Contribution a La Connaissance Des Mouches Des Fruits (Diptera : Tephritidae)

Total Page:16

File Type:pdf, Size:1020Kb

Contribution a La Connaissance Des Mouches Des Fruits (Diptera : Tephritidae) N° d’ordre : UNIVERSITE DE LOME FACULTE DES SCIENCES LOME-TOGO THESE Pour l’obtention du Grade de DOCTEUR EN SCIENCES DE LA VIE Spécialité : Biologie de développement Option : Entomologie Appliquée Présentée par Mondjonnesso GOMINA CONTRIBUTION A LA CONNAISSANCE DES MOUCHES DES FRUITS (DIPTERA : TEPHRITIDAE) ET DE LEURS PARASITOIDES AU SUD DU TOGO Soutenue publiquement le………………………………….2015 Devant la commission d’examen composée de : Professeur GLITHO I. Adolé, Université de Lomé :…………………………….…..Présidente AMEVOIN Komina, Maître de Conférences, Université de Lomé :…………….….Directeur Professeur MONGE Jean-Paul, Université François Rebelais de Tours (France) : Rapporteur Professeur KETOH Koffivi Komlan, Université de Lomé :………………………….Rapporteur VAYSSIERES Jean-François, Directeur de Recherche, CIRAD/IITA :……………Examinateur SOMMAIRE Résumé .................................................................................................................................... 11 Abstract ................................................................................................................................... 12 INTRODUCTION GENERALE .......................................................................................... 13 CHAPITRE 1 : REVUE BIBLIOGRAPHIQUE ................................................................. 17 I – Zones écologiques du Togo et la production des fruits ................................................. 18 II – La filière fruitière au Togo ............................................................................................. 18 1. Production et exportation des fruits ................................................................................. 18 2. Contraintes liées à la production et à la commercialisation des fruits ............................. 20 III - Tephritidae ...................................................................................................................... 22 A) Tephritidae non frugivores .............................................................................................. 22 1. Bio-écologie ..................................................................................................................... 23 1.1. Plantes-hôtes .............................................................................................................. 23 1.2. Cycle de développement ........................................................................................... 24 1.2.1. Accouplement ......................................................................................................... 24 1.2.2. Ponte ....................................................................................................................... 24 1.2.3. Développement des stades pré-imaginaux ............................................................. 25 2. Importance économique ................................................................................................... 25 3. Lutte biologique contre les plantes adventices ................................................................. 26 B) Tephritidae frugivores ...................................................................................................... 27 1. Plantes-hôtes ..................................................................................................................... 28 2. Biologie ............................................................................................................................ 31 2.1. Appareil reproducteur ................................................................................................ 31 2.1.1. Appareil reproducteur femelle ............................................................................... 31 2.1.2. Appareil reproducteur mâle ................................................................................... 32 2.2. Maturité sexuelle ....................................................................................................... 33 2.3. Accouplement ............................................................................................................ 34 2.4. Ponte .......................................................................................................................... 35 2.5. Cycle de développement ........................................................................................... 37 2.5.1. Œufs et développement embryonnaire ................................................................... 37 2.5.2. Morphologie des différents stades larvaires .......................................................... 38 2.5.3. Activités des différents stades larvaires ................................................................. 39 2.5.3. Facteurs influençant le développement .................................................................. 39 2.5.4. Compétition intra et inter-spécifique ..................................................................... 40 2.5.5. Voltinisme ............................................................................................................... 41 3. Importance écologique et économique ............................................................................. 42 2 3.1. Effet bénéfique et neutre ........................................................................................... 42 3.2. Importance économique ............................................................................................ 42 3.2.1. Impacts de B. dorsalis sur la production fruitière en Afrique ............................... 42 3.2.2. Autres espèces nuisibles aux fruits ......................................................................... 44 3.2.3. Conséquences des dégâts causés aux fruits ........................................................... 45 4. Méthodes de lutte ............................................................................................................. 47 4.1. Lutte chimique ........................................................................................................... 47 4.1.1. Utilisation de pièges à liquide ................................................................................ 47 4.1.2. Technique d’annihilation des mâles (TAM ) ou piégeage de détection .................. 