A-Type Granite Plutons and Tin Skarns in Southeast Yukon: Mindy Prospect and Surrounding Granites of 105C/9

Total Page:16

File Type:pdf, Size:1020Kb

A-Type Granite Plutons and Tin Skarns in Southeast Yukon: Mindy Prospect and Surrounding Granites of 105C/9 A-type granite plutons and tin skarns in southeast Yukon: Mindy prospect and surrounding granites of 105C/9 Tim Liverton Watson Lake, Yukon Liverton, T., 2016. A-type granite plutons and tin skarns in southeast Yukon: Mindy prospect and surrounding granite of 105C/9. In: Yukon Exploration and Geology 2015, K.E. MacFarlane and M.G. Nordling (eds.), Yukon Geological Survey, p. 151-164. ABSTRACT In the southeast Yukon, immediately southwest of the mid-Cretaceous Cassiar suite plutons,is a northwest-trending suite of anorogenic one-mica granites called the Seagull suite. This suite is comprised of the Seagull and Hake batholiths, Ork and Thirtymile stocks and an un-named intrusion to the northwest. These B and F enriched granites are associated with various forms of tin mineralization, including skarns. The Mindy prospect in the Thirtymile Range contains a variety of metasomatic silicate and borate and fluoride minerals. Tin (Sn) mineralization is found as cassiterite and borate mineral phases. Mapping has shown that faulting active during metamorphism- metsomatism controlled the distribution of the skarn mineralization. Both mineral chemistry and structural control of mineralization have a significant effect on the economic potential of the Mindy prospect. [email protected] YUKON EXPLORATION AND GEOLOGY 2015 151 YUKON GEOLOGICAL RESEARCH INTRODUCTION Skarn mineralization may have a variety of tin minerals: cassiterite, vonsenite [3(Fe,Mg)O·2Fe2O3·SnO2·3B2O3], A northwest-trending line of mid-Cretaceous granite 2+ 3+ hulsite [(Fe ,Mg)2·(Fe ,Sn)BO5], nordenskiöldine plutons in southeast Yukon (Seagull and Hake batholiths, [CaSn(BO ) ] and malayaite [CaSn(SiO )] associated with Ork stock, Thirtymile stock and one un-named stock) have 3 2 5 fluoborite [Mg3(F,OH)3BO3]. The borates and silicates been recognized as being distinct from the larger Cassiar are metallurgically refractory and only the cassiterite is suite of intrusions that are immediately to the east of the of economic interest; as a result, a total Sn analysis may Seagull suite trend. They are one-mica monzo to alkali give a misleading result for evaluation of a prospect. feldspar granites which have similar to A-type plutons The proportion of oxide tin (as cassiterite) to tin borates in chemistry, texture (occasional rapakivi texture) and and fluorides in the Mindy prospect is estimated to be fluorine-boron-tin (F-B-Sn) mineralization. Tin-rich skarns, somewhat greater than 50%. greisens and tin±niobium (Nb) ± tantalum (Ta) sheeted vein stockworks are associated with the Seagull batholith This paper discusses some of the 1992 work plus a but the Thirtymile and Ork stocks have peripheral tin or re-evaluation of Sn mineralogy through examination tungsten (W) skarns. of original thin sections and 23 new thin and polished sections cut from drill core stored in the H.S. Bostock Core The Mindy prospect (Fig. 1), tested with shallow diamond Library. drilling by Newmont Mining Corp. in 1981, is a greisen- altered skarn characterized by primary, high temperature calc-silicate assemblages that have been formed in, and GRANITES peripheral to, extensional faults above a buried stock and The Thirtymile Range contains mid-Cretaceous (101 Ma; have been replaced by iron-rich greisenized B-F-Sn skarn Liverton, 1992; Liverton et al., 2001) stocks of mineral assemblages. monzogranite to alkali feldspar granite according to the Streckeisen classification (LeMaitre, 2004). Two lithofacies of biotite-only granite make up the bulk of the