Canadian Mineralogist, 51
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Adamsite-(Y), a New Sodium–Yttrium Carbonate Mineral
1457 The Canadian Mineralogist Vol. 38, pp. 1457-1466 (2000) ADAMSITE-(Y), A NEW SODIUM–YTTRIUM CARBONATE MINERAL SPECIES FROM MONT SAINT-HILAIRE, QUEBEC JOEL D. GRICE§ and ROBERT A. GAULT Research Division, Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario K1P 6P4, Canada ANDREW C. ROBERTS Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario K1A 0E8, Canada MARK A. COOPER Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada ABSTRACT Adamsite-(Y), ideally NaY(CO3)2•6H2O, is a newly identified mineral from the Poudrette quarry, Mont Saint-Hilaire, Quebec. It occurs as groups of colorless to white and pale pink, rarely pale purple, flat, acicular to fibrous crystals. These crystals are up to 2.5 cm in length and form spherical radiating aggregates. Associated minerals include aegirine, albite, analcime, ancylite-(Ce), calcite, catapleiite, dawsonite, donnayite-(Y), elpidite, epididymite, eudialyte, eudidymite, fluorite, franconite, gaidonnayite, galena, genthelvite, gmelinite, gonnardite, horváthite-(Y), kupletskite, leifite, microcline, molybdenite, narsarsukite, natrolite, nenadkevichite, petersenite-(Ce), polylithionite, pyrochlore, quartz, rhodochrosite, rutile, sabinaite, sérandite, siderite, sphalerite, thomasclarkite-(Y), zircon and an unidentified Na–REE carbonate (UK 91). The transparent to translucent mineral has a vitreous to pearly luster and a white streak. It is soft (Mohs hardness 3) and brittle with perfect {001} and good {100} and {010} cleav- ␣  ␥ ° ° ages. Adamsite-(Y) is biaxial positive, = V 1.480(4), = 1.498(2), = 1.571(4), 2Vmeas. = 53(3) , 2Vcalc. = 55 and is nonpleochroic. Optical orientation: X = [001], Y = b, Z a = 14° (in  obtuse). It is triclinic, space group P1,¯ with unit-cell parameters refined from powder data: a 6.262(2), b 13.047(6), c 13.220(5) Å, ␣ 91.17(4),  103.70(4), ␥ 89.99(4)°, V 1049.1(5) Å3 and Z = 4. -
51St Annual Franklin-Sterling Gem and Mineral Show
ANNUAL Franklin - Sterling GEM & MINERAL SHOW SATURDAY & SUNDAY SEPTEMBER 29th & 30th, 2007 Sponsored By ;FRANKLIN. MI M I ; I' N 1 S F E R i U A i ■ N I I, '.--...., - Franklin, New Jersey The Fluorescent Mineral Capital Of The World STERLING HILL MINING MUSEUM 30 PLANT STREET OGDENSBURG, NJ 07439-1126 Welcome to The Sterling Hill Mine in Ogdensburg, NJ UNDERGROUND MINE TOURS • • • PASSAIC & NOBLE PIT • • COLLECTING OPEN TO THE PUBLIC • • • • During the Franklin-Sterling Hill Mineral Show, Sept. 30, 2007 • • Open Sunday, 9 AM to 3 PM • Admission: $5.00 per person, $1.50 per pound for anything taken • • • • • • STERLING HILL GARAGE SALE • • • • September 29th and 30th • Saturday and Sunday, from 11 AM to 3 PM • FRANKLIN MINE TOUR ADMISSION Citi N a. ADULT 10.00 CHILDREN (UNDER 12) 7.50 SENIOR CITIZEN (65+) 9.00 HOURS STERLING HILL OPEN 7 DAYS A WEEK MINING MUSEUM NEW YORK HOURS 10 AM TO 3 PM TOURS AT 1:00 PM DAILY OGDENSBURG & OTHER TIMES BY CHANCE I OR APPOINTMENT (:) GREEN THUMB FROM APRIL 1 TO NOV. 30 NURSERY MARCH AND DEC., WEEKENDS ONLY OTHER TIMES BY APPOINTMENT SPARTA JAN AND FEB., WEEKENDS ONLY FRANKLIN OTHER TIMES BY APPOINTMENT EXIT Nite Collecting Sat. Sept. 29th from 6-11 PM GROUP RATES AVAILABLE EXIT 34B For information call DOVER (973)209-7212 COLLECTING AVAILABLE FAX 973-209-8505 7 Days A Week, April to Nov. 10 AM to 3 PM www.sterlinghill.org MINERAL SPECIES FOUND AT FRANKLIN-STERLING HILL, NJ (Revised by FOMS Mineral List Committee September 2007) Acanthite Birnessite Cuprite Actinolite Bornite Cuprostibite Adamite Bostwickite -
Evidence for the Alkaline Nature of Parental Carbonatite Melts at Oka Complex in Canada