47 4.2. Utilisation de bio-insecticides ................................................................................... 48 4.3. Lutte génétique ou technique de l’insecte stérile (TIS) ............................................. 48 4.4. Lutte culturale ou mesures prophylactiques .............................................................. 49 4.5. Lutte biologique ........................................................................................................ 49 4.5.1. Utilisation de prédateurs ........................................................................................ 49 4.5.2. Utilisation de parasitoïdes ..................................................................................... 50 4.6. Traitement post-récolte ............................................................................................. 52 4.7. Lutte intégrée ............................................................................................................. 53 Conclusion ............................................................................................................................... 54 CHAPITRE 2 : CADRE ET CONDITIONS DE L’ETUDE .............................................. 55 I – CADRE D’ETUDE ........................................................................................................... 56 1. Zone écologique IV .......................................................................................................... 56 2. Zone écologique V ........................................................................................................... 56 3. Choix des sites de piégeage des espèces de Tephritidae .................................................. 57 4. Sites d’échantillonnage des fruits ..................................................................................... 59 II – MATERIEL ET METHODES ....................................................................................... 59 1. Matériel vivant ................................................................................................................. 59 1.1. Matériel végétal ......................................................................................................... 59 1.2. Matériel animal ......................................................................................................... 60 1.2.1. Elevage de B. dorsalis ............................................................................................ 60 2. Matériel de piégeage ........................................................................................................ 63 2.1. Piège à sec ................................................................................................................. 63 2.2. Paraphéromones ........................................................................................................ 63 2.3. Insecticide chimique .................................................................................................. 65 3. Conservation des échantillons de Tephritidae .................................................................. 65 4. Préparation et montage des larves .................................................................................... 66 3 CHAPITRE 3 : DIVERSITE DES MOUCHES DES
Recommended publications
  • Bulletin of the Dipterists Forum
    BULLETIN OF THE Dipterists Forum Bulletin No. 56 Affiliated to the British Entomological and Natural History Society Autumn 2003 Scheme Organisers Tipuloidea & Ptychopteridae - Cranefly Dr. R.K.A.Morris Mr A E Stubbs [email protected] 181 Broadway Peterborough PE1 4DS Summer 2003: Please notify Dr Mark Hill of changes: Ivan Perry BRC (CEH) [ ][ ] 27 Mill Road, Lode, Cambridge, CB5 9EN. Monks Wood, Abbots Ripton, Huntingdon, co-organiser: John Kramer Tel: 01223 812438 Cambridgeshire PE28 2LS (Tel. 01487 772413) 31 Ash Tree Road Autumn 2003, Summer 2004: [email protected] Oadby, Leicester, LE2 5TE Peter Chandler Recording Schemes Sciomyzidae - Snail-killing Flies Symposium Graham Rotheray This year will see some substantial changes in the National Museums of Scotland, Chambers Street, Dr I F G McLean ways in which some Recording Scheme Organisers Edinburgh EH1 1JF, 0131.247.4243 109 Miller Way, Brampton, Huntingdon, Cambs archive and exchange records. Whilst all will read- [email protected] ily accept records in written form the following PE28 4TZ Membership symbols are used to indicate some of the known (or [email protected] surmised) methods by which Scheme Organisers [email protected] may currently receive records electronically: Mr A.P. Foster Mr M. Parker 23 The Dawneys, Crudwell, Malmesbury, Wiltshire 9 East Wyld Road, Weymouth, Dorset, DT4 0RP Recorder SN16 9HE Dipterists Digest MapMate [][][] Microsoft Access Darwyn Sumner Peter Chandler 606B Berryfield Lane, Melksham, Wilts SN12 6EL Spreadsheet
    [Show full text]
  • Biological Control of Yellow Starthistle
    Biological Control of Yellow Starthistle Lincoln Smith, USDA-ARS-WRRC, 800 Buchanan St, Albany CA 94710 Joe Balciunas, USDA-ARS-WRRC, 800 Buchanan St, Albany CA 94710 Michael J. Pitcairn, California Dept. of Food and Agriculture, 3288 Meadowview Road, Sacramento, CA 95832 Yellow starthistle (Centaurea solstitialis L.) is an alien plant that probably originated from the eastern Mediterranean. It was first collected in California in 1869, and now infests 42% of the state’s townships. It interferes with land use such as grazing and recreation, displaces native species, and is toxic to horses (Sheley, et al. 1999 and papers cited therein). This weed is much less invasive in its land of origin. This is presumably because natural enemies, such as insects, plant diseases, animals or competing plants help to keep it under natural control. We are exploring for insects and pathogens that attack this plant. They are tested for host specificity to make sure they do not attack other plants. After evaluation and approval by state and federal agencies, these agents will be released to try to reestablish the natural control that occurs in the land of origin. So far, six species of insect biological control agents have been introduced to control yellow starthistle (Turner et al. 1995; Rees et al. 1996; Jette, et al. 1999). All six attack the seedheads. The most promising agent is the hairy weevil (Eustenopus villosus), which is well established in California and occurs in high densities, attacking 25 to 80% of seedheads. Adults damage young flower buds by feeding on them, and lay eggs on later-developing flower buds.
