Exhibit Walkthrough
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Title: Fractals Topics: Symmetry, Patterns in Nature, Biomimicry Related Disciplines: Mathematics, Biology Objectives: A. Learn
Title: Fractals Topics: symmetry, patterns in nature, biomimicry Related Disciplines: mathematics, biology Objectives: A. Learn about how fractals are made. B. Think about the mathematical processes that play out in nature. C. Create a hands-on art project. Lesson: A. Introduction (20 minutes) Fractals are sets in mathematics based on repeated processes at different scales. Why do we care? Fractals are a part of nature, geometry, algebra, and science and are beautiful in their complexity. Fractals come in many types: branching, spiral, algebraic, and geometric. Branching and spiral fractals can be found in nature in many different forms. Branching is seen in trees, lungs, snowflakes, lightning, and rivers. Spirals are visible in natural forms such as hurricanes, shells, liquid motion, galaxies, and most easily visible in plants like flowers, cacti, and Romanesco Figure 1: Romanesco (Figure 1). Branching fractals emerge in a linear fashion. Spirals begin at a point and expand out in a circular motion. A cool demonstration of branching fractals can be found at: http://fractalfoundation.org/resources/what-are-fractals/. Algebraic fractals are based on surprisingly simple equations. Most famous of these equations is the Mandelbrot Set (Figure 2), a plot made from the equation: The most famous of the geometric fractals is the Sierpinski Triangle: As seen in the diagram above, this complex fractal is created by starting with a single triangle, then forming another inside one quarter the size, then three more, each one quarter the size, then 9, 27, 81, all just one quarter the size of the triangle drawn in the previous step. -
An Artistic and Mathematical Look at the Work of Maurits Cornelis Escher
University of Northern Iowa UNI ScholarWorks Honors Program Theses Honors Program 2016 Tessellations: An artistic and mathematical look at the work of Maurits Cornelis Escher Emily E. Bachmeier University of Northern Iowa Let us know how access to this document benefits ouy Copyright ©2016 Emily E. Bachmeier Follow this and additional works at: https://scholarworks.uni.edu/hpt Part of the Harmonic Analysis and Representation Commons Recommended Citation Bachmeier, Emily E., "Tessellations: An artistic and mathematical look at the work of Maurits Cornelis Escher" (2016). Honors Program Theses. 204. https://scholarworks.uni.edu/hpt/204 This Open Access Honors Program Thesis is brought to you for free and open access by the Honors Program at UNI ScholarWorks. It has been accepted for inclusion in Honors Program Theses by an authorized administrator of UNI ScholarWorks. For more information, please contact [email protected]. Running head: TESSELLATIONS: THE WORK OF MAURITS CORNELIS ESCHER TESSELLATIONS: AN ARTISTIC AND MATHEMATICAL LOOK AT THE WORK OF MAURITS CORNELIS ESCHER A Thesis Submitted in Partial Fulfillment of the Requirements for the Designation University Honors Emily E. Bachmeier University of Northern Iowa May 2016 TESSELLATIONS : THE WORK OF MAURITS CORNELIS ESCHER This Study by: Emily Bachmeier Entitled: Tessellations: An Artistic and Mathematical Look at the Work of Maurits Cornelis Escher has been approved as meeting the thesis or project requirements for the Designation University Honors. ___________ ______________________________________________________________ Date Dr. Catherine Miller, Honors Thesis Advisor, Math Department ___________ ______________________________________________________________ Date Dr. Jessica Moon, Director, University Honors Program TESSELLATIONS : THE WORK OF MAURITS CORNELIS ESCHER 1 Introduction I first became interested in tessellations when my fifth grade mathematics teacher placed multiple shapes that would tessellate at the front of the room and we were allowed to pick one to use to create a tessellation. -
Modelling of Virtual Compressed Structures Through Physical Simulation
MODELLING OF VIRTUAL COMPRESSED STRUCTURES THROUGH PHYSICAL SIMULATION P.Brivio1, G.Femia1, M.Macchi1, M.Lo Prete2, M.Tarini1;3 1Dipartimento di Informatica e Comunicazione, Universita` degli Studi dell’Insubria, Varese, Italy - [email protected] 2DiAP - Dipartimento di Architettura e Pianificazione, Politecnico Di Milano, Milano, Italy 3Visual Computing Group, Istituto Scienza e Tecnologie dell’Informazione, C.N.R., Pisa, Italy KEY WORDS: (according to ACM CCS): I.3.5 [Computer Graphics]: Physically based modeling I.3.8 [Computer Graphics]: Applications ABSTRACT This paper presents a simple specific software tool to aid architectural heuristic design of domes, coverings and other types of complex structures. The tool aims to support the architect during the initial phases of the project, when the structure form has yet to be defined, introducing a structural element very early into the morpho-genesis of the building shape (in contrast to traditional design practices, where the structural properties are taken into full consideration only much later in the design process). Specifically, the tool takes a 3D surface as input, representing a first approximation of the intended shape of a dome or a similar architectural structure, and starts by re-tessellating it to meet user’s need, according to a recipe selected in a small number of possibilities, reflecting different common architectural gridshell styles (e.g. with different orientations, con- nectivity values, with or without diagonal elements, etc). Alternatively, the application can import the gridshell structure verbatim, directly as defined by the connectivity of an input 3D mesh. In any case, at this point the 3D model represents the structure with a set of beams connecting junctions. -
