Heriot-Watt University Research Gateway Material interactions in laser polishing powder bed additive manufactured Ti6Al4V components Citation for published version: Tian, Y, Góra, WS, Pan Cabo, A, Parimi, LL, Hand, DP, Tammas-Williams, S & Prangnell, PB 2018, 'Material interactions in laser polishing powder bed additive manufactured Ti6Al4V components', Additive Manufacturing, vol. 20, pp. 11-22. https://doi.org/10.1016/j.addma.2017.12.010 Digital Object Identifier (DOI): 10.1016/j.addma.2017.12.010 Link: Link to publication record in Heriot-Watt Research Portal Document Version: Peer reviewed version Published In: Additive Manufacturing General rights Copyright for the publications made accessible via Heriot-Watt Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy Heriot-Watt University has made every reasonable effort to ensure that the content in Heriot-Watt Research Portal complies with UK legislation. If you believe that the public display of this file breaches copyright please contact
[email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 29. Sep. 2021 Material Interactions in Laser Polishing Powder Bed Additive Manufactured Ti6Al4V Components Yingtao Tian1, Wojciech S. Gora2, Aldara Pan Cabo2, Lakshmi L. Parimi3, Duncan P. Hand2, Samuel Tammas-Williams1, Philip B. Prangnell1 1 School of Materials, University of Manchester, Manchester, M13 9PL, UK 2 School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK 3 GKN Aerospace, Filton, Bristol, BS34 9AU, UK Abstract Laser polishing (LP) is an emerging technique with the potential to be used for post-build, or in-situ, precision smoothing of rough fatigue-initiation prone surfaces of additive manufactured (AM) components.