    [Show full text]
  • Flies) Benjamin Kongyeli Badii
    Chapter Phylogeny and Functional Morphology of Diptera (Flies) Benjamin Kongyeli Badii Abstract The order Diptera includes all true flies. Members of this order are the most ecologically diverse and probably have a greater economic impact on humans than any other group of insects. The application of explicit methods of phylogenetic and morphological analysis has revealed weaknesses in the traditional classification of dipteran insects, but little progress has been made to achieve a robust, stable clas- sification that reflects evolutionary relationships and morphological adaptations for a more precise understanding of their developmental biology and behavioral ecol- ogy. The current status of Diptera phylogenetics is reviewed in this chapter. Also, key aspects of the morphology of the different life stages of the flies, particularly characters useful for taxonomic purposes and for an understanding of the group’s biology have been described with an emphasis on newer contributions and progress in understanding this important group of insects. Keywords: Tephritoidea, Diptera flies, Nematocera, Brachycera metamorphosis, larva 1. Introduction Phylogeny refers to the evolutionary history of a taxonomic group of organisms. Phylogeny is essential in understanding the biodiversity, genetics, evolution, and ecology among groups of organisms [1, 2]. Functional morphology involves the study of the relationships between the structure of an organism and the function of the various parts of an organism. The old adage “form follows function” is a guiding principle of functional morphology. It helps in understanding the ways in which body structures can be used to produce a wide variety of different behaviors, including moving, feeding, fighting, and reproducing. It thus, integrates concepts from physiology, evolution, anatomy and development, and synthesizes the diverse ways that biological and physical factors interact in the lives of organisms [3].
    [Show full text]
  • Inventory and Review of Quantitative Models for Spread of Plant Pests for Use in Pest Risk Assessment for the EU Territory1
    EFSA supporting publication 2015:EN-795 EXTERNAL SCIENTIFIC REPORT Inventory and review of quantitative models for spread of plant pests for use in pest risk assessment for the EU territory1 NERC Centre for Ecology and Hydrology 2 Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, OX10 8BB, UK ABSTRACT This report considers the prospects for increasing the use of quantitative models for plant pest spread and dispersal in EFSA Plant Health risk assessments. The agreed major aims were to provide an overview of current modelling approaches and their strengths and weaknesses for risk assessment, and to develop and test a system for risk assessors to select appropriate models for application. First, we conducted an extensive literature review, based on protocols developed for systematic reviews. The review located 468 models for plant pest spread and dispersal and these were entered into a searchable and secure Electronic Model Inventory database. A cluster analysis on how these models were formulated allowed us to identify eight distinct major modelling strategies that were differentiated by the types of pests they were used for and the ways in which they were parameterised and analysed. These strategies varied in their strengths and weaknesses, meaning that no single approach was the most useful for all elements of risk assessment. Therefore we developed a Decision Support Scheme (DSS) to guide model selection. The DSS identifies the most appropriate strategies by weighing up the goals of risk assessment and constraints imposed by lack of data or expertise. Searching and filtering the Electronic Model Inventory then allows the assessor to locate specific models within those strategies that can be applied.