outcropping Thirtymile stock to the northwest of the Mindy prospect (Fig. 2). A volumetrically minor hornblende-bearing porphyry forms a disaggregated syn-plutonic dike within the Thirtymile stock and is the only amphibole- bearing lithofacies seen in the pluton and the Seagull suite. A lithium-mica topaz leucogranite crops out at the southeast corner of the Thirtymile stock and forms ladder ALASKA dikes in the biotite-bearing ‘even-grained’ lithofacies. The leucogranite also forms 1-5 m dikes and three sills 65 o N that contain spectacular concentrations of topaz. The Dawson leucogranite may be classified as an alkali feldspar granite sensu stricto since the plagioclase is at least 95% albite. A similar lithofacies forms the just-exposed Ork stock and adjacent dikes that are 2.5 km southeast of the Mindy N.W.T. YUKON prospect. The Thirtymile and Ork leucogranites consist of a quartz-albite-orthoclase-zinnwaldite-topaz-fluorite mineral assemblage contianing accessory fergusonite. MINDY Whitehorse The Thirtymile and Ork stocks, together with the Seagull Watson L. and Hake batholiths, were considered as a sub-suite of the Teslin 60 o N Cassiar intrusions by Liverton (1992), called the Seagull- o o Thirtymile suite and identified as having A-type affinity (Liverton and Alderton, 1994; Liverton and Botelho, 2001; 135 W 130W Liverton et al., 2005). Subsequent work on the Cretaceous Figure 1. Location of the Mindy prospect. granites of the Northern Cordillera added a further pluton to the NW as being part of this suite, renamed 152 YUKON EXPLORATION AND GEOLOGY 2015 LIVERTON - A-TYPE GRANITE AND TIN SKARNS IN SOUTHEAST YUKON: MINDY PROJECT 3 ? 1200 13 ? 8 5 ? 1600 12 ? ? 15 640,000E 1300 5 10 82 24 4 THIRTYMILE ? Moraine 20 8 8 5 ? STOCK 10 ? 3 ? ? 5 ? ? 32 ? 6 6 7 8 7 ? ? 20 ? ? 1400 30 8 7 6 25 6 ? 8 ? ? 6 6 ? 10 3 18 18 Min. & alt. 7 NOT 7 8 7 82 1300 6730,000N 88 8 ? 6 MAPPED NAD 27 5 ? 15 8 7 ? 10 10 5 10 8 8 9 4 9 6 18 La of Thrust 4 8 7 4,5 1600 8 Thirtymile 70 4 4 15 8 7 5 e 10 c ra altered t 5 7 9 e 10 bl MC si 7 os 4 P 16 9 10 9 projected NOT MAPPED 4 4 1926 Marble, HF 5 5 24 NOT MAPPED 5 4 5 ? 3 1 9 2 18 4 5 3 15 5 19 3 5 6 4 4 5 5 ? 5 3 20 5 1 1500 3 3 38 1 5 3 3 2 18 2 58 1200 4 3 3 Sheared volcs., 2 10 NOT qtzte, slaty mylonite 3 3 1100 1100 MAPPED 1300 18 2 2 10 3 9 3 5 14 2 10 Moraine ? 15 80 12 4 30 3 87 ? 9 1000 6 22 N 1997? ? 3 ? ? ? ? 20 5 ORK ? ? 19 Skarn ? ? ? 16 21 8 ? 3 2 STOCK ? 10 3 float 3 3 6 ? 9 5 10 13 10 3 3 9 ? 3 16 2 ? ? 2 5 4 Moraine 3,4 ? 9 26 5 1 0 1 2 3 4 “Ork” 3 ? 3 4 2 “Mindy” 10 2 Tarn ? ? Kilometres Sheared 10 2 15 3 5 ? volcanics ? at summit 9 4 Figure 2. Geology of the Thirtymile Range. Mapping 1987-1988, by T. Liverton. them as simply the Seagull suite, which is recognized remain as a melt to <650°C, producing a compositional as distinct from the Cassiar intrusions, and confirmed trend different to the ‘normal’ quartz enrichment process their anorogenic nature (Rasmussen, 2013). They are (Fig. 4a). Halogen-enriched granites fractionate to albite- metaluminous to weakly peraluminous and conform to enriched compositions, and due to protracted melt/ type A1 of Eby (1992), i.e., they are anorogenic (Fig. 3; aqueous fluid and fluid/vapour fractionation, as well as Liverton and Botelho, 2001). their reduced nature, are able to concentrate high field strength elements (HFSE) into the hydrothermal phase: The Thirtymile and Ork leucogranites are the most notably Sn, Nb, Ta (Lehman 1990). Shallow depth of chemically evolved (i.e., fractionated) granites in the emplacement of the pluton, and being located in the Northern Cordillera (Rasmussen, 2013), having Rb/Sr apical part of a batholith, is essential for the development contents exceeding 3000. They might be considered the of the F-B mineralization. An ‘inheritance’ of those metals plutonic analogue to the topaz rhyolites, such as found (i.e., that the source rocks were anomalous in HFSE) might from Colorado to New Mexico (Christianson et al., 1986). be possible (Lehmann, 1990) but fractionation processes They form the apical portion of batholiths which were in low-temperature reduced melts are most important for emplaced at shallow depth (no more than 2 km), mineralization. In the Seagull suite, halogen enrichment is as indicated by common miarolitic cavities and pod reflected in the unusual mineralogy at the Mindy and Ork pegmatites. These magmas were highly enriched in alkalis, prospects, these are greisenized skarn in the classification Rb, Li, with B and anions (F-, Cl-). This B and halogen of Kwak (1987). enrichment would have allowed the granitic magma to YUKON EXPLORATION AND GEOLOGY 2015 153 YUKON GEOLOGICAL RESEARCH Analyses of Fe-Li micas ranging from siderophyllite to granite carrying very little total iron is capable of exsolving zinnwaldite from the Seagull suite granites indicate Fe-rich hydrothermal fluid, but this is evident in the a sequence of Li-enrichment in the micas displaying retrograde/greisen stage skarn mineralization at the Mindy progressive fractionation from the least evolved lithofacies, prospect. the Thirtymile porphyry, through the Hake granite, Q Seagull granite, and the Thirtymile biotite granite, to the zinnwaldite of the leucogranite (leucogranite and a biotite-bearing lithofacies of the Thirtymile plutons are shown in Figure 4b,c). Biotite compositions indicate that these granites were distinctly reduced (Fig. 4c): biotite 2+ 2+ 3+ {Fe / (Fe +Fe )} = 0.811-0.965, magma ƒO2 ≤ NNO Quartz buffer (Liverton and Botelho, 2001). The progression to enrichment extremely Li-rich micas (trioctahedral 1M zinnwaldite) may 1 be a particular trait of the anorogenic granite. 2 3 The Li-mica leucogranite of the Mindy stock exhibits Increasing fluorine 4 three forms of hydrothermal mineralization at its southern trend contact: rare cm-scale beryl pegmatite, cm-scale lepidolite- Ab Or topaz greisen veins and, presumably the last event, Li - mica Even - grained Megacrystic Porphyry mm-scale joints that carry hematite.
Recommended publications
  • Fall 2016 Gems & Gemology
    FALL 2016 VOLUME LII THE UARTERLY JOURNAL OF THE GEMOLOGICAL INSTITUTE OF AMERICA Review of CVD Synthetic Diamonds Reversible Color Alteration of Blue Zircon Sapphires from the Russian Far East Grandidierite from Madagascar Editorial Staff Editor-in-Chief Editors, Lab Notes Contributing Editors Duncan Pay Thomas M. Moses James E. Shigley gia.edu/gems-gemology [email protected] Shane F. McClure Andy Lucas Donna Beaton Subscriptions Managing Editor Editors, Micro-World Copies of the current issue may be purchased for Stuart D. Overlin Nathan Renfro Editor-in-Chief Emeritus $29.95 plus shipping. Subscriptions are $79.99 for one [email protected] Elise A. Skalwold Alice S. Keller year (4 issues) in the U.S. and $99.99 elsewhere. Cana- John I. Koivula dian subscribers should add GST. Discounts are avail- Editor Customer Service able for group subscriptions, GIA alumni, and current Jennifer-Lynn Archuleta Editors, Gem News Martha Erickson GIA students. To purchase print subscriptions, visit [email protected] (760) 603-4502 store.gia.edu or contact Customer Service. For insti- Emmanuel Fritsch tutional rates, contact Customer Service. [email protected] Technical Editors Gagan Choudhary Tao Z. Hsu Christopher M. Breeding Database Coverage Gems & Gemology’s impact factor is 0.394, accord- [email protected] Editorial Assistants ing to the 2015 Thomson Reuters Journal Citation Jennifer Stone-Sundberg Brooke Goedert Reports (issued July 2016). G&G is abstracted in Erin Hogarth Thomson Reuters products (Current Contents: Phys- ical, Chemical & Earth
