Mathematics Is the Majestic Structure Conceived by Man to Grant Him Comprehension of the Universe”- LE CORBUSIER

Total Page:16

File Type:pdf, Size:1020Kb

Mathematics Is the Majestic Structure Conceived by Man to Grant Him Comprehension of the Universe”- LE CORBUSIER “Mathematics is the majestic structure conceived by man to grant him comprehension of the universe”- LE CORBUSIER ©2014 Gainor Roberts Which rectangle do you like the best? Left or right? This is a Golden Rectangle If given a choice between the two many people will choose this one. There are many theories about why this is so. It has been used in art, and architecture and industrial design for centuries…perhaps since we began making pictures and it gets really interesting in studying nature, cosmology and mathematics VARIOUS NAMES BY WHICH PHI IS KNOWN GOLDEN MEAN GOLDEN RATIO GOLDEN PROPORTION DIVINE PROPORTION GOLDEN SECTION EXTREME RATIO MEDIAL SECTION DIVINE SECTION GOLDEN CUT GOLDEN NUMBER So what does this have to do with anything? Why the fuss about the Golden Ratio anyway? How does this have anything to do with my life and my art? PHI Pronouncing Phi May 13, 2012 by Gary Meisner Phee, Phi, Pho, Phum™ … or how do you say Φ? The generally accepted pronunciation of phi is fi, like fly. Most people know phi as “fi,” to rhyme with fly, as its pronounced in “Phi Beta Kappa.” In Dan Brown’s best selling book “The Da Vinci Code,” however, phi is said to be pronounced fe, like fee. Gary Meisner has a website that I mention frequently in this PowerPoint. His website is a wonderful “go to” source of great information about the Golden Ratio and all things associated with it. First and foremost it seems reasonable to figure out how to say PHI properly. The link below will give you a lengthy article with variations and proper ways to look, and sound like you know what you are talking about! https://www.goldennumber.net/pronouncing-phi/ SO WHAT IS A RATIO? Remember this? PROPORTION I teach drawing and many of my students seem to have a great deal of difficulty understanding the concept of proportion, but in art it is essential, if you are attempting to be realistic and not skew reality. Children get their proportions all wrong (perhaps I should say unreal, rather than wrong). In any case their house is the same size as the father and the tree is smaller than Dad. We think this is charming, but when it comes to classical drawing it is not charming at all. The illustrations on the left show how we can use a sighting stick to find out the relative proportions of the little box to the big box. We “measure” with a stick (or pencil or brush) and sight the little box’s width, and without moving our thumb from the stick, we move it to the big box and see that the big box is approximately one and a half times the size of the small box. Photos by Gainor Roberts Using a sighting stick to find proportions is a good way to "measure" your subject. Knowing this will help you draw the proportions correctly. So many problems in drawing are optical illusions, and figments of what we think we "know" about something, but do not be fooled! Our eye and brain are not accurate measurers, for most of us, and we need to have as much accurate information about our subject to create believable and accurate drawings and paintings. And so this is a ratio. We can say that the big box is one and a half times as big as the little box. Looking at the two of them with out measuring doesn’t tell us that at all. We usually need visual aids and perhaps math, if you are so inclined to get it right Proportions of the human head, if seen straight on and not tipped, will show the eyes are usually midway between the top of the head and the chin. But when we look at a person we tend to see the eyes higher in the skull and make the forehead smaller. This is a very typical mistake that many artists make. Proportions and ratios are a very important part of our anatomy and our art! From Understanding Drawing by Gainor Roberts However more accurate measurements of the head and face are based on thirds and this scheme follows the dimensions of the Golden Ratio as applied to human anatomy From Understanding Drawing by Gainor Roberts OK, I get it about ratio and proportion. But what’s the “golden” part? A straight line is said to have been cut in extreme and mean ratio when, as the whole line is to the greater segment, so is the greater to the lesser. What? That statement makes no sense to my right brain at all! That is a quote from Plato living between 428 and 348 BC in Greece. Euclid had a great influence on philosophy, mathematics and geometry, who lived in Egypt. Both of these men were so brilliant and they set the groundwork for millennia of thinkers and discoverers, as well as later geniuses in the Renaissance and into our modern times. Just as pi (p) is the ratio of the circumference of a circle to its diameter, phi (Φ ) is simply the ratio of the line segments that result when a line is divided in one very special and unique way. Divide a line so that: the ratio of the length of the entire line (A) to the length of larger line segment (B) is the same as the ratio of the length of the larger line segment (B) to the length of the smaller line segment (C). This happens only at the point where: A is 1.618 … times B and B is 1.618 … times C. Alternatively, C is 0.618… of B and B is 0.618… of A. So, to continue, here is some algebra for the math heads in our midst. This is the solution to Plato and Euclid’s line divided into unequal lengths Phi 1.6180339887…..the Golden Number! FIBONACCI Fibonacci was born in 1170 in Pisa, and was known as Leonardo Bonacci or Leonard of Pisa, which was shorted to Fibonacci, or son of Bonacci. He was a mathematical genius who wrote, in the early 13th century the Liber Abaci, or Book of Calculation. Having traveled extensively he concluded that trying to do arithmetic with Roman Numerals was much more difficult than using the Hindu-Arabic number system. He spread the word through his teachings and book. Centuries later this numerical sequence was named after him. We are lucky to have been saved by Fibonacci from having to add and subtract, or horrors, divide using Roman Numerals! 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377....etc. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377....etc. The sequence is derived by adding 0 +1 which equals 1. Then add 1 +1 which equals 2. Then add 2 +1 which equals 3. Then add 2 +3 which equals 5 and so on. Each number is the sum of the previous two and each number approximates the previous number multiplied by the Golden Section 1.618! The numbers become more accurate as they grow larger. Take 5 and multiply by 1.618 and you get 8.09 Or take 34 and multiply by 1.618 and you get 55.012 or take 377 and multiply by 1.618 and you get 609.986 which is the same if you add 233 and 377…..610. Is this magic? Many people thought so, and it was kept a secret by various groups and societies through to modern times. It was so mysterious it was given Divine associations by many throughout history each of these pairs are the dimensions of a GOLDEN RECTANGLE give or take a few decimal places! How to make a Golden Rectangle without math WITH GEOMETRY (WELL SORT OF) ANOTHER WAY TO MAKE A GOLDEN RECTANGLE We can do this exercise an infinite number of times but I don’t have a microscope! The divisions go on and on forever, but for our purposes we are going to stop now….it is sort of tiresome making these golden rectangles! PUTTING THEM ALL BACK TOGETHER HERE IS A GOLDEN SPIRAL HERE IS THE INFINITY POINT EACH LINE IS ALSO A GOLDEN RATIO But there is an easier way to make a golden rectangle! Suppose you have some stretcher bars for a 16 x 20 canvas, but you want to make Golden Rectangles instead. How do I find out how long I need to make the new stretcher bars? Multiply by 1.618 (yeah, I have to use a calculator to do this!) So I decide to have one side be 16 inches. So the other side has to be 25.8888…, or roughly 26 inches. Now you have your Golden Ratio 16 to 26 Back to the art store to buy 26 inch stretchers Suppose I want to go the other way and figure out what a golden rectangle would be based on 28 going smaller not larger. Divide 26 by 1.618 and you get….16.0692 and so you will go to the art store and buy 16 inch stretcher bars, unless you are very picky and order from specialty suppliers the exact measurements! Golden Rectangle Calculator http://www.miniwebtool.com/golden-rectangle-calculator/?a=30 And for the fanatic Golden Ratio addict you can buy an instrument to measure your distances. Evidently Dentists and Surgeons use these tools to measure body parts and teeth. taken from the website http://www.goldennumber.net/ GOLDEN MEAN GAUGES Golden Mean Gauge.
Recommended publications
  • Simple Rules for Incorporating Design Art Into Penrose and Fractal Tiles
    Bridges 2012: Mathematics, Music, Art, Architecture, Culture Simple Rules for Incorporating Design Art into Penrose and Fractal Tiles San Le SLFFEA.com [email protected] Abstract Incorporating designs into the tiles that form tessellations presents an interesting challenge for artists. Creating a viable M.C. Escher-like image that works esthetically as well as functionally requires resolving incongruencies at a tile’s edge while constrained by its shape. Escher was the most well known practitioner in this style of mathematical visualization, but there are significant mathematical objects to which he never applied his artistry including Penrose Tilings and fractals. In this paper, we show that the rules of creating a traditional tile extend to these objects as well. To illustrate the versatility of tiling art, images were created with multiple figures and negative space leading to patterns distinct from the work of others. 1 1 Introduction M.C. Escher was the most prominent artist working with tessellations and space filling. Forty years after his death, his creations are still foremost in people’s minds in the field of tiling art. One of the reasons Escher continues to hold such a monopoly in this specialty are the unique challenges that come with creating Escher type designs inside a tessellation[15]. When an image is drawn into a tile and extends to the tile’s edge, it introduces incongruencies which are resolved by continuously aligning and refining the image. This is particularly true when the image consists of the lizards, fish, angels, etc. which populated Escher’s tilings because they do not have the 4-fold rotational symmetry that would make it possible to arbitrarily rotate the image ± 90, 180 degrees and have all the pieces fit[9].
