Benzocaine ...................................................................14.0% manifestations of allergy develop during use, the drug should be discontinued. NDC 10223-0217-3 To minimize the possibility of a serious allergic reaction, Cetacaine Topical Item# 0217 Butamben .......................................................................2.0%
    [Show full text]
  • Safety Alert: Risks Associated with Ophthalmic Anesthetics
    WRHA Pharmacy Program Health Sciences Centre MS-189 820 Sherbrook St. Winnipeg, Manitoba R3A 1R9 CANADA TEL: 204-787-7183 Fax: 204-787-3195 FAX: 204-787-3195 Safety Alert: Risks associated with Ophthalmic Anesthetics The self-administration of ophthalmic anesthetics by patients for the relief of eye pain should be avoided and they should not be given to patients to take home for pain relief. Vision threatening complications of topical anesthetic abuse are common. There is no indication for the use of ophthalmic anesthetics except for diagnostic and short term therapeutic purposes (the removal of a foreign body or ocular surgery) and therefore, these products should only be used under a physician’s supervision. Eye trauma resulting in a corneal abrasion (epithelial injury) is a common complaint in the Emergency department (1). A superficial corneal injury can cause intense pain causing a patient to seek medical help or immediate relief from available over the counter remedies. In Canada, only two topical ophthalmic anesthetic drugs are available commercially as single entities, proparacaine (proxymetacaine) and tetracaine (available in bottle and minim forms). Benoxinate (oxybuprocaine) is only available in combination with fluorescein (3). Lidocaine is also used in ophthalmic surgical procedures however, it is not available in the Canadian market as an ophthalmic preparation. Topical ophthalmic anesthetics function by blocking nerve conduction when applied to the cornea and conjunctiva. The ocular surface is innervated by the multiple branches of the trigeminal nerve. The cornea is supplied by the long and short ciliary nerves, the nasociliary nerve and the lacrimal nerve (4). Topical anesthetics reduce sodium permeability preventing generation and conduction of nerve impulses, increasing excitation threshold, and slowing the nerve impulse propagation.
    [Show full text]
  • Therapeutic Approaches to Genetic Ion Channelopathies and Perspectives in Drug Discovery
    fphar-07-00121 May 7, 2016 Time: 11:45 # 1 REVIEW published: 10 May 2016 doi: 10.3389/fphar.2016.00121 Therapeutic Approaches to Genetic Ion Channelopathies and Perspectives in Drug Discovery Paola Imbrici1*, Antonella Liantonio1, Giulia M. Camerino1, Michela De Bellis1, Claudia Camerino2, Antonietta Mele1, Arcangela Giustino3, Sabata Pierno1, Annamaria De Luca1, Domenico Tricarico1, Jean-Francois Desaphy3 and Diana Conte1 1 Department of Pharmacy – Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy, 2 Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, Bari, Italy, 3 Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, Bari, Italy In the human genome more than 400 genes encode ion channels, which are transmembrane proteins mediating ion fluxes across membranes. Being expressed in all cell types, they are involved in almost all physiological processes, including sense perception, neurotransmission, muscle contraction, secretion, immune response, cell proliferation, and differentiation. Due to the widespread tissue distribution of ion channels and their physiological functions, mutations in genes encoding ion channel subunits, or their interacting proteins, are responsible for inherited ion channelopathies. These diseases can range from common to very rare disorders and their severity can be mild, Edited by: disabling, or life-threatening. In spite of this, ion channels are the primary target of only Maria Cristina D’Adamo, University of Perugia, Italy about 5% of the marketed drugs suggesting their potential in drug discovery. The current Reviewed by: review summarizes the therapeutic management of the principal ion channelopathies Mirko Baruscotti, of central and peripheral nervous system, heart, kidney, bone, skeletal muscle and University of Milano, Italy Adrien Moreau, pancreas, resulting from mutations in calcium, sodium, potassium, and chloride ion Institut Neuromyogene – École channels.
    [Show full text]
  • P-Aminobenzoic Acid Derivatives Benzocaine
    P-aminobenzoic acid derivatives Benzocaine Mechanism of action oThe loca l anaesthe tics decrease the excitabilit y of nerve cells by decreasing the entry of Na+ ions during upstroke of action pottiltential. oThe local anaesthetics interact with a receptor situated within the voltage sensitiesensitive Na+ channel and raise the threshold of channel opening. oLocal anaesthetic blocks Na+ conductance by two possible modes of action, the tonic and the phasic inhibition. oTonic inhibition results from the binding of LA to nonactivated closed channel while phasic inhibition results from the binding of LA to open state or inactivate state of channels. Uses: For general use as a lubricant and topical anesthetic on esophagus, larynx, mouth, nasal cavity, rectum, respiratory tract or trachea and urinary tract. Procaine MOA: Similar to benzocaine Uses: For general use as a lubricant and topical anesthetic on esophagus, larynx, mouth, nasal cavity, rectum, respiratory tract or trachea and urinary tract. Butamben IUPAC: Butyl 4-aminobenzoate MOA: Similar to benzocaine Uses: For general use as a lubricant and topical anesthetic on esophagus, larynx, mouth, nasal cavity, rectum, respiratory tract or trachea and urinary tract. Butacaine IUPAC: 3-(dibutylamino)propyl 4´-aminobenzoate MOA: Similar to benzocaine Uses: For general use as a lubricant and topical anesthetic on esophagus, larynx, mouth, nasal cavity, rectum, respiratory tract or trachea and urinary tract. Benox inate IUPAC: 2-(diethylamino)ethyl 4´-amino-3´-butoxybenzoate MOA: Similar to benzocaine Uses: For general use as a lubricant and topical anesthetic on esophagus, larynx, mouth, nasal cavity, rectum, respiratory tract or trachea and urinary tract. Tetracaine IUPAC: 2-(dimethylamino)ethyl 4´-(butylamino)benzoate MOA: Similar to benzocaine Uses: For general use as a lubricant and topical anesthetic on esoppghagus, laryyypynx, mouth, nasal cavity, rectum, respiratory tract or trachea and urinary tract..