    [Show full text]
  • Molecular Phylogenetics of the Genus Ceratitis (Diptera: Tephritidae)
    Molecular Phylogenetics and Evolution 38 (2006) 216–230 www.elsevier.com/locate/ympev Molecular phylogenetics of the genus Ceratitis (Diptera: Tephritidae) Norman B. Barr ¤, Bruce A. McPheron Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA Received 29 March 2005; revised 3 October 2005; accepted 5 October 2005 Abstract The Afrotropical fruit Xy genus Ceratitis MacLeay is an economically important group that comprises over 89 species, subdivided into six subgenera. Cladistic analyses of morphological and host use characters have produced several phylogenetic hypotheses for the genus. Only monophyly of the subgenera Pardalaspis and Ceratitis (sensu stricto) and polyphyly of the subgenus Ceratalaspis are common to all of these phylogenies. In this study, the hypotheses developed from morphological and host use characters are tested using gene trees pro- duced from DNA sequence data of two mitochondrial genes (cytochrome oxidase I and NADH-dehydrogenase subunit 6) and a nuclear gene (period). Comparison of gene trees indicates the following relationships: the subgenus Pardalaspis is monophyletic, subsection A of the subgenus Pterandrus is monophyletic, the subgenus Pterandrus may be either paraphyletic or polyphyletic, the subgenus Ceratalaspis is polyphyletic, and the subgenus Ceratitis s. s. might not be monophyletic. In addition, the genera Ceratitis and Trirhithrum do not form reciprocally monophyletic clades in the gene trees. Although the data statistically reject monophyly for Trirhithrum under the Shimoda- ira–Hasegawa test, they do not reject monophyly of Ceratitis. 2005 Elsevier Inc. All rights reserved. Keywords: Ceratitis; Trirhithrum; Tephritidae; ND6; COI; period 1. Introduction cies, C. capitata (Wiedemann) (commonly known as the Mediterranean fruit Xy), is already an invasive species The genus Ceratitis MacLeay (Diptera: Tephritidae) with established populations throughout tropical, sub- comprises over 89 Afrotropical species of fruit Xy (De tropical, and mild temperate habitats worldwide (Vera Meyer, 2000a).
    [Show full text]
  • Two New Species of Psyttalia Walker (Hymenoptera, Braconidae, Opiinae) Reared from Fruit-Infesting Tephritid (Diptera) Hosts in Kenya
    A peer-reviewed open-access journal ZooKeys 20: 349–377Two (2009) new species of Psyttalia Walker (Hymenoptera, Braconidae, Opiinae) 349 doi: 10.3897/zookeys.20.99 RESEARCH ARTICLE www.pensoftonline.net/zookeys Launched to accelerate biodiversity research Two new species of Psyttalia Walker (Hymenoptera, Braconidae, Opiinae) reared from fruit-infesting tephritid (Diptera) hosts in Kenya Robert A. Wharton Departament of Entomology, Texas A & M University, College Station, TX urn:lsid:zoobank.org:author:6AAF121C-A6DB-47B0-81EE-131259F28972 Corresponding author: Robert A. Wharton ([email protected]) Academic editor: Kees van Achterberg | Received 14 February 2009 | Accepted 7 May 2009 | Published 14 September 2009 urn:lsid:zoobank.org:pub:42A09D98-A0FC-4510-A2E5-A578D9935766 Citation: Wharton RA (2009) Two new species of Psyttalia Walker (Hymenoptera, Braconidae, Opiinae) reared from fruit-infesting tephritid (Diptera) hosts in Kenya. In: Johnson N (Ed) Advances in the systematics of Hymenoptera. Festschrift in honour of Lubomír Masner. ZooKeys 20: 349–377. doi: 10.3897/zookeys.20.99 Abstract Two species of opiine Braconidae, reared from fruit-infesting Tephritidae in Kenya, are described. Psyt- talia masneri, sp. n., was reared from fruits of Dracaena fragrans (L.) Ker Gawl. (Liliaceae) infested with Taomyia marshalli Bezzi in western Kenya. Psyttalia masneri is the only opiine braconid known to attack members of the genus Taomyia. Unusual morphological features of P. masneri and its host are detailed. Psyttalia halidayi, sp. n., was reared from fruits of Lettowianthus stellatus Diels (Annonaceae) infested with Ceratitis rosa Karsch in coastal Kenya. Psyttalia halidayi is morphologically similar to several described species of Psyttalia that have previously been used in the biological control of tephritid pests.