    [Show full text]
  • Leonardo Universal
    Leonardo Universal DE DIVINA PROPORTIONE Pacioli, legendary mathematician, introduced the linear perspective and the mixture of colors, representing the human body and its proportions and extrapolating this knowledge to architecture. Luca Pacioli demonstrating one of Euclid’s theorems (Jacobo de’Barbari, 1495) D e Divina Proportione is a holy expression commonly outstanding work and icon of the Italian Renaissance. used in the past to refer to what we nowadays call Leonardo, who was deeply interested in nature and art the golden section, which is the mathematic module mathematics, worked with Pacioli, the author of the through which any amount can be divided in two text, and was a determined spreader of perspectives uneven parts, so that the ratio between the smallest and proportions, including Phi in many of his works, part and the largest one is the same as that between such as The Last Supper, created at the same time as the largest and the full amount. It is divine for its the illustrations of the present manuscript, the Mona being unique, and triune, as it links three elements. Lisa, whose face hides a perfect golden rectangle and The fusion of art and science, and the completion of the Uomo Vitruviano, a deep study on the human 60 full-page illustrations by the preeminent genius figure where da Vinci proves that all the main body of the time, Leonardo da Vinci, make it the most parts were related to the golden ratio. Luca Pacioli credits that Leonardo da Vinci made the illustrations of the geometric bodies with quill, ink and watercolor.
    [Show full text]
  • Art and Anatomy: the Vitruvian Teen
    Curriculum Units by Fellows of the Yale-New Haven Teachers Institute 2006 Volume VI: Anatomy and Art: How We See and Understand Art and Anatomy: The Vitruvian Teen Curriculum Unit 06.06.01 by Wendy Decter, M.D. Justification Ultimately, learning becomes interdisciplinary as we mature and have opportunities for varied experiences. As adults and teachers it is our responsibility to facilitate growth and provide opportunity for different experiences. Meaningful interpretation and integration of experience must be modeled for our students as well. In grade school children build reading, writing, computational and analytical skills in a step by step fashion usually with one teacher each year. The next teacher uses the previous years' accomplishments as building blocks. Gradually vocabulary expands and students read more complex books. Perspective expands as we start to learn about countries and cultures other than our own, and examine the physical world around us. A sense of community and of the value of education is a necessary ingredient, both in school and at home. Throughout the grades, our students' required readings are set in the historical setting that is being explored from a social standpoint. Our students are acquiring the computational skills needed in their current scientific studies. They move from learning about their town, to their state, to their country and finally to their world and beyond. In middle school and high school courses and the school day becomes compartmentalized. English, now dubbed Language Arts, Social Studies, Science, Math, Art, and Foreign Language are separate departments with differentiated courses taught by many teachers in many ways.
    [Show full text]
  • Decoding the Last Supper
    HOUSE OF TRUTH | TOTUUDEN TALO Decoding the Last Supper The Great Year and Men as Gods House of Truth | www.houseoftruth.education 21.6.2013 Table of Contents Introduction ....................................................................................................................................................... 2 The Last Supper and the Great Year .................................................................................................................. 3 36 engravings on the roof ............................................................................................................................. 4 Elements of the Last Supper .......................................................................................................................... 5 Hands of Christ .............................................................................................................................................. 6 The Lesser Conclusion ................................................................................................................................... 7 Men as Gods in the Last Supper ........................................................................................................................ 8 Roman trio of gods ........................................................................................................................................ 9 Evidence number 153 .................................................................................................................................
