The Mineralogical Magazine
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Structure and Physical Properties of Hydrogrossular Mineral Series
STRUCTURE AND PHYSICAL PROPERTIES OF HYDROGROSSULAR MINERAL SERIES A THESIS IN PHYSICS Presented to the Faculty of the University of Missouri-Kansas City in Partial requirements for the degree MASTER OF SCIENCE By PUJA ADHIKARI M.Sc, Tribhuban University, Kathmandu, Nepal, 2010 Kansas City, Missouri 2015 ©2015 PUJA ADHIKARI ALL RIGHTS RESERVED Structure and physical properties of Hydrogrossular mineral series Puja Adhikari, Candidate for the Master of Science Degree University of Missouri-Kansas City, 2015 ABSTRACT The mineral hydrogrossular series (Ca3Al2(SiO4)3-x(OH) 4x; 0 ≤ x ≤ 3) are important water bearing minerals found in the upper and lower part of the Earth’s mantle. They are vital to the planet’s hydrosphere under different hydrothermal conditions. The composition and structure of this mineral series are important in geoscience and share many commonalities with cement and clay materials. Other than the end members of the series x = 0 (grossular) and x = 3 (katoite) which have a cubic garnet structure, the structure of the series is totally unknown. We used large-scale ab initio modeling to investigate the structures and properties for hydrogrossular series for x = 0, 0.5, 1, 1.5, 2, 2.5, 3. Results indicate that for x > 0 and x < 3, the structures are tetragonal. This shows that there is structural change related to the lowering of overall symmetry associated with the composition of SiO4 tetrahedra and AlO6 octahedra. Total Bond order also explains the reason behind the change in the compressibility of the series. The electronic structure, mechanical and optical properties of the hydrogrossular series are calculated and the results for grossular and katoite are in good agreement with the available experimental data. -
Geology Club Mineral: Collecting Trip
Geology Club: Mineral Collecting Trip (10 October 2009) Trip Notes by Charles Merguerian STOP 1 – Grossular Garnet Locality, West Redding, Connecticut. [UTM Coordinates: 630.71E / 4575.38N, Bethel quadrangle]. Covering roughly 60 acres of land, this enigmatic massive fine-grained grossularite garnet + diopside rock in West Redding has made many mineral collectors and geologists take notice. Walk up the steep slope east of Simpaug Turnpike to see highly fractured, massive cinnamon-colored grossular garnet rock, part of a 0.6-km wide heart-shaped mass found at the faulted contact between the Stockbridge Marble (OCs) and injected muscovitic schist of the Rowe Schist member (OCr) of the Hartland Formation (Figure 1). According to Rodgers et al. (1985), we are very near Cameron’s Line (red and black line in Figure 1). Figure 1 – Geologic map of the area surrounding Stop 1 showing the Proterozoic gneissic rocks (Yg) and Cambrian Dalton Schist (Cd) to the west, the Stockbridge Marble (OCs), Cameron’s Line (CL in red), the injected schistose rocks of the Rowe Formation (OCr), and an Ordovician granitoid (Og) that may be responsible for this unusual Ca++-enriched skarn deposit. Note the NW-trending high-angle brittle faults that cut the region. (Adapted from Rodgers et al. 1985.) Two knolls at this locality are almost entirely composed of grossularite garnet (var. essonite) and lesser clinopyroxene. Mostly the garnet occurs alone with minor quartz and localized quartz veining has been observed. Chemical analysis of the garnet (SiO2 = 39.10%, CaO = 34.85%, Al2O3 = 19.61%, and total FeO+Fe2O3 = 5.44%), are quite similar to published analyses of grossular garnet, including the phenomenal grossular garnet crystals from Morelos, Mexico. -
Wollastonite–A Versatile Industrial Mineral