Thesis Final Copy V11
“VIENS A LA MAISON" MOROCCAN HOSPITALITY, A CONTEMPORARY VIEW by Anita Schwartz A Thesis Submitted to the Faculty of The Dorothy F. Schmidt College of Arts & Letters in Partial Fulfillment of the Requirements for the Degree of Master of Art in Teaching Art Florida Atlantic University Boca Raton, Florida May 2011 "VIENS A LA MAlSO " MOROCCAN HOSPITALITY, A CONTEMPORARY VIEW by Anita Schwartz This thesis was prepared under the direction of the candidate's thesis advisor, Angela Dieosola, Department of Visual Arts and Art History, and has been approved by the members of her supervisory committee. It was submitted to the faculty ofthc Dorothy F. Schmidt College of Arts and Letters and was accepted in partial fulfillment of the requirements for the degree ofMaster ofArts in Teaching Art. SUPERVISORY COMMIITEE: • ~~ Angela Dicosola, M.F.A. Thesis Advisor 13nw..Le~ Bonnie Seeman, M.F.A. !lu.oa.twJ4..,;" ffi.wrv Susannah Louise Brown, Ph.D. Linda Johnson, M.F.A. Chair, Department of Visual Arts and Art History .-dJh; -ZLQ_~ Manjunath Pendakur, Ph.D. Dean, Dorothy F. Schmidt College ofArts & Letters 4"jz.v" 'ZP// Date Dean. Graduate Collcj;Ze ii ACKNOWLEDGEMENTS I would like to thank the members of my committee, Professor John McCoy, Dr. Susannah Louise Brown, Professor Bonnie Seeman, and a special thanks to my committee chair, Professor Angela Dicosola. Your tireless support and wise counsel was invaluable in the realization of this thesis documentation. Thank you for your guidance, inspiration, motivation, support, and friendship throughout this process. To Karen Feller, Dr. Stephen E. Thompson, Helena Levine and my colleagues at Donna Klein Jewish Academy High School for providing support, encouragement and for always inspiring me to be the best art teacher I could be. -
Branching in Nature Jennifer Welborn Amherst Regional Middle School, [email protected]
University of Massachusetts Amherst ScholarWorks@UMass Amherst Patterns Around Us STEM Education Institute 2017 Branching in Nature Jennifer Welborn Amherst Regional Middle School, [email protected] Wayne Kermenski Hawlemont Regional School, [email protected] Follow this and additional works at: https://scholarworks.umass.edu/stem_patterns Part of the Biology Commons, Physics Commons, Science and Mathematics Education Commons, and the Teacher Education and Professional Development Commons Welborn, Jennifer and Kermenski, Wayne, "Branching in Nature" (2017). Patterns Around Us. 2. Retrieved from https://scholarworks.umass.edu/stem_patterns/2 This Article is brought to you for free and open access by the STEM Education Institute at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Patterns Around Us by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. Patterns Around Us: Branching in Nature Teacher Resource Page Part A: Introduction to Branching Massachusetts Frameworks Alignment—The Nature of Science • Overall, the key criterion of science is that it provide a clear, rational, and succinct account of a pattern in nature. This account must be based on data gathering and analysis and other evidence obtained through direct observations or experiments, reflect inferences that are broadly shared and communicated, and be accompanied by a model that offers a naturalistic explanation expressed in conceptual, mathematical, and/or mechanical terms. Materials: -
Real-Time Rendering Techniques with Hardware Tessellation
Volume 34 (2015), Number x pp. 0–24 COMPUTER GRAPHICS forum Real-time Rendering Techniques with Hardware Tessellation M. Nießner1 and B. Keinert2 and M. Fisher1 and M. Stamminger2 and C. Loop3 and H. Schäfer2 1Stanford University 2University of Erlangen-Nuremberg 3Microsoft Research Abstract Graphics hardware has been progressively optimized to render more triangles with increasingly flexible shading. For highly detailed geometry, interactive applications restricted themselves to performing transforms on fixed geometry, since they could not incur the cost required to generate and transfer smooth or displaced geometry to the GPU at render time. As a result of recent advances in graphics hardware, in particular the GPU tessellation unit, complex geometry can now be generated on-the-fly within the GPU’s rendering pipeline. This has enabled the generation and displacement of smooth parametric surfaces in real-time applications. However, many well- established approaches in offline rendering are not directly transferable due to the limited tessellation patterns or the parallel execution model of the tessellation stage. In this survey, we provide an overview of recent work and challenges in this topic by summarizing, discussing, and comparing methods for the rendering of smooth and highly-detailed surfaces in real-time. 1. Introduction Hardware tessellation has attained widespread use in computer games for displaying highly-detailed, possibly an- Graphics hardware originated with the goal of efficiently imated, objects. In the animation industry, where displaced rendering geometric surfaces. GPUs achieve high perfor- subdivision surfaces are the typical modeling and rendering mance by using a pipeline where large components are per- primitive, hardware tessellation has also been identified as a formed independently and in parallel. -
Golden Ratio: a Subtle Regulator in Our Body and Cardiovascular System?