    [Show full text]
  • This Kinetic World: Rethinking the Grid (Neo-Baroque Calls)
    PERFORMANCE PHILOSOPHY THIS KINETIC WORLD: RETHINKING THE GRID (NEO-BAROQUE CALLS) LARA D. NIELSEN IE UNIVERSITY—MADRID Distance is not a safety zone but a field of tension. Theodor Adorno, Minima Moralia (2005, 127) Changing course and moving to Spain got me thinking about the grid again. I thought I’d left it, but I was heading right back into it. Truth is, there’s no getting out of it. Some things are for real. It is in Spain that the city grid (la cuadrícula) renewed its license, so to speak, on modernity. Ruins of 2nd century BCE cities like Baelo Claudia, for instance, a Roman municipality doing trade with the Maghreb, imprint the grid’s heterogeneous and syncretic leave (complete with basilica, forum, amphitheatre, temples of Juno, Minerva and the Egyptian Isis). The Alhambra in Granada was built over Roman ruins, its fine interior courts and muqarnas (geometrical, or honeycomb vaulting) the signature of Moorish architecture and design. On the exterior, the grand scale of its organic layout piles quadrangular additions across the mountain ridge in a manner reminiscent of ramshackle medieval cities throughout the Mediterranean, with passages going this way and that. Thus it is noteworthy that among the first known cuadrículas implemented in early modern Spain was a military encampment built in Santa Fe de Granada, in 1491, by Catholic armies forcing out the Muslim Emirate of Granada in the Reconquista. For the Romans as for the Emirates and the Spanish, city grid regimes are conditioned by contact with its “others.” PERFORMANCE PHILOSOPHY VOL 3, NO 1 (2017):285–309 DOI: https://doi.org/10.21476/PP.2017.31127 ISSN 2057–7176 For some 200 years, Granada was the last Emirate standing in Iberia.
    [Show full text]
  • Francis Bacon's Challenge to the Figurative
    FIGURE AND FLESH: FRANCIS BACON’S CHALLENGE TO THE FIGURATIVE TRADITION IN WESTERN ART A THESIS SUBMITTED TO THE DEPARTMENT OF GRAPHIC DESIGN AND THE INSTITUTE OF FINE ARTS ¡ ¢ £ ¤ ¥ ¦ § ¨ © § ¦ ¨ IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF FINE ARTS By Müge Telci May, 2002 I certify that I have read this thesis and in my opinion it is fully adequate, in scope and quality, as a thesis for the degree of Master of Fine Arts. _________________________________________________ Assist. Prof. Dr. Mahmut Mutman (Thesis Supervisor) I certify that I have read this thesis and in my opinion it is fully adequate, in scope and quality, as a thesis for the degree of Master of Fine Arts. __________________________________________________ Assoc. Prof. Dr. Emel Aközer I certify that I have read this thesis and in my opinion it is fully adequate, in scope and quality, as a thesis for the degree of Master of Fine Arts. ____________________________________________________ Assist. Prof. Dr. Asuman Suner I certify that I have read this thesis and in my opinion it is fully adequate, in scope and quality, as a thesis for the degree of Master of Fine Arts. _____________________________________________________ Zafer Aracagök Aproved by the Institute of Fine Arts ______________________________________________________ Prof. Dr. Bülent Özgüç Director of the Institute Of Fine Arts ii ABSTRACT FIGURE AND FLESH: FRANCIS BACON’S CHALLENGE TO FIGURATIVE TRADITION IN WESTERN ART Müge Telci M.F.A in Graphical Arts Supervisor: Assist. Prof. Dr. Mahmut Mutman June, 2002 When figuring the body is at stake within the Western tradition of art, figuration comes up as a question of framing and controlling the mass of body (flesh, bones, body liquids etc…).
    [Show full text]
  • Leonardo's Vitruvian Man Drawing: a New Interpretation Looking at Leonardo's Geometric Constructions
    Nexus Netw J (2015) 17:507–524 DOI 10.1007/s00004-015-0247-7 RESEARCH Leonardo’s Vitruvian Man Drawing: A New Interpretation Looking at Leonardo’s Geometric Constructions Vitor Murtinho1 Published online: 9 April 2015 Ó Kim Williams Books, Turin 2015 Abstract Generally speaking, today’s scientific community considers that the famous figure drawn by Leonardo da Vinci at the end of the fifteenth century was made using the Golden ratio. More specifically, the relationship established between the circle’s diameter and the side of the square is a consequence of the geometric relationship probably discovered by Euclid, but made famous by Luca Pacioli in his De Divina proportione. Aware of the close working relationship between Leonardo and Pacioli, namely in the writing of this last book, the theory that establishes a close relationship between these two figures, making use of this remarkable mathematical relationship, has gained credibility. In fact, the use of the Divina proporzione, despite being a very stimulating construction on an intellectual level, presents too great a margin of error, especially for such a competent geometrician as Leonardo da Vinci was. For that reason, the relationship between these two figures (square and circle) is grounded on a much simpler geometric relationship than the one found at the base of the definition, for instance, of Le Corbusier’s Modulor. Keywords Leonardo da Vinci Á Vitruvian man Á Vesica piscis Á Golden number Á Proportion Introduction No human investigation may claim to be a true science if it has not passed through mathematical demonstrations, and if you say that the sciences that begin and end in the mind exhibit truth, this cannot be allowed, but must be & Vitor Murtinho [email protected] 1 CES-Department of Architecture, University of Coimbra, Colegio das Artes, Largo D.