Industrial Minerals of the United States Wollastonite–A Versatile Industrial Mineral What is Wollastonite? Wollastonite is a chemically simple mineral named in honor of English mineralogist and chemist Sir W.H. Wollaston (1766–1828). It is composed of calcium (Ca) and silicon and oxygen (SiO2, silica) with the chemical formula CaSiO3. Although much wollastonite is relatively pure CaSiO3, it can contain some iron, magnesium, (Above and right) Hand specimens of manganese, aluminum, potassium, wollastonite showing acicular crystal clusters. sodium, or strontium substituting for calcium in the mineral structure. Pure wollastonite is bright white; the geologic conditions during formation What Makes Wollastonite and host rock composition. The type and amount of impurities can Useful? produce gray, cream, brown, pale- Lewis Deposit, mined by NYCO green, or red colors. Minerals, Inc., in the Adirondack Wollastonite has several physical Mountains in Essex County, was properties that make it useful as an formed by the recrystallization of industrial mineral: Geology of U.S. Precambrian carbonate rocks inter- Wollastonite Deposits layered with high-grade metamor- ∑ Wollastonite is largely inert, phic rocks. Nearby reserves are although it will dissolve in concen- Wollastonite is formed by two contained in the Oak Hill and trated hydrochloric acid. It will not processes. The first occurs when Deerhead deposits. The ore bodies react with other components of silica and limestone are raised to a consist of the minerals wollastonite, manufactured products either during temperature of 400°–450°C, either garnet, and diopside with as much as or after the manufacturing process. because of deep burial (regional 60 percent of the bodies being ∑ During crushing, wollastonite metamorphism) or by being baked wollastonite. -
Influence of Temperature and Water Content on Microstructure Evolution
Contributions to Mineralogy and Petrology (2018) 173:5 https://doi.org/10.1007/s00410-017-1429-y ORIGINAL PAPER Synthesis of monticellite–forsterite and merwinite–forsterite symplectites in the CaO–MgO–SiO2 model system: influence of temperature and water content on microstructure evolution P. Remmert1 · W. Heinrich1 · B. Wunder1 · L. Morales1 · R. Wirth1 · D. Rhede1 · R. Abart2 Received: 17 September 2017 / Accepted: 28 November 2017 / Published online: 21 December 2017 © The Author(s) 2018. This article is an open access publication Abstract Homogeneous single crystals of synthetic monticellite with the composition Ca0.88Mg1.12SiO4 (Mtc I) were annealed in a ◦ piston-cylinder apparatus at temperatures between 1000 and 1200 C , pressures of 1.0–1.4 GPa, for run durations from 10 min to 24 h and applying bulk water contents ranging from 0.0 to 0.5 wt% of the total charge. At these conditions, Mtc I breaks down to a fine-grained, symplectic intergrowth. Thereby, two types of symplectites are produced: a first symplectite type (Sy I) is represented by an aggregate of rod-shaped forsterite immersed in a matrix of monticellite with end-member composition (Mtc II), and a second symplectite type (Sy II) takes the form of a lamellar merwinite–forsterite intergrowth. Both symplectites may form simultaneously, where the formation of Sy I is favoured by the presence of water. Sy I is meta- stable with respect to Sy II and is successively replaced by the latter. For both symplectite types, the characteristic spacing of the symplectite phases is independent of run duration and is only weeakly influenced by the water content, but it is strongly ◦ ◦ ◦ temperature dependent. -
Fluorian Garnets from the Host Rocks of the Skaergaard Intrusion: Implications for Metamorphic Fluid Composition
American Mineralogist, Volume 75, pages 859-873,1990 Fluorian garnets from the host rocks of the Skaergaard intrusion: Implications for metamorphic fluid composition CRAIG E. MANNING, * DENNIS K. BIRD Department of Geology, Stanford University, Stanford, California 94305, U.S.A. ABSTRACT Zoned, silica-deficient, calcic garnets containing up to 5 mol% F substitution for 0 formed during contact metamorphism of basalts by the Skaergaard intrusion in East Greenland. Fluorian calcic garnets occur as a retrograde alteration of prograde wollastonite and clinopyroxene that fills vesicles and vugs in lavas 30-70 m from the intrusion. Para- genetically equivalent phases include fluorite, wollastonite, calcic clinopyroxene, prehnite, quartz, and calcite. Electron microprobe analysis shows that the garnets are :::-:93mol% grossular-andradite (grandite) solid solutions and that the F content does not fully com- pensate for the silica deficiency, suggesting the presence of a hydrous component in the garnets. The garnets display