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/306051060 Golden Ratio: A subtle regulator in our body and cardiovascular system? Article in International journal of cardiology · August 2016 DOI: 10.1016/j.ijcard.2016.08.147 CITATIONS READS 8 266 3 authors, including: Selcuk Ozturk Ertan Yetkin Ankara University Istinye University, LIV Hospital 56 PUBLICATIONS 121 CITATIONS 227 PUBLICATIONS 3,259 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: microbiology View project golden ratio View project All content following this page was uploaded by Ertan Yetkin on 23 August 2019. The user has requested enhancement of the downloaded file. International Journal of Cardiology 223 (2016) 143–145 Contents lists available at ScienceDirect International Journal of Cardiology journal homepage: www.elsevier.com/locate/ijcard Review Golden ratio: A subtle regulator in our body and cardiovascular system? Selcuk Ozturk a, Kenan Yalta b, Ertan Yetkin c,⁎ a Abant Izzet Baysal University, Faculty of Medicine, Department of Cardiology, Bolu, Turkey b Trakya University, Faculty of Medicine, Department of Cardiology, Edirne, Turkey c Yenisehir Hospital, Division of Cardiology, Mersin, Turkey article info abstract Article history: Golden ratio, which is an irrational number and also named as the Greek letter Phi (φ), is defined as the ratio be- Received 13 July 2016 tween two lines of unequal length, where the ratio of the lengths of the shorter to the longer is the same as the Accepted 7 August 2016 ratio between the lengths of the longer and the sum of the lengths. -
Art on a Cellular Level Art and Science Educational Resource
Art on a Cellular Level Art and Science Educational Resource Phoenix Airport Museum Educators and Parents, With foundations in art, geometry and plant biology, the objective of this lesson is to recognize patterns and make connections between the inexhaustible variety of life on our planet. This educational resource is geared for interaction with students of all ages to support the understanding between art and science. It has been designed based on our current exhibition, Art on a Cellular Level, on display at Sky Harbor. The questions and activities below were created to promote observation and curiosity. There are no wrong answers. You may print this PDF to use as a workbook or have your student refer to the material online. We encourage educators to expand on this art and science course to create a lesson plan. If you enjoy these activities and would like to investigate further, check back for new projects each week (three projects total). We hope your student will have fun with this and make an art project to share with us. Please send an image of your student’s artwork to [email protected] or hashtag #SkyHarborArts for an opportunity to be featured on Phoenix Sky Harbor International Airport’s social media. Art on a Cellular Level exhibition Sky Harbor, Terminal 4, level 3 Gallery Art is a lens through which we view the world. It can be a tool for storytelling, expressing cultural values and teaching fundamentals of math, technology and science in a visual way. The Terminal 4 gallery exhibition, Art on a Cellular Level, examines the intersections between art and science. -
Simple Rules for Incorporating Design Art Into Penrose and Fractal Tiles
Bridges 2012: Mathematics, Music, Art, Architecture, Culture Simple Rules for Incorporating Design Art into Penrose and Fractal Tiles San Le SLFFEA.com [email protected] Abstract Incorporating designs into the tiles that form tessellations presents an interesting challenge for artists. Creating a viable M.C. Escher-like image that works esthetically as well as functionally requires resolving incongruencies at a tile’s edge while constrained by its shape. Escher was the most well known practitioner in this style of mathematical visualization, but there are significant mathematical objects to which he never applied his artistry including Penrose Tilings and fractals. In this paper, we show that the rules of creating a traditional tile extend to these objects as well. To illustrate the versatility of tiling art, images were created with multiple figures and negative space leading to patterns distinct from the work of others. 1 1 Introduction M.C. Escher was the most prominent artist working with tessellations and space filling. Forty years after his death, his creations are still foremost in people’s minds in the field of tiling art. One of the reasons Escher continues to hold such a monopoly in this specialty are the unique challenges that come with creating Escher type designs inside a tessellation[15]. When an image is drawn into a tile and extends to the tile’s edge, it introduces incongruencies which are resolved by continuously aligning and refining the image. This is particularly true when the image consists of the lizards, fish, angels, etc. which populated Escher’s tilings because they do not have the 4-fold rotational symmetry that would make it possible to arbitrarily rotate the image ± 90, 180 degrees and have all the pieces fit[9]. -