ARTICLE Received 22 Apr 2013 | Accepted 30 Sep 2013 | Published 30 Oct 2013 DOI: 10.1038/ncomms3687 Evidence for the alkaline nature of parental carbonatite melts at Oka complex in Canada Wei Chen1, Vadim S. Kamenetsky2 & Antonio Simonetti1 The Earth’s sole active carbonatite volcano, Oldoinyo Lengai (Tanzania), is presently erupting unique natrocarbonatite lavas that are characterized by Na- and K-bearing magmatic car- bonates of nyerereite [Na2Ca(CO3)2] and gregoryite [(Na2,K2,Ca)CO3]. Contrarily, the vast majority of older, plutonic carbonatite occurrences worldwide are dominated by Ca-(calcite) or Mg-(dolomite)-rich magmatic carbonates. Consequently, this leads to the conundrum as to the composition of primary, mantle-derived carbonatite liquids. Here we report a detailed chemical investigation of melt inclusions associated with intrusive (plutonic) calcite-rich carbonatites from the B120 Ma carbonatite complex of Oka (Canada). Melt inclusions are hosted by magnetite (Fe3O4), which crystallizes through a significant period of carbonatite melt solidification. Our results indicate mineral assemblages within the melt inclusions that are consistent with those documented in natrocarbonatite lavas. We propose therefore that derivation of alkali-enriched parental carbonatite melts has been more prevalent than that preserved in the geological record. 1 Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, Indiana 46556, USA. 2 ARC Centre of Excellence in Ore Deposits and School of Earth Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia. Correspondence and requests for materials should be addressed to W.C. (email: [email protected]). NATURE COMMUNICATIONS | 4:2687 | DOI: 10.1038/ncomms3687 | www.nature.com/naturecommunications 1 & 2013 Macmillan Publishers Limited. -
Kirschsteinite Cafe Sio4 C 2001 Mineral Data Publishing, Version 1.2 ° Crystal Data: Orthorhombic
2+ Kirschsteinite CaFe SiO4 c 2001 Mineral Data Publishing, version 1.2 ° Crystal Data: Orthorhombic. Point Group: 2=m 2=m 2=m: In crystals, to 0.5 mm; as skeletal rims on other minerals; crystalline massive. Physical Properties: Hardness = n.d. D(meas.) = 3.434 D(calc.) = 3.596 Optical Properties: Transparent. Color: Pale green; colorless in thin section. Optical Class: Biaxial ({). Orientation: X = b; Y = c; Z = a. ® = 1.660{1.689 ¯ = 1.720 ° = 1.694{1.728 2V(meas.) = 51(1)± 2V(calc.) = 53±{61± Cell Data: Space Group: [P bnm] (by analogy to the olivine group). a = 4.859 b = 11.132 c = 6.420 Z = 4 X-ray Powder Pattern: Mt. Shaheru, Congo. 2.949 (100), 2.680 (85), 2.604 (80), 3.658 (70), 1.830 (60), 2.414 (40), 5.569 (35) Chemistry: (1) (2) SiO2 32.71 31.96 TiO2 0.23 Al2O3 0.26 Fe2O3 0.66 FeO 29.34 38.21 MnO 1.65 MgO 4.95 CaO 29.30 29.83 Na2O 0.34 K2O 0.36 + H2O 0.25 H2O¡ 0.06 P2O5 0.07 Total 100.18 100.00 (1) Mt. Shaheru, Congo. (2) CaFeSiO4: Polymorphism & Series: Forms a series with monticellite. Occurrence: In melilite-nephelinite lava (Mt. Shaheru, Congo); in calcareous skarn (Tazheran massif, Russia). Association: Melilite, nepheline, clinopyroxene, kalsilite, gÄotzenite, combeite, sodalite, magnetite, perovskite, apatite, \hornblende," biotite (Mt. Shaheru, Congo); titanian augite, wollastonite, melilite, garnet, calcite, cuspidine, diopside, perovskite, troilite, graphite (Tazheran massif, Russia). Distribution: On Mt. Shaheru, the extinct southern cone of Mt. Nyiragongo, Kivu Province, Congo (Zaire). -
Caracterización Del Vulcanismo Carbonatítico De Catanda (Angola)
Caracterización del vulcanismo carbonatítico de Catanda (Angola) Marc Campeny Crego ADVERTIMENT . La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX ( www.tdx.cat ) i a través del Dipòsit Digital de la UB ( diposit.ub.edu ) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb final itats de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX ni al Dipòsit Digital de la UB . No s’autoritza la presentació del seu contingut en una finestra o marc aliè a TDX o al Dipòsit Digital de la UB (framing). Aquesta rese rva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. ADVERTENCIA . La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR ( www.tdx.cat ) y a través del Repositorio Digital de la UB ( diposit.ub.edu ) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente par a usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR o al Repositorio Digital de la UB . -
Unusual Fibrous Sodian Tainiolite Epitactic on Phlogopite from Marble Xenoliths of Mont Saint-Hilaire, Quebec, Canada