discontinuous zoning with respect to Al and Fe, and increases in F, calculated OH, and the Si deficiency with increasing Al concentration are observed. The garnets formed at temperatures between 200 and 420°C based on the coexisting mineral assemblage, and stratigraphic reconstructions indicate pressures of ~ 1 kbar. Assessment of isobaric, isothermal phase relations in the system CaO-A1203-Si02-H20- HF allows estimation of fluid characteristics in equilibrium with fluorian grandite-bearing assemblages. The presence of fluorite, wollastonite, quartz, and calcite with these garnets combined with fluid inclusion data require that the activity (a) of H20 was ~ 1 and that aH.aF was 10-105 to 10-10.0in the coexisting hydrothermal solutions at 200-420 °C and 1 kbar. -
The Effect of Reduced Activity of Anorthite on the Reaction Grossular
AmericanMineralogist, Volume61, pages 889-896,1976 The effectof reducedactivity of anorthiteon thereaction grossular * quartz : anorthite* wollastonite:a modelfor plagioclasein the earth'slower crust anh upper mantle K. E. WrNnoMr AND A. L. BoerrcHrnl Department of Geosciences,The Pennsyluania State (lniuersity Uniuersity Park, Pennsyluania 16802 Abstract The reaction CasAlrSiaor, + SiO, : CaAlzSiros + 2 CaSiOg (erossular) (quartz) (anortbite) (wollastoDite) wasinvestigated at l10ooC,using intermediate-composition plagioclase to determinethe shift of the equilibriumpressure as a functionof compositionat pressureand temperaturecondi- tions representativeof the earth'slower crustand uppermantle. For compositionswithin the rangeAnro-,00, activity of the anorthitecomponent is equalto its molefraction. For composi- tions more albitic than about Anro,the activity of the anorthitecomponent equals its mole fractionmultiplied by a constantfactor of 1.2.This latter behavioris interpretedas a resultof anorthite-likedomains being in an energeticallyunfavorable environment for thesecomposi- tions. Applicationof the data obtainedfrom subsolidusexperiments to meltingbehavior indicates that plagioclaseliquids do not obey Raoult'sLaw, but havean activitycoefficient similar to crystallineplagioclase. This hypothesisis supportedby high-pressuremelting experiments for both anhydrousand hydroussystems. In parts of the lower crustcomposed of basicrock (e.g.gabbro), the calcicplagioclase will be consumedat relativelyshallow levels and over a narrow (2-3 km) -
Canadian Mineralogist, 51
785 The Canadian Mineralogist Vol. 51, pp. 785-800 (2013) DOI : 10.3749/canmin.51.5.785 A COMBINED GEOCHEMICAL AND GEOCHRONOLOGICAL INVESTIGATION OF NIOCALITE FROM THE OKA CARBONATITE COMPLEX, CANADA WEI CHEN§, ANTONIO SIMONETTI, AND PETER C. BURNS* Department of Civil & Environmental Engineering & Earth Sciences, 156 Fitzpatrick Hall, University of Notre Dame, Notre Dame IN, 46556 USA ABSTRACT This study is the first to report a detailed geochemical investigation and in situ U-Pb ages for niocalite, which occurs within carbonatite from the Bond Zone area of the Oka Carbonatite Complex (Canada). Niocalite is a Nb-disilicate member of the låvenite−cuspidine group. The major element composition of the niocalite studied here is relatively homogeneous with the average formula of: (Na0.34Fe0.06Mn0.19Mg0.09Ca13.40REE0.15Ti0.02)Σ14.25Nb2.12Ta0.06(Si2O7)4O7.65F2.44. Niocalite is enriched in minor and trace elements [i.e., Ta, Ti, and rare earth elements (REEs) up to 4.35 wt.%], with double- and triple-valenced elements (i.e., Sr, Y, REEs) substituting at different Ca-occupied lattice sites. The chondrite-normalized REE patterns for niocalite are LREE-enriched (~104 times chondrite) and negatively sloped. In addition, niocalite has higher HREE contents compared to those for co-existing apatite from the identical carbonatite sample. This result is expected based on bond valence data because of differing cation sizes. In situ U-Pb ages for niocalite from three carbonatite samples obtained by LA-ICP-MS define a wide range of ages, between ~111 and ~133 Ma. Niocalite from one carbonatite sample yields a bimodal distribution with weighted mean 206Pb/238U ages of 110.1 ± 5.0 Ma and 133.2 ± 6.1 Ma, and overlap those of co-existing apatite for the same sample. -
Wollastonite