    [Show full text]
  • Ultrahigh-Field Mg NMR and DFT Study of Magnesium Borate Minerals
    Ultrahigh-Field 25Mg NMR and DFT Study of Magnesium Borate Minerals 1 2† 3 4 5 Bing Zhou, § Alexandra Faucher, § Robert Laskowski, Victor V. Terskikh, Scott Kroeker, Wei Sun,6,7 Jinru Lin,6 Jin-Xiao Mi,7 Vladimir K. Michaelis2* and Yuanming Pan6* 1. College of Materials Science and Engineering, Tongji University, Shanghai 21000, China 2. Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada 3. Institute of High Performance Computing, A*STAR, 1 Fusionopolis Way, #16-16, Connexis, Singapore 138632 4. Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5 Canada 5. Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada 6. Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada 7. Fujian Provincial Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, Fujian Province, China †Current address: Bernal Institute, University of Limerick, Limerick, Republic of Ireland §BZ and AF contributed equally *Corresponding authors: Vladimir K. Michaelis ([email protected]) and Yuanming Pan ([email protected]) Keywords: MAS NMR, grandidierite, quantum chemical calculations, WURST, CPMG, wideline, NMR crystallography 1 ABSTRACT A series of well-characterized magnesium borate minerals and synthetic analogues have been studied via ultrahigh-field 25Mg solid-state nuclear magnetic resonance (NMR) spectroscopy. Correlations between 25Mg NMR parameters and the local structure at the magnesium site(s) are highlighted and discussed. First-principles density functional theory calculations of 25Mg NMR parameters carried out with the WIEN2k software package support our experimental 25Mg NMR 25 data. Experimental Mg CQ values range from 0.7 ± 0.1 MHz in hungchaoite to 18.0 ± 0.5 MHz in 25 boracite-type Mg3B7O13Br.
    [Show full text]
  • Potash, Soda, and Borate Mineral Mining 1997 Issued October 1999
    Potash, Soda, and Borate Mineral Mining 1997 Issued October 1999 EC97N-2123I 1997 Economic Census Mining Industry Series U.S. Department of Commerce Economics and Statistics Administration U.S. CENSUS BUREAU ACKNOWLEDGMENTS The staff of the Manufacturing and Con- The Geography Division staff developed struction Division prepared this report. geographic coding procedures and associ- Judy M. Dodds, Assistant Chief for Cen- ated computer programs. sus and Related Programs, was respon- The Economic Statistical Methods and Pro- sible for the overall planning, manage- gramming Division, Charles P. Pautler ment, and coordination. Patricia L. Jr., Chief, developed and coordinated the Horning, Chief, Construction and Miner- computer processing systems. Martin S. als Branch, assisted by M. Susan Bucci Harahush, Assistant Chief for Quinquen- and Susan L. DiCola, Section Chiefs, per- nial Programs, assisted by Barbara Lam- formed the planning and implementation. bert and Christina Arledge were respon- Richard Hough, Christopher D. sible for design and implementation of the Perrien, John F. Roehl, Eva J. Snapp, computer systems. Gary T. Sheridan, and Sarah B. Teichner provided primary Chief, Manufacturing and Construction staff assistance. Branch, Lori A. Guido and Roy A. Smith, Brian Greenberg, Assistant Chief for Section Chiefs, supervised the preparation Research and Methodology Programs, of the computer programs. assisted by Stacey Cole, Chief, Manufac- turing Programs Methodology Branch, and Computer Services Division, Debra Will- Robert Struble, Section Chief, provided iams, Chief, performed the computer pro- the mathematical and statistical tech- cessing. niques as well as the coverage operations. The staff of the Administrative and Cus- Jeffrey Dalzell and Cathy Ritenour pro- tomer Services Division, Walter C.