541 The Canadian Mineralogist Vol. 45, pp. 541-549 (2007) DOI : 10.2113/gscanmin.45.3.541 UNUSUAL FIBROUS SODIAN TAINIOLITE EPITACTIC ON PHLOGOPITE FROM MARBLE XENOLITHS OF MONT SAINT-HILAIRE, QUEBEC, CANADA Thomas ARMBRUSTER§ Laboratorium für chemische und mineralogische Kristallographie,Universität Bern, Freiestr. 3, CH–3012 Bern, Switzerland R. Peter RICHARDS National Center for Water Quality Research, Heidelberg College, Tiffi n, Ohio 44883, USA Edwin GNOS, Thomas PETTKE and Marco HERWEGH Institut für Geologie, Universität Bern, Balzerstr. 1, CH–3012 Bern, Switzerland Abstract Samples of marble xenoliths, thermally metamorphosed by the igneous rocks of Mont Saint-Hilaire, Quebec, contain idio- morphic plates of phlogopite. These plates were later overgrown and to some extent topotactically replaced by sodian tainiolite, tapering in fragile fi bers extending parallel to [100]. The fi bers only protrude parallel to [100] of the phlogopite host. Unit-cell parameters of phlogopite and tainiolite, both 1M polytypes (space group C2/m), are so similar that the phases in the phlogo- pite–tainiolite intergrowth could not be distinguished by single-crystal X-ray methods. Phlogopite of composition K1.01(Mg1.96 Fe0.66Li0.20Mn0.03Ti0.03Al0.04)⌺2.92(Si3.28Al0.72)⌺4 O10[(OH)1.14F0.86]⌺2 has the highest Si/Al value of natural samples of phlogopite known to us. The epitactic fi bers of tainiolite, of composition K1.01(Mg2.00Fe0.01Li0.59Na0.38)⌺2.98(Si3.99Al0.01)⌺4O10[F1.79Cl0.01 (OH)0.20]⌺2, represent to our knowledge the fi rst example of an extended solid-solution, established by combined electron-micro- probe and laser-ablation mass-spectrometry analyses, between tainiolite, K(LiMg2)Si4O10F2, and the recently described mineral shirokshinite, K(NaMg2)Si4O10F2. -
An Overview of Soils in Québec: Formation, Variability and Challenges
SOIL CLASSIFICATION AN OVERVIEW OF SOILS IN Nine Mineral Orders and one Organic Order – based on the nature of the soil environment and the effects of the dominant soil forming process QUÉBEC: FORMATION, examples Podzols, Brunisols etc VARIABILITY AND CHALLENGES Note that 90% of Canadian soils are unlikely to be cultivated. The Canadian system classifies soils found only in Canada and is not meant to be comprehensive. Caroline. Begg, Ph.D. [email protected] RELATIONSHIP OF CANADIAN SYSTEM TO OTHER SOIL CLASSIFICATION SYSTEMS Canadian USA FAO Regosolic Entisol Fluvisol, Regosol Brunisolic Inceptisol, some Psamments Cambisol Podzolic Spodosol, some Inceptisols Podzol GEOLOGIC EVENTS IN Luvisolic Boralfs & Udalfs Luvisol SOUTHERN QUÉBEC - Gleysolic Aqy-suborders Gleysol, Pansol Chernozemic Boroll, some Vertisols Kastanozem, Chernozem SOURCE OF THE PARENT Solonetzic Mollisol & Alfisol,Natric great group Solonetz Vertisolic Verticals Vertisol MATERIAL Cryosolic Pergelic subgroups Gelic Organic Histosol Histosol METAMORPHIC ROCKS FROM THE GRENVILLE PROVINCE ARE FROM A MOUNTAIN RANGE 3,500 MILLION YEARS TO NEXT MAJOR EVENT 900 MILLION YEARS OLD The limestone beds found on the Montreal Island and Ile Jesus were part of the continental shelf of the “Lapetus” ocean from 600 million years ago when this area was located near the equator Covers a surface area of 600,000 km² in Québec These limestone beds of mud, fossils and sand or “The St Lawrence Platform” were laid down on part of the Grenville province and now Early Precambrian rocks – oldest underlie most of the St Lawrence Lowlands rocks – sediments and volcanic - One of the soil series (Farmington) found on the Mac Campus formed on granite and gneiss and schist top of the St Lawrence platform bedrock There is disagreement about the age of these rocks which underlie (at a 1 km depth) all of Montreal 5 6 STE LAWRENCE PLATFORM TIME LINE OF GEOLOGICAL EVENTS 135 million years to 6.5 million years ago – igneous rock (magma) intrusions cooled under the earth surface. -
Bulletin 65, the Minerals of Franklin and Sterling Hill, New Jersey, 1962