Strictly private and confidential Wollastonite A versatile mineral which can support sustainable farming 07 June 2019 Business Risk Analysis – Visionary Execution Strictly private and confidential 2 Disclaimer & Forward-Looking Statements Cautionary Statement on Forward-Looking Information & Statements: This presentation contains certain forward-looking information and statements which may not be based on fact, including without limitation, statements regarding the Company’s expectations in respect of its future financial position, business strategy, future exploration and production, mineral resource potential, exploration drilling, permitting, access to capital, events or developments that the Company expects to take place in the future. All statements, other than statements of historical facts, are forward-looking information and statements. The words “believe”, “expect”, “anticipate”, “contemplate”, “target”, “plan”, “intends”, “continue”, “budget”, “estimate”, “may”, “will”, “aim”, “goal” and similar expressions identify forward-looking information and statements. In addition to the forward-looking information and statements noted above, this presentation includes those that relate to: the expected results of exploration activities; the estimation of mineral resources; the ability to identify new mineral resources and convert mineral resources into mineral reserves; ability to raise additional capital and complete future financings; capital expenditures and costs, including forecasted costs; the ability of the Company to comply with -
The Conversion of Wollastonite to Caco3 Considering Its Use for CCS Application As Cementitious Material
applied sciences Article The Conversion of Wollastonite to CaCO3 Considering Its Use for CCS Application as Cementitious Material Kristoff Svensson *, Andreas Neumann, Flora Feitosa Menezes, Christof Lempp and Herbert Pöllmann Institute for Geosciences and Geography, Martin-Luther-University of Halle-Wittenberg, Von-Seckendorff-Platz 3, 06120 Halle (Saale), Germany; [email protected] (A.N.); fl[email protected] (F.F.M.); [email protected] (C.L.); [email protected] (H.P.) * Correspondence: [email protected]; Tel.: +49-345-55-26138 Received: 21 December 2017; Accepted: 8 February 2018; Published: 20 February 2018 Featured Application: Building materials and CCS. Abstract: The reaction of wollastonite (CaSiO3) with CO2 in the presence of aqueous solutions (H2O) and varied temperature conditions (296 K, 323 K, and 333 K) was investigated. The educts (CaSiO3) and the products (CaCO3 and SiO2) were analyzed by scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), and differential scanning calorimetry with thermogravimetry coupled with a mass spectrometer and infrared spectrometer (DSC-TG/MS/IR). The reaction rate increased significantly at higher temperatures and seemed less dependent on applied pressure. It could be shown that under the defined conditions wollastonite can be applied as a cementitious material for sealing wells considering CCS applications, because after 24 h the degree of conversion from CaSiO3 to CaCO3 at 333 K was very high (>90%). As anticipated, the most likely application of wollastonite as a cementitious material in CCS would be for sealing the well after injection of CO2 in the reservoir. -
NOTES and NEWS LUDWIGITE from COLORADOGULCH, NEAR HELENA, MONTANA Aoor,Pn Knorl, Yale Uniaersity, Ivew Haoen, Conn
NOTES AND NEWS LUDWIGITE FROM COLORADOGULCH, NEAR HELENA, MONTANA Aoor,pn KNorl, Yale Uniaersity, IVew Haoen, Conn. The relatively rare magnesium-iron borate ludwigite was found during the past summer to occur abundantly 10 miles west of Helena, at Colo- rado Gulch, Lewis and Clark County, Montana. It occursat two prospect pits on the summit of the high hill northwest of the junction of the forks of Colorado Creek. The prospect openings are in the marbleized dolo- mites and limestones of the Devonian Jefferson formation a few yards from the contact of the Boulder batholith, which here consists of sub- porphyritic quartz monzonite. The prospect pits had been opened up in searchfor iron ore, which consistsof magnetite having a notably perfect octahedral parting, apparently as a result of incipient alteration. Large