    [Show full text]
  • Borate Minerals. Ii. a Hierarchy of Structures
    731 The Canadian Mineralogist Vol 37, pp 731-'162(1999) BORATEMINERALS. II. A HIERARCHYOF STRUCTURES BASEDUPON THE BORATE FUNDAMENTAL BUILDING BLOCK JOEL D. GRICE Research Division, Canadian Museum of Nature, p O. Box 3443, Station D, Ottawa, Ontario Klp 6p4, Canada PETERC. BURNS Department of Civil Engineering and Geological Sciences,(Jniversity of Notre Dame, Notre Dame, Indiana 46556, U.S.A. FRANK C. HAWTHORNES Department of Geological Sciences,University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada AesrRAcr A hierarchical structural classification is developed for borate minerals, based on the linkage of (BQ) triangles and (BO+) tetrahedra to form FBBs (fundamental building blocks) that polymerize to form the structural unit, a tightly bonded anionic polyhedral array whose excesscharge is baianced by the presenceof large low-valence interstitial cations. Thirty-one minerals, with nineteen distinct structure-types,contain isolated borate polyhedra. Twenty-seven minerals, with twenty-five distinct struc- ture-types, contain finite clusters of borate polyhedra. Ten minerals, with ten distinct structue-types, contain chains of borate polyhedra. Fifteen minerals, with thirteen distinct structue-types, contain sheets of borate polyhedra. Fifteen minerals, with thirteen distinct sEucture-types,contain frameworks of borate polyhedra. It is only the close-packed structures of the isolated- polyhedra class that show significant isotypism Kelwords: borate minerals, crystal sffuctures, structural hierarchy. Sowenn Nous ddvelopponsici un sch6made classification structurale des mindraux du groupe des borates,fond6 sur I'articulation des ffiangles (BO:) et des t6trabdres(BOa), qui forment des modules structuraux fondamentaux. Ceux-ci, polym6ris6s, constituent l'unitd structuralede la maille, un agencementcompact d'anions fait de ces polyddres dont I'excddent de charge est neutralis6par des cations interstitiels h rayon relativement gros et d valence relativement faible.
    [Show full text]
  • Borate Minerals. I. Polyhedml Clusters and Fundamental
    1131 The Canadint Minerala gi st Vol.33, pp. I 131-1l5l (1995) BORATEMINERALS. I. POLYHEDMLCLUSTERS AND FUNDAMENTALBUILDING BLOCKS PETERC. BURNSE Departnuntof EanhSciences, tlniversity of Cambridge,Downing Street, Catnbridge CB2 iEQ, U.K. JOELD. GRICE ResearchDivisiaa Carudian.Mweum of Nature,P.O. Box 3443, Station D, Ottawa,Ontario KIP 6P4 FRANKC. HAWTHORNE Departmcntof GeologicalSciences, tlniversity of Manitoba,Wittnipeg, Manitoba R3T 2M ABSIRA T In general,the structuresof the borateminerals are ba$edon BQ3and B$a polyhedra,which occur as discreteoxyanions or polymerizeto form finite clusters,chains, sheets and frameworls. The B-Q bonds (Q: unspecifiedanion) are of much higber bond-valencethan the interstitial bonds,and thus borateninerals readily lend themselvesto hierarchicalclassification based on the topological characterof ttre FBB (fundamentalbuilding block) and the structuralunit. Here, we derive topologically and metrically possiblefinite clust€rsof the form [BnQ.], where 3 3 n 3 6, and identify those clustersthat occur as FBBs of the structues ofborate minerals.In addition,we havedeveloped graphical and algebraicdescriptors ofthe topologicaland chemical aspectsof tle clustersand their modeof polymerization.ln fhe structuresof the borafeminerals based on FBBs with 3 3 z 5 6, all FBBs arepolyhedral rings or decoratedpolyhedral rings. Moreover,three-membered polyhedral rings are almostcompletely dorninant;the only exceptionis the four-memberedpolyhedral ring in borcarite.Three-membered polyhedral rings occur in the following order of preference:<A2fl> >> 4Afl> > <3fl> > <34>. Only a small numberof the topologicaly and metrically possibleclustg$ occur as FBBs in borateminerals; Nature seemsto producesfiuctural diversity by using only a small number of FBBs and then polymerizingthem in many different ways. Keywords:borate minerals, hierarchy of structures,fundamental building block, crystalstructure, boron, structure classification.
    [Show full text]
  • A Specific Gravity Index for Minerats
    A SPECIFICGRAVITY INDEX FOR MINERATS c. A. MURSKyI ern R. M. THOMPSON, Un'fuersityof Bri.ti,sh Col,umb,in,Voncouver, Canad,a This work was undertaken in order to provide a practical, and as far as possible,a complete list of specific gravities of minerals. An accurate speciflc cravity determination can usually be made quickly and this information when combined with other physical properties commonly leads to rapid mineral identification. Early complete but now outdated specific gravity lists are those of Miers given in his mineralogy textbook (1902),and Spencer(M,i,n. Mag.,2!, pp. 382-865,I}ZZ). A more recent list by Hurlbut (Dana's Manuatr of M,i,neral,ogy,LgE2) is incomplete and others are limited to rock forming minerals,Trdger (Tabel,l,enntr-optischen Best'i,mmungd,er geste,i,nsb.ildend,en M,ineral,e, 1952) and Morey (Encycto- ped,iaof Cherni,cal,Technol,ogy, Vol. 12, 19b4). In his mineral identification tables, smith (rd,entifi,cati,onand. qual,itatioe cherai,cal,anal,ys'i,s of mineral,s,second edition, New york, 19bB) groups minerals on the basis of specificgravity but in each of the twelve groups the minerals are listed in order of decreasinghardness. The present work should not be regarded as an index of all known minerals as the specificgravities of many minerals are unknown or known only approximately and are omitted from the current list. The list, in order of increasing specific gravity, includes all minerals without regard to other physical properties or to chemical composition. The designation I or II after the name indicates that the mineral falls in the classesof minerals describedin Dana Systemof M'ineralogyEdition 7, volume I (Native elements, sulphides, oxides, etc.) or II (Halides, carbonates, etc.) (L944 and 1951).