    [Show full text]
  • 'Butamben, a Specific Local Anesthetic and Aspecific Ion Channel Modulator' Beekwilder, J.P
    'Butamben, a specific local anesthetic and aspecific ion channel modulator' Beekwilder, J.P. Citation Beekwilder, J. P. (2008, May 22). 'Butamben, a specific local anesthetic and aspecific ion channel modulator'. Retrieved from https://hdl.handle.net/1887/12865 Version: Corrected Publisher’s Version Licence agreement concerning inclusion of doctoral License: thesis in the Institutional Repository of the University of Leiden Downloaded from: https://hdl.handle.net/1887/12865 Note: To cite this publication please use the final published version (if applicable). 'BUTAMBEN, A SPECIFIC LOCAL ANESTHETIC AND ASPECIFIC ION CHANNEL MODULATOR' PROEFSCHRIFT ter verkrijging van de graad van Doctor aan de Universiteit Leiden, op gezag van Rector Magnificus prof. mr. P.F. van der Heijden, volgens besluit van het College voor Promoties te verdedigen op donderdag 22 mei 2008 klokke 13.45 uur door Jeroen Petrus Beekwilder geboren te Helmond in 1973 Promotiecommissie Promotor: Prof. Dr. D.L. Ypey Copromotor: Dr. R.J. van den Berg Referent: Dr. M.W. Veldkamp (Academisch Medisch Centrum, Amsterdam) Overige leden: Prof. Dr. A. Dahan Prof Dr. W.J. Wadman (Universiteit van Amsterdam) The publication of the thesis has been supported financially by Cyberonics Europe, Vagus Nerve Stimulation (VNS), which is gratefully acknowledged. INDEX/INHOUDSOPGAVE Chapter 1 General Introduction 5 Chapter 2 Kv1.1 channels of dorsal root ganglion neurons are 33 inhibited by n‐butyl‐p‐aminobenzoate, a promising anesthetic for the treatment of chronic pain Chapter 3 Block of Total and N‐type Calcium Conductance in 57 Mouse Sensory Neurons by the Local Anesthetic n‐ Butyl‐p‐Aminobenzoate (Butamben) Chapter 4 The local anesthetic Butamben inhibits and 73 accelerates low‐voltage activated T‐type currents in small sensory neurons.
    [Show full text]
  • Drug and Medication Classification Schedule
    KENTUCKY HORSE RACING COMMISSION UNIFORM DRUG, MEDICATION, AND SUBSTANCE CLASSIFICATION SCHEDULE KHRC 8-020-1 (11/2018) Class A drugs, medications, and substances are those (1) that have the highest potential to influence performance in the equine athlete, regardless of their approval by the United States Food and Drug Administration, or (2) that lack approval by the United States Food and Drug Administration but have pharmacologic effects similar to certain Class B drugs, medications, or substances that are approved by the United States Food and Drug Administration. Acecarbromal Bolasterone Cimaterol Divalproex Fluanisone Acetophenazine Boldione Citalopram Dixyrazine Fludiazepam Adinazolam Brimondine Cllibucaine Donepezil Flunitrazepam Alcuronium Bromazepam Clobazam Dopamine Fluopromazine Alfentanil Bromfenac Clocapramine Doxacurium Fluoresone Almotriptan Bromisovalum Clomethiazole Doxapram Fluoxetine Alphaprodine Bromocriptine Clomipramine Doxazosin Flupenthixol Alpidem Bromperidol Clonazepam Doxefazepam Flupirtine Alprazolam Brotizolam Clorazepate Doxepin Flurazepam Alprenolol Bufexamac Clormecaine Droperidol Fluspirilene Althesin Bupivacaine Clostebol Duloxetine Flutoprazepam Aminorex Buprenorphine Clothiapine Eletriptan Fluvoxamine Amisulpride Buspirone Clotiazepam Enalapril Formebolone Amitriptyline Bupropion Cloxazolam Enciprazine Fosinopril Amobarbital Butabartital Clozapine Endorphins Furzabol Amoxapine Butacaine Cobratoxin Enkephalins Galantamine Amperozide Butalbital Cocaine Ephedrine Gallamine Amphetamine Butanilicaine Codeine
    [Show full text]