Bios and the Creation of Complexity
BIOS AND THE CREATION OF COMPLEXITY Prepared by Hector Sabelli and Lazar Kovacevic Chicago Center for Creative Development http://creativebios.com BIOS, A LINK BETWEEN CHAOS AND COMPLEXITY BIOS is a causal and creative process that follows chaos in sequences of patterns of increasing complexity. Bios was first identified as the pattern of heartbeat intervals, and it has since then been found in a wide variety of processes ranging in size from Schrodinger’s wave function to the temporal distribution of galaxies, and ranging in complexity from physics to economics to music. This tutorial provides concise descriptions of (1) bios, (2) time series analyses software to identify bios in empirical data, (3) biotic patterns in nature, (4) biotic recursions, (5) biotic feedback, (6) Bios Theory of Evolution, and (7) biotic strategies for human action in scientific, clinical, economic and sociopolitical settings. Time series of heartbeat intervals (RRI), and of biotic and chaotic series generated with mathematical recursions of bipolar feedback. Heartbeats are the prototype of bios. Turbulence is the prototype of chaos. 1 1. BIOS BIOS is an expansive process with chaotic features generated by feedback and characterized by features of creativity. Process: Biotic patterns are sequences of actions or states. Expansive: Biotic patterns continually expand in their diversity and often in their range. This is significant, as natural processes expand, in contrast to convergence to equilibrium, periodic, or chaotic attractors. Expanding processes range from the universe to viruses, and include human populations, empires, ideas and cultures. Chaotic: Biotic series are aperiodic and generated causally; mathematically generated bios is extremely sensitive to initial conditions. -
The Golden Ratio and the Diagonal of the Square
Bridges Finland Conference Proceedings The Golden Ratio and the Diagonal of the Square Gabriele Gelatti Genoa, Italy [email protected] www.mosaicidiciottoli.it Abstract An elegant geometric 4-step construction of the Golden Ratio from the diagonals of the square has inspired the pattern for an artwork applying a general property of nested rotated squares to the Golden Ratio. A 4-step Construction of the Golden Ratio from the Diagonals of the Square For convenience, we work with the reciprocal of the Golden Ratio that we define as: φ = √(5/4) – (1/2). Let ABCD be a unit square, O being the intersection of its diagonals. We obtain O' by symmetry, reflecting O on the line segment CD. Let C' be the point on BD such that |C'D| = |CD|. We now consider the circle centred at O' and having radius |C'O'|. Let C" denote the intersection of this circle with the line segment AD. We claim that C" cuts AD in the Golden Ratio. B C' C' O O' O' A C'' C'' E Figure 1: Construction of φ from the diagonals of the square and demonstration. Demonstration In Figure 1 since |CD| = 1, we have |C'D| = 1 and |O'D| = √(1/2). By the Pythagorean Theorem: |C'O'| = √(3/2) = |C''O'|, and |O'E| = 1/2 = |ED|, so that |DC''| = √(5/4) – (1/2) = φ. Golden Ratio Pattern from the Diagonals of Nested Squares The construction of the Golden Ratio from the diagonal of the square has inspired the research of a pattern of squares where the Golden Ratio is generated only by the diagonals. -
Leonardo Universal
Leonardo Universal DE DIVINA PROPORTIONE Pacioli, legendary mathematician, introduced the linear perspective and the mixture of colors, representing the human body and its proportions and extrapolating this knowledge to architecture. Luca Pacioli demonstrating one of Euclid’s theorems (Jacobo de’Barbari, 1495) D e Divina Proportione is a holy expression commonly outstanding work and icon of the Italian Renaissance. used in the past to refer to what we nowadays call Leonardo, who was deeply interested in nature and art the golden section, which is the mathematic module mathematics, worked with Pacioli, the author of the through which any amount can be divided in two text, and was a determined spreader of perspectives uneven parts, so that the ratio between the smallest and proportions, including Phi in many of his works, part and the largest one is the same as that between such as The Last Supper, created at the same time as the largest and the full amount. It is divine for its the illustrations of the present manuscript, the Mona being unique, and triune, as it links three elements. Lisa, whose face hides a perfect golden rectangle and The fusion of art and science, and the completion of the Uomo Vitruviano, a deep study on the human 60 full-page illustrations by the preeminent genius figure where da Vinci proves that all the main body of the time, Leonardo da Vinci, make it the most parts were related to the golden ratio. Luca Pacioli credits that Leonardo da Vinci made the illustrations of the geometric bodies with quill, ink and watercolor.