    [Show full text]
  • Bulletin 65, the Minerals of Franklin and Sterling Hill, New Jersey, 1962
    THEMINERALSOF FRANKLINAND STERLINGHILL NEWJERSEY BULLETIN 65 NEW JERSEYGEOLOGICALSURVEY DEPARTMENTOF CONSERVATIONAND ECONOMICDEVELOPMENT NEW JERSEY GEOLOGICAL SURVEY BULLETIN 65 THE MINERALS OF FRANKLIN AND STERLING HILL, NEW JERSEY bY ALBERT S. WILKERSON Professor of Geology Rutgers, The State University of New Jersey STATE OF NEw JERSEY Department of Conservation and Economic Development H. MAT ADAMS, Commissioner Division of Resource Development KE_rr_ H. CR_V_LINCDirector, Bureau of Geology and Topography KEMBLEWIDX_, State Geologist TRENTON, NEW JERSEY --1962-- NEW JERSEY GEOLOGICAL SURVEY NEW JERSEY GEOLOGICAL SURVEY CONTENTS PAGE Introduction ......................................... 5 History of Area ................................... 7 General Geology ................................... 9 Origin of the Ore Deposits .......................... 10 The Rowe Collection ................................ 11 List of 42 Mineral Species and Varieties First Found at Franklin or Sterling Hill .......................... 13 Other Mineral Species and Varieties at Franklin or Sterling Hill ............................................ 14 Tabular Summary of Mineral Discoveries ................. 17 The Luminescent Minerals ............................ 22 Corrections to Franklln-Sterling Hill Mineral List of Dis- credited Species, Incorrect Names, Usages, Spelling and Identification .................................... 23 Description of Minerals: Bementite ......................................... 25 Cahnite ..........................................
    [Show full text]
  • Potash, Soda Ash, and Borates 3
    Energy and Environmental Profile of the U.S. Mining Industry Potash, Soda Ash, and Borates 3 Potash, soda ash and borates are industrial minerals. They are used primary as feedstock for other industries. They are used to make fertilizers, glass, chemicals and other materials used throughout manufacturing industries. For example, the agricultural industry relies heavily on potash and borates as fertilizers. It is the dependence of these manufacturing industries that make industrial minerals so important. Forms of Potash Potash is used primarily as an agricultural fertilizer because it is a source for soluble potassium. Potash denotes a variety of mined and manufactured salts, all containing the element potassium in water-soluble form. Potash can be potassium chloride [KCL, or muriate of potash (MOP)], potassium sulfate [K2SO4, or sulfate of potash (SOP), a . manufactured product], potassium/magnesium sulfate [K2SO4 MgSO4, or sulfate of potash magnesia (SOPM)], potassium nitrate (KNO3 or saltpeter, a manufactured product), or mixed sodium/potassium nitrate (NaNO3+KNO3, or Chilean saltpeter). The term potash was originally applied to potassium carbonate/potassium hydroxide crystals that were recovered in iron “pots” from leaching wood “ashes” with water.1 Forms of Soda Ash Soda ash is the trade name for sodium carbonate (NA2CO3), a chemical refined from the mineral trona or from sodium carbonate-bearing brines (both referred to as natural soda ash) and manufactured from one of several chemical processes (referred to as synthetic soda ash). It is an essential raw material in glass, chemicals, detergents, and other 2 important industrial products. 1 Department of Interior, U.S. Geological Survey, Mineral Industry Survey, Potash, p.1, 1997 2 Department of Interior, U.S.