    [Show full text]
  • Vitruvian Man
    Activity 1A: Ratio Calculations: Vitruvian Man Students complete a table of ideal human proportions based on Leonardo da Vinci’s iconic drawing of Vitruvian Man. Students use the ratios to calculate dimensions of body features for different-sized individuals with Vitruvian Man’s proportions. Students measure dimensions of head and height for humans and animated characters and calculate their head : height ratios. Understandings • The relationships between body parts can be expressed mathematically using ratios. • Human body ratios vary. • A person’s or character’s appearance can be altered by varying his or her body ratios. Materials Needed • Optional: Printed or digital images of animated characters with varying body proportions (see Advance Preparation) • Handout 1: Unit Overview • Assessment Checklist: Character Design • Handout 2: Vitruvian Man Proportions • Optional: Proportion Matters slide presentation (see Advance Preparation) • Handout 3: Calculating Vitruvian Man Measurements • Handout 4: Human Head : Height Ratios • Rulers • Images of people and animated characters from Appendix A: Head : Height Proportion Images (one per student) (see Advance Preparation) • Handout 5: Journal Assignment DIGITAL/MEDIA/ARTS: MATHEMATICS 8 PROPORTION MATTERS © Education Development Center, Inc. 2011 1. Optional: Show students animated characters with varying proportions. Display the images of animated characters. Ask students: • What do you notice about the differences in the sizes of these characters’ heads in relation to their bodies? What about the sizes of their facial characteristics, such as eyes and mouths? • What effect do you think these visual properties have on your perception of the character? 2. Introduce the concept of proportion. Tell students that in this unit they will look at how body and facial proportions can be quantified mathematically.
    [Show full text]
  • Vitruvian Man and Divine Proportion
    Vitruvian Man and Divine Proportion Leonardo da Vinci’s Vitruvian Man taking a fixed module, in each case, both was originally an illustration for a book on for the parts of a building and for the the works of the Roman architect Marcus whole, by which the method of symmetry Vitruvius Pollio (first century BCE), who is put to practice. For without symmetry designed many of the most beautiful and proportion no temple can have a temples in Rome. In his ten-volume work, regular plan; that is, it must have an exact De Architectura, Vitruvius established the proportion worked out after the fashion guidelines for classic Roman architecture. of the members of a finely shaped human Describing how a temple should be body.’’ planned and built, Vitruvius wrote: In this passage is found the key to the “The planning of temples depends composition of ancient architecture, which upon symmetry: and the method of this was firmly revived in the Renaissance. architects must diligently apprehend. It Echoing the ancient Greeks, the human arises from proportion (which in Greek body was seen as symbolic of all Nature, is called analogia). Proportion consists of the microcosm reflecting the macrocosm. Page 1 Thus Nature, in the form of the human Nature as follows: that is that 4 fingers body, was to be the architect’s (or the make 1 palm, and 4 palms make 1 foot, 6 artist’s) guide. In this form of architecture palms make 1 cubit; 4 cubits make a man’s (or art, engineering, or planning, etc.) height. And 4 cubits make one pace and the science of geometry is employed by 24 palms make a man; and these measures means of small whole numbers to build he used in his buildings.