THEMINERALSOF FRANKLINAND STERLINGHILL NEWJERSEY BULLETIN 65 NEW JERSEYGEOLOGICALSURVEY DEPARTMENTOF CONSERVATIONAND ECONOMICDEVELOPMENT NEW JERSEY GEOLOGICAL SURVEY BULLETIN 65 THE MINERALS OF FRANKLIN AND STERLING HILL, NEW JERSEY bY ALBERT S. WILKERSON Professor of Geology Rutgers, The State University of New Jersey STATE OF NEw JERSEY Department of Conservation and Economic Development H. MAT ADAMS, Commissioner Division of Resource Development KE_rr_ H. CR_V_LINCDirector, Bureau of Geology and Topography KEMBLEWIDX_, State Geologist TRENTON, NEW JERSEY --1962-- NEW JERSEY GEOLOGICAL SURVEY NEW JERSEY GEOLOGICAL SURVEY CONTENTS PAGE Introduction ......................................... 5 History of Area ................................... 7 General Geology ................................... 9 Origin of the Ore Deposits .......................... 10 The Rowe Collection ................................ 11 List of 42 Mineral Species and Varieties First Found at Franklin or Sterling Hill .......................... 13 Other Mineral Species and Varieties at Franklin or Sterling Hill ............................................ 14 Tabular Summary of Mineral Discoveries ................. 17 The Luminescent Minerals ............................ 22 Corrections to Franklln-Sterling Hill Mineral List of Dis- credited Species, Incorrect Names, Usages, Spelling and Identification .................................... 23 Description of Minerals: Bementite ......................................... 25 Cahnite .......................................... -
Geology and Petrology of the Mont Royal Pluton, Montreal
GEOLOGY AND PETROLOGY OF THE MONT ROYAL PLUTON, MONTREAL NELSON EBY Environmental, Earth and Atmospheric Sciences, University of Massachusetts, Lowell, MA 01854 Sunday, September 13, 2015 Geology of the Northeastern Adirondack Mountains and Champlain–St. Lawrence Lowlands of New York, Vermont and Québec New York State Geological Association, 87th Annual Meeting State University of New York at Plattsburgh, Plattsburgh, NY 12–13 September 2015 GEOLOGY AND PETROLOGY OF THE MONT ROYAL PLUTON, MONTREAL NELSON EBY Environmental, Earth and Atmospheric Sciences, University of Massachusetts, Lowell, MA 01854 INTRODUCTION The Cretaceous Monteregian Hills (MH) petrographic province consists of a group of small alkaline plutons, and associated dikes, extending along a linear trend from approximately 30 km west of Montreal, Canada, to approximately 60 km east of Montreal (Fig. 1). Mont Megantic, located approximately 150 km east of Montreal has been included in the MH province (because of its geographic location), but geologically Mont Megantic belongs to the Younger White Mountain petrographic province of New Hampshire, Maine and Vermont. The MH plutons are largely composed of silica-undersaturated alkaline rocks: carbonatite and other strongly silica-undersaturated lithologies occur at Oka, and nepheline normative gabbros and pyroxenites, nepheline-bearing diorites, and feldspathoidal-bearing syenites and monzonites occur at the other MH plutons. Slightly silica- saturated quartz-bearing syenites are found at Monts Figure 1. Location and geological setting of the Brome and Shefford. Philpotts (1974) and Eby (1987) Monteregian Hills and White Mountain igenous have summarized the geology and petrology of the provinces (modified from Lentz et al., 2006). MH province. The White Mountain (WM) petrographic province (Fig. -
Atlas Des Territoires D'intérêt Pour La Conservation Dans Les Basses
Atlas of Sites of Conservation Interest in the St. Lawrence Lowlands – Methodology Report version 2, including Outaouais region June 2019 This report presents the results of the Atlas of sites of conservation interest in the St. Lawrence Lowlands, including analysis results for the Outaouais region. It follows a first version of the Atlas that was made available in October 2018. Other results will be added in the coming months, including the analysis of aquatic ecological units in areas where LIDAR data is not currently available. This document should be cited as follows: Jobin, B., L. Gratton, M.-J. Côté, O. Pfister, D. Lachance, M. Mingelbier, D. Blais, A. Blais et D. Leclair. 