    [Show full text]
  • Journal of Boron Cilt Vol 02 Sayi Issue 02 Yil Year 2017
    e-ISSN: 2149-9020 BOR DERGİSİ JOURNAL OF BORON CİLT VOL 02 SAYI ISSUE 02 YIL YEAR 2017 Ulusal Bor Araştırma Enstitüsü Adına Sahibi Owner on Behalf of National Boron Research Institute Başkan/President Dr. Abdulkerim Yörükoğlu Baş Editör/Editor in Chief Dr. Metin Gürü (Ankara, Türkiye) Editörler/Editors Dr. Ali Rehber Türker (Ankara, Türkiye) Dr. Fatih Akkurt (Ankara, Türkiye) DANIŞMA KURULU ADVISORY BOARD Dr. A. Nusret Bulutçu (İstanbul, Türkiye) Dr. Mehmet Sankır (Ankara, Türkiye) Dr. Ali Karaduman (Ankara, Türkiye) Dr. Mehmet Suat Somer (İstanbul, Türkiye) Dr. Atakan Peker (Washington, USA) Dr. Mehmet Sabri Çelik (İstanbul, Türkiye) Dr. Arun K. Chattopadhyay ( Pittsburgh, USA) Dr. Murat Bilen (Ankara, Türkiye) Dr. Ayhan Mergen (İstanbul, Türkiye) Dr. Mustafa Barış (Ankara, Türkiye) Dr. Bilal Demirel (Kayseri, Türkiye) Dr. Nuran Ay (Eskişehir, Türkiye) Dr. Cahit Helvacı (İzmir, Türkiye) Dr. Olcay Şendil (Ankara, Türkiye) Dr. Çetin Çakanyıldırım (Çorum, Türkiye) Dr. Osman Okur (Kocaeli, Türkiye) Dr. Duygu Ağaoğulları (İstanbul, Türkiye) Dr. Rasim Yarım (Friedrichshafen, Germany) Dr. Erol Pehlivan (Konya, Türkiye) Dr. Sait Gezgin (Konya, Türkiye) Dr. Gülhan Özbayoğlu (Ankara, Türkiye) Dr. Sedat Sürdem (Ankara, Türkiye) Dr. Hatem Akbulut (Sakarya, Türkiye) Dr. Şafak Gökhan Özkan (İstanbul, Türkiye) Dr. İhsan Efeoğlu (Erzurum, Türkiye) Dr. Şener Oktik (İstanbul, Türkiye) Dr. İsmail Çakmak (İstanbul, Türkiye) Dr. Şükrü Dursun (Konya, Türkiye) Dr. İsmail Duman (İstanbul, Türkiye) Dr. Yuri Grin (Dresden, Germany) Dr. İsmail Girgin (Ankara, Türkiye) Dr. Zafer Evis (Ankara, Türkiye) Dr. Zeynel Kılıç (Ankara, Türkiye) Sorumlu Yazı İşleri Müdürü Manager of Publication Yayıncı/Publisher Beyhan Sayın Ulusal Bor Araştırma Enstitüsü (BOREN) Bilgi Toplama, İdari ve Mali İşler Koordinatörü e-mail: [email protected] İletişim/Contact Dumlupınar Bulvarı (Eskişehir Yolu 7.