    [Show full text]
  • De Novo Transcriptome Analysis and Identification of Genes Associated
    RESEARCH ARTICLE De novo transcriptome analysis and identification of genes associated with immunity, detoxification and energy metabolism from the fat body of the tephritid gall fly, Procecidochares utilis 1 1 1 1 1 1 1 Lifang LiID , Xi Gao , Mingxian Lan , Yuan Yuan , Zijun Guo , Ping Tang , Mengyue Li , Xianbin Liao1, Jiaying Zhu2, Zhengyue Li1, Min Ye1*, Guoxing Wu1* a1111111111 a1111111111 1 State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China, 2 Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, a1111111111 Southwest Forestry University, Kunming, China a1111111111 a1111111111 * [email protected] (GW); [email protected] (MY) Abstract OPEN ACCESS The fat body, a multifunctional organ analogous to the liver and fat tissue of vertebrates, Citation: Li L, Gao X, Lan M, Yuan Y, Guo Z, Tang plays an important role in insect life cycles. The fat body is involved in protein storage, P, et al. (2019) De novo transcriptome analysis and energy metabolism, elimination of xenobiotics, and production of immunity regulator-like identification of genes associated with immunity, detoxification and energy metabolism from the fat proteins. However, the molecular mechanism of the fat body's physiological functions in the body of the tephritid gall fly, Procecidochares utilis. tephritid stem gall-forming fly, Procecidochares utilis, are still unknown. In this study, we per- PLoS ONE 14(12): e0226039. https://doi.org/ formed transcriptome analysis of the fat body of P. utilis using Illumina sequencing technol- 10.1371/journal.pone.0226039 ogy. In total, 3.71 G of clean reads were obtained and assembled into 30,559 unigenes, with Editor: Alexie Papanicolaou, Western Sydney an average length of 539 bp.
    [Show full text]
  • Urophora Jaceana) and Its Host Plant (Centaurea Nigra)
    Open Research Online The Open University’s repository of research publications and other research outputs An individual based population study of an insect herbivore (Urophora jaceana) and its host plant (Centaurea nigra) Thesis How to cite: Paul, Roger Philip (1998). An individual based population study of an insect herbivore (Urophora jaceana) and its host plant (Centaurea nigra). PhD thesis The Open University. For guidance on citations see FAQs. c 1997 Roger Philip Paul https://creativecommons.org/licenses/by-nc-nd/4.0/ Version: Version of Record Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.21954/ou.ro.0000fe91 Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk U (\/l2bS7RlCT^ A x y . IndivlcSLiaâl based £>0£>\alat:lozl study of an Ixxsect herbivore C ZJ’jro£>Jnojr& CG&n a*) and its host plant C ta urea grra) . Roger Philip Paul M.A. (Cantab) Thesis submitted for the degree of Doctor of Philosophy of the Open University, U.K. Discipline: Biology 17th May 1997 Preferred citation: Paul R.P. (1997) An mdividual based population study of an insect h e rb iv o re {Urophora jaceana) and its host plant {C e n ta u re a n ig ra ). Ph.D. Thesis, The Open University, U.K. ProQuest Number: 27696830 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.