    [Show full text]
  • On a Human Scale. Drawing and Proportion of the Vitruvian Figure Veronica Riavis
    7 / 2020 On a Human Scale. Drawing and Proportion of the Vitruvian Figure Veronica Riavis Abstract Among the images that describe the proportions of the human body, Leonardo da Vinci’s one is certainly the most effective, despite the fact that the iconic drawing does not faithfully follow the measurements indicated by Vitruvius. This research concerned the geometric analysis of the interpretations of the Vitruvian man proposed in the Renaissance editions of De Architectura, carried out after the aniconic editio princeps by Sulpicio da Veroli. Giovanni Battista da Sangallo drew the Vitruvian figure directly on his Sulpician copy, very similar to the images by Albrecht Dürer in The Symmetry of the Human Bodies [Dürer 1591]. Fra Giocondo proposes in 1511 two engravings of homo ad quadratum and ad circulum in the first Latin illustrated edition of De Architectura, while the man by Cesare Cesariano, author of the first version in vernacular of 1521, has a deformed body extension to adapt a geometric grid. Francesco di Giorgio Martini and Giacomo Andrea da Ferrara also propose significant versions believed to be the origin of Leonardo’s figuration due to the friendship that bound them. The man inscribed in the circle and square in the partial translation of Francesco di Giorgio’s De Architectura anticipates the da Vinci’s solution although it does not have explicit metric references, while the drawing by Giacomo Andrea da Ferrara reproduces a figure similar to Leonardo’s one. The comparison between the measures expressed by Vitruvius to proportion the man and the various graphic descriptions allows us to understand the complex story of the exegesis of the Roman treatise.
    [Show full text]
  • Squaring the Circle: Marriage of Heaven and Earth
    Rachel Fletcher Geometer’s Angle 113 Division St. Squaring the Circle: Great Barrington, MA 01230 USA Marriage of Heaven and Earth [email protected] Abstract. It is impossible to construct circles and squares of equal Keywords: Squaring the circle, areas or perimeters precisely, for circles are measured by the descriptive geometry, Leonardo incommensurable value pi (S) and squares by rational whole da Vinci, incommensurate numbers. But from early times, geometers have attempted to values reconcile these two orders of geometry. “Squaring the circle” can represent the union of opposing eternal and finite qualities, symbolizing the fusion of matter and spirit and the marriage of heaven and earth. In this column, we consider various methods for squaring the circle and related geometric constructions. I Introduction From the domed Pantheon of ancient Rome, if not before, architects have fashioned sacred dwellings after conceptions of the universe, utilizing circle and square geometries to depict spirit and matter united. Circular domes evoke the spherical cosmos and the descent of heavenly spirit to the material plane. Squares and cubes delineate the spatial directions of our physical world and portray the lifting up of material perfection to the divine. Constructing these basic figures is elementary. The circle results when a cord is made to revolve around a post. The right angle of a square appears in a 3:4:5 triangle, easily made from a string of twelve equally spaced knots.1 But "squaring the circle”—drawing circles and squares of equal areas or perimeters by means of a compass or rule—has eluded geometers from early times.2 The problem cannot be solved with absolute precision, for circles are measured by the incommensurable value pi (S= 3.1415927…), which cannot be accurately expressed in finite whole numbers by which we measure squares.3 At the symbolic level, however, the quest to obtain circles and squares of equal measure is equivalent to seeking the union of transcendent and finite qualities, or the marriage of heaven and earth.
    [Show full text]
  • Kittitorn Kasemkitwatana //Studies for Project at ENSCI-Les Ateliers
    //kittitorn kasemkitwatana //studies for project at ENSCI-les ateliers //master in Design and contemporary technology (ctc) //subject of impermanence //mathematics and buddhism //e-mail : [email protected] void setup () { size (600,800); } void draw () { //background in black background (0) ; //draw the main circle ellipse (300,300,300,300); stroke (255); fill (0); //draw a series of circles int numberOfcircles=12; float angle=2*PI/numberOfcircles; //repeat for(int i=0;i<numberOfcircles;i++) { float x=300 + 150*cos(angle*i); //calculus of x float y=300 + 150*sin(angle*i); //calculus of x //condition to the width if (i%3==0) { ellipse (x,y,30,30); stroke (255); fill (0); }else{ ellipse (x,y,10,10); stroke (255); fill (0); } } } // p (169); p (168); p // table of content; INTRODUCTION acknowledgement |||||||||||||||||||||||||||||||||||||||6 The nature of reality in a nutshell by religions and mathematics |||||||||||||||||||||||||||||7 james kowall ||||||||||||||||||||||||||||||||||||77 abstract |||||||||||||||||||||||||||||||||||||||||||||17 mathematics and art ||||||||||||||||||||||||||||||||||23 /* Philosophers buddhism thought and mathematics |||||||||||||||||||||24 A metaphysics of morality : Kant and Buddhism |||80 six aspect of mathematics which are relevant to Kant and the moral law ||||||||||||||||||||||||||81 buddhist philosophy ||||||||||||||||||||||||||||||||||26 The connection in terms of principle between philosophers and buddhism |||||||||||||||||||||||88 HISTORY /* Mathematics Buddhism and German Philosophy
    [Show full text]