    [Show full text]
  • First Annual Mineralogy Exhibit of the Franklin Kiwanis Club
    FIRST ANNUAL MINERALCGY EXHIBIT CF THE FRANKLIN KIWANIS CLUB - October 26th & 27th, 1957 This exhibit makes available for public view for the first time many of the principal private collections of the unique minerals of the Franklin-Sterling Area. These unusual ore bodies, comprising more minerals than are found anywhere else on earth, have intrigued mineralogists and collectors ever since their discovery. Dutch mining experts first explored the area in 1640. The ore bodies, whose principal metals are zinc, manganese and iron, continued to puzzle experts for the next two centuries. Mining operations were first successfully developed by The New Jersey Zinc Company, which succeeded in building a great industry from its beginnings at Franklin. The deposits at Franklin are now exhausted and its specimens have become collectors items. The 178 minerals found at Franklin-Sterling and the 29 minerals which have never been found elsewhere are listed below. MINERALS OF THE FRANKLIN-STERLING AREA Agurite Calcium, Lar- Halloysite Nasonite Albite senite Hancockite Ne oto c it e Allactite Celestite Hardystonite Niccolite Allanite Cerusite Hedyphane. Norbergite Amphibole Chalcocite Hematite Oligocase Actinolite Chalcophanite Hetacrolite Pararammels- Crocidolite Chalcopyrite Heulandite. ' bergite Cummingtonite Chleanthite Hodgkinsonite Pectolite Edenite Chlorite Holdenite Phlogopite Hastingsite Chlorophoenicite Hortonolite Prehnite Hornblende Magnesium Chl. Hyalophane Psilomelane Pargasite Chondrocite Hydrohans- Pyrite Tremolite Clinohedrite mannite
    [Show full text]
  • A Mineralogical Field Guide for a Western Tasmania Minerals and Museums Tour
    MINERAL RESOURCES TASMANIA Tasmania DEPARTMENTof INFRASTRUCTURE, ENERGY and RESOURCES Tasmanian Geological Survey Record 2001/08 A mineralogical field guide for a Western Tasmania minerals and museums tour by R. S. Bottrill This guide was originally produced for a seven day excursion held as part of the International Minerals and Museums Conference Number 4 in December 2000. The excursion was centred on the remote and scenically spectacular mineral-rich region of northwestern Tasmania, and left from Devonport. The tour began with a trip to the Cradle Mountain National Park, then took in visits to various mines and mineral localities (including the Dundas, Mt Bischoff, Kara and Lord Brassey mines), the West Coast Pioneers Memorial Museum at Zeehan and a cruise on the Gordon River. A surface tour of the copper deposit at Mt Lyell followed before the tour moved towards Hobart. The last day was spent looking at mineral sites in and around Hobart. Although some of the sites are not accessible to the general public, this report should provide a guide for anyone wishing to include mineral sites in a tour of Tasmania. CONTENTS Tasmania— general information Natural history and climate ………………………………………………… 2 Personal requirements ……………………………………………………… 2 General geology…………………………………………………………… 2 Mining history …………………………………………………………… 4 Fossicking areas — general information ………………………………………… 4 Mineral locations Moina quarry …………………………………………………………… 6 Middlesex Plains ………………………………………………………… 6 Lord Brassey mine ………………………………………………………… 6 Mt Bischoff ………………………………………………………………
    [Show full text]
  • Torreyite (Mg, Mn )9Zn4(SO4)2(OH)22 • 8H2O C 2001-2005 Mineral Data Publishing, Version 1
    2+ Torreyite (Mg, Mn )9Zn4(SO4)2(OH)22 • 8H2O c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic. Point Group: 2/m. Rare blocky crystals, to 1 mm, in parallel growth; foliated, fine-grained granular to massive. Twinning: Ubiquitous microscopic polysynthetic twinning on a twin plane in [010]. Physical Properties: Cleavage: {010}, good. Tenacity: Somewhat brittle. Hardness = 3 D(meas.) = 2.665 D(calc.) = 2.65 Optical Properties: Translucent. Color: Bluish white to colorless; colorless in transmitted light. Luster: Vitreous to almost pearly, dull. Optical Class: Biaxial (–). Orientation: X = b. α = 1.570 β = 1.584 γ = 1.585 2V(meas.) = ∼40◦ ◦ Cell Data: Space Group: P 21/a. a = 10.522 b = 9.433 c = 16.443 β =94.91 Z=2 X-ray Powder Pattern: Sterling Hill, New Jersey, USA. 10.2 (100), 5.16 (50), 1.566 (50), 3.84 (40), 2.729 (40), 6.10 (30), 4.52 (20) Chemistry: (1) SO3 11.64 SiO2 0.08 MnO 17.98 ZnO 26.30 MgO 17.27 H2O 26.39 Total 99.66 (1) Sterling Hill, New Jersey, USA; deducting SiO2, corresponds to (Mg5.60Mn3.31)Σ=8.91 • Zn4.22(SO4)1.90(OH)22.46 7.928H2O. Occurrence: Very rare, in veinlets cutting calcite–franklinite–willemite ore in a metamorphosed stratiform zinc orebody. Association: Mooreite, fluoborite, pyrochroite, sussexite, rhodochrosite, zincite, franklinite, willemite, calcite. Distribution: At Sterling Hill, Ogdensburg, Sussex Co., New Jersey, USA. Name: Honors Dr. John Torrey (1796–1873), American naturalist who early studied Franklin, New Jersey, USA minerals. Type Material: Harvard University, Cambridge, Massachusetts, USA, 113732.
    [Show full text]