2019. Atlas of Sites of Conservation Interest in the St. Lawrence Lowlands – Methodology Report version 2, including Outaouais region. Environment and Climate Change Canada, ministère de l’Environnement et de la Lutte contre les changements climatiques, ministère des Forêts, de la Faune et des Parcs, St. Lawrence Action Plan, Québec, 186 p. Cover photos: © Thinkstockphotos Published by Authority of the Minister of the Environment © Her Majesty the Queen in Right of Canada, 2020 Published by Authority of the Ministre de l’Environnement et de la Lutte contre les changements climatiques du Québec © Government of Quebec, 2020 Cat. No.: En154-124/2020E-PDF ISBN: 978-0-660-36199-4 Aussi disponible en français sous le titre : Atlas des territoires d’intérêt pour la conservation dans les Basses-terres du Saint-Laurent – Rapport méthodologique version 2, incluant la région -
THE FRANKLIN STERLING MINERAL AREA by Helen A~ Biren, Brooklyn College " TRIP
'-_.-. E-l THE FRANKLIN STERLING MINERAL AREA by Helen A~ Biren, Brooklyn College " TRIP, . E Introduction The area which we shall visit is 'a limestone region lying in the New Jersey Highlands, which is part of the Reading Prong. It extends in a northeasterly direction ac~os5 the northern part of the state. The rocks are Precamqrian "crystal,lines" with narrow,beltsof in . folded and infaul ted Paleozoic. sedimentary rocks. Major 10ngi.::tr,~9;nal faults slice the fold structures,so that the area has been ,described as a series of fault blcicks e~iendingfr6m south of tbe Sterling Mine to Big Island, N. Y. ", ", For. many years the Franklin Limeston~iyielded enough zinc .to make 'New Jersey a, leading producer of this commo~!~ty.~)',Mining has steadily de creased in thi'sarea, and in '1955 thefrankl.inMine ~as shut dm.W1 perman :eDtl y, so .that mineral specimens are4eri ve({:ma~~l y ,from surfqce dumps and quarries. Some twenty million tons of ore were remQved from Franklin before it was shut down. Prior to mining, the ore outcropped in two synclinal folds com pletely within the limestone, which pitched to the northeast at an angle .. _" ,of about 250 with the horizontal. In these two horseshoe shaped bodies "Were developed the Franklin and the Ste,r,Ung M~nes. This zinc ore :h,,: unique in its lack of sulfides and lead mir,tera~~:, and in the occurrence 'of frankliniteand zincite as substantia~~ore m~nerals. : :: The limestone has produced nearly 200 species of minerals, some 33 of which were first found ip,Fr(inklin,and .about 30 of which have never been found el$emere. -
Alumni Newsletter No. 18
McGill University Alumni Newsletter #18 May 2016 The photo above shows the volcanoes of Bromo (mid-ground at 7,641 ft or 2,329 m) and Semeru (background at 12,060 ft or 3,676 m), both found on the island of Java, Indonesia. These two volcanoes are very active. Continuous small eruptions occur about every 20 minutes on Semeru while fumarole activity is ongoing in the crater of Bromo. Every few years large eruptions happen as well. The distinctive line in the midground (center of photo) results from an atmospheric inversion layer. On this day, it could be seen to descend with time. One hour before sunset, you were in the clouds surrounded by mist. Near sunset, however, the inversion layer dropped below you, creating this interesting line effect. It might not look like it, but the cone of Bromo was only about 2.5 mi (4 km) away; Semuru was approximately 14 mi (22 km) away. This is due to the fact that above the inversion layer the atmosphere is usually exceptionally clear. Photo taken on July 23, 2015. Note from the Chair Good news coming our way as we anxiously greet the arrival of Spring. After a number of years of budget cuts in education, funding of education has become a priority at both the Provincial and Federal levels and instead of facing further budget cuts, as the McGill administration had anticipated and planned for for the 2017 fiscal year, we can expect some reinvestments in post- secondary education. Like every other academic unit within the University, the Department of Earth and Planetary Sciences suffered over the last few years, mostly through the loss of support staff, but we have fared better than most thanks to the generosity of our many donors, alumni and friends.