quantities of black rock are exposed,consisting almost wholly of a radially fi.brousmineral, which becauseof the prevalence of tourmaline in this part of the batholith might at first sight be consideredto be tour- maline. The silky luster of the mineral and its tendency toward ocherous weathering, however, suggestthat the mineral is ludwigite. The identity of the mineral was proved by its boron flame reaction, solubility in HCl, and copious precipitates of iron and magnesium. When crushed and ex- amined in oils, a large number of straight slender fibers are seen,but only the very thinnest of them are translucent. The fibers give sharp, straight extinction, and are pleochroic, from deep olive-green in the transverse position to brown parallel to the length. They have positive elongation, and fibers showing the maximum differencein absorption give flash fig- ures, which show that Z:c. -
Revision #1 the Atomic Arrangement and Electronic Interactions In
This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America. The published version is subject to change. Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2021-7851. http://www.minsocam.org/ 1 Revision #1 2 3 The atomic arrangement and electronic interactions in vonsenite at 4 295, 100, and 90 K 5 1, 1, 2 3 4 6 MARC MADERAZZO , JOHN M. HUGHES , M. DARBY DYAR , GEORGE R. ROSSMAN , 5 3 6 7 BRANDON J. ACKLEY , ELIZABETH C. SKLUTE , MARIAN V. LUPULESCU , AND 7 8 JEFFREY CHIARENZELLI 9 10 1Department of Geology, University of Vermont, Burlington, Vermont, 05405, U.S.A. 11 2Department of Geology and Environmental Earth Sciences, Miami University, Oxford, Ohio 45056, U.S.A. 12 3Department of Astronomy, Mount Holyoke College, South Hadley, Massachusetts 01075, U.S.A. 13 4Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125- 14 2500, U.S.A. 15 5Department of Chemistry, University of Vermont, Burlington, Vermont, 05405, U.S.A. 16 6New York State Museum, Research and Collections, 3140 CEC, Albany, New York 12230, U.S.A. 17 7Department of Geology, St. Lawrence University, Canton, New York 13617, U.S.A. 18 19 ABSTRACT 2+ 3+ 20 Vonsenite, Fe 2Fe O2BO3, has been the subject of many studies in the materials-science and 21 condensed-matter-physics communities due to interest in the electronic and magnetic properties 22 and ordering behavior of the phase. One such study, undertaken on synthetic material of 23 endmember composition, reports X-ray diffraction structure refinements that indicate a phase 24 transition from Pbam to Pbnm at or just below approximately 283 K, determined subsequently to 25 arise from a Peierls-like instability. -
51St Annual Franklin-Sterling Gem and Mineral Show
ANNUAL Franklin - Sterling GEM & MINERAL SHOW SATURDAY & SUNDAY SEPTEMBER 29th & 30th, 2007 Sponsored By ;FRANKLIN. MI M I ; I' N 1 S F E R i U A i ■ N I I, '.--...., - Franklin, New Jersey The Fluorescent Mineral Capital Of The World STERLING HILL MINING MUSEUM 30 PLANT STREET OGDENSBURG, NJ 07439-1126 Welcome to The Sterling Hill Mine in Ogdensburg, NJ UNDERGROUND MINE TOURS • • • PASSAIC & NOBLE PIT • • COLLECTING OPEN TO THE PUBLIC • • • • During the Franklin-Sterling Hill Mineral Show, Sept. 30, 2007 • • Open Sunday, 9 AM to 3 PM • Admission: $5.00 per person, $1.50 per pound for anything taken • • • • • • STERLING HILL GARAGE SALE • • • • September 29th and 30th • Saturday and Sunday, from 11 AM to 3 PM • FRANKLIN MINE TOUR ADMISSION Citi N a. ADULT 10.00 CHILDREN (UNDER 12) 7.50 SENIOR CITIZEN (65+) 9.00 HOURS STERLING HILL OPEN 7 DAYS A WEEK MINING MUSEUM NEW YORK HOURS 10 AM TO 3 PM TOURS AT 1:00 PM DAILY OGDENSBURG & OTHER TIMES BY CHANCE I OR APPOINTMENT (:) GREEN THUMB FROM APRIL 1 TO NOV. 30 NURSERY MARCH AND DEC., WEEKENDS ONLY OTHER TIMES BY APPOINTMENT SPARTA JAN AND FEB., WEEKENDS ONLY FRANKLIN OTHER TIMES BY APPOINTMENT EXIT Nite Collecting Sat. Sept. 29th from 6-11 PM GROUP RATES AVAILABLE EXIT 34B For information call DOVER (973)209-7212 COLLECTING AVAILABLE FAX 973-209-8505 7 Days A Week, April to Nov. 10 AM to 3 PM www.sterlinghill.org MINERAL SPECIES FOUND AT FRANKLIN-STERLING HILL, NJ (Revised by FOMS Mineral List Committee September 2007) Acanthite Birnessite Cuprite Actinolite Bornite Cuprostibite Adamite Bostwickite