Diptera: Tephritidae) in Africa Using PCR and RFLP Analyses
Bulletin of Entomological Research (2006) 96, 505–521 DOI: 10.1079/BER2006452 Molecular diagnostics of economically important Ceratitis fruit fly species (Diptera: Tephritidae) in Africa using PCR and RFLP analyses N.B. Barr1,6 *, R.S. Copeland2,4, M. De Meyer3, D. Masiga4,5, H.G. Kibogo4, M.K. Billah4, E. Osir4, R.A. Wharton2 and B.A. McPheron1 1Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA: 2Department of Entomology, Texas A&M University, College Station, TX 77843, USA: 3Royal Museum for Central Africa, Entomology Section, Belgium: 4International Centre of Insect Physiology and Ecology, PO Box 30772, Nairobi, Kenya: 5Department of Biochemistry and Biotechnology, Kenyatta University, Nairobi, Kenya: 6Center for Plant Health Science and Technology, Pest Detection Diagnostics and Management Laboratory, USDA-APHIS, Moore Air Base, Edinburg, TX 78541, USA Abstract The predominantly Afrotropical fruit fly genus Ceratitis contains many species of agricultural importance. Consequently, quarantine of Ceratitis species is a major concern for governmental regulatory agencies. Although diagnostic keys exist for identification of all described Ceratitis species, these tools are based on adult characters. Flies intercepted at ports of entry are usually immatures, and Ceratitis species cannot be diagnosed based on larval morphology. To facilitate identifica- tion of Ceratitis pests at ports of entry, this study explores the utility of DNA-based diagnostic tools for a select group of Ceratitis species and related tephritids, some of which infest agriculturally important crops in Africa. The application of the polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP) method to analyse three mitochondrial genes (12S ribosomal RNA, 16S ribosomal RNA, and NADH-dehydrogenase subunit 6) is sufficient to diagnose 25 species and two species clusters.
[Show full text]