    [Show full text]
  • Population Buildup and Combined Impact of Introduced Insects on Yellow Starthistle (Centaurea Solstitialis L.) in California
    Proceedings of the X International Symposium on Biological Control of Weeds 747 4-14 July 1999, Montana State University, Bozeman, Montana, USA Neal R. Spencer [ed.]. pp. 747-751 (2000) Population Buildup and Combined Impact of Introduced Insects on Yellow Starthistle (Centaurea solstitialis L.) in California MICHAEL J. PITCAIRN1, DALE. M. WOODS1, DONALD. B. JOLEY1, CHARLES E. TURNER2, and JOSEPH K. BALCIUNAS2 1California Department of Food and Agriculture, Biological Control Program, 3288 Meadowview Road, Sacramento, California 95832, USA 2United States Department of Agriculture, Agricultural Research Service, 800 Buchanan Street, Albany, California 94710, USA Abstract Seven exotic seed head insects have been introduced into the western United States for control of yellow starthistle. Six are established; three are widespread. Preliminary evaluations suggest that no one insect species will be able to reduce yellow starthistle abundance in California. Rather, a combination of the current, and possibly, future natu- ral enemies may be necessary. Studies were initiated in 1993 to evaluate the population buildup, combined impact, and interaction of all available biological control insects on yellow starthistle. Three field sites were established in different climatic regions where yellow starthistle is abundant. Four insects, Bangasternus orientalis, Urophora sirunase- va, Eustenopus villosus, and Larinus curtus, were released at each site in 1993 and 1994 and long-term monitoring was initiated. The accidentally-introduced insect, Chaetorellia succinea, was recovered in 1996-98 at these sites. Four years after the first releases, we have evidence that these biological control agents are having an impact on yellow starthistle seed production that may translate into a decline in mature plant populations.
    [Show full text]
  • Crete in Spring 2018 Lead by Fiona Dunbar a Greentours Trip Report
    Crete in Spring 2018 Lead by Fiona Dunbar A Greentours Trip Report Friday 6th April Arrival After an early start at Gatwick, we arrived in Crete only a little late. Ian Hislop was on our flight, presumably on his way out to stay with his wife, author of such Cretan Aga sagas as ‘The Island’. Driving along, the countryside was markedly lush and green compared to some years. The Robinia pseudoacacia was dripping in white blossom, the Judas trees with pink. There were acres of yellow, and yellow and white, Chrysanthemum coronarium. We enjoyed a welcome but late lunch at a taverna in the village of Armeni instead. The saganaki or fried cheese was made with the cooks’ own freshly prepared, mild goats cheese. The garden centre next door was quite a pull, too! As we gained altitude we looked out over hills covered with fig, gorse, Quercus pubescens, Asphodeline aestivus and almost fluorescing lime green Giant Fennel, in between the groves of olives and small fields. Having been greeted by Herakles in Spili with glasses of cold water and quince in honey, we settled into our rooms. Some walked down the track below. There was a fine stand of tall purple broomrapes on the nasturtiums in Heracles garden. We reconvened in the breakfast room and strolled over the road to Costas and Maria’s taverna, almost hidden by trailing vines and flowers. Most of us tried the rabbit in lemon sauce – tender and tasty. It was Good Friday, and as I headed to bed I could hear a Scops Owl calling.
    [Show full text]
  • Assessment of Insects, Primarily Impacts of Biological Control Organisms and Their Parasitoids, Associated with Spotted Knapweed (Centaurea Stoebe L
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2004 Assessment of Insects, Primarily Impacts of Biological Control Organisms and Their Parasitoids, Associated with Spotted Knapweed (Centaurea stoebe L. s. l.) in Eastern Tennessee Amy Lynn Kovach University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Plant Sciences Commons Recommended Citation Kovach, Amy Lynn, "Assessment of Insects, Primarily Impacts of Biological Control Organisms and Their Parasitoids, Associated with Spotted Knapweed (Centaurea stoebe L. s. l.) in Eastern Tennessee. " Master's Thesis, University of Tennessee, 2004. https://trace.tennessee.edu/utk_gradthes/2267 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Amy Lynn Kovach entitled "Assessment of Insects, Primarily Impacts of Biological Control Organisms and Their Parasitoids, Associated with Spotted Knapweed (Centaurea stoebe L. s. l.) in Eastern Tennessee." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Entomology and Plant Pathology. Jerome F. Grant, Major Professor We have read this thesis and recommend its acceptance: Paris L. Lambdin, B. Eugene Wofford Accepted for the Council: Carolyn R.
    [Show full text]
  • De Novo Transcriptomic Analysis of the Alimentary Tract of the Tephritid Gall Fly, Procecidochares Utilis
    RESEARCH ARTICLE De novo transcriptomic analysis of the alimentary tract of the tephritid gall fly, Procecidochares utilis Lifang Li1☯, Mingxian Lan1☯, Wufeng Lu1, Zhaobo Li1, Tao Xia1, Jiaying Zhu2, Min Ye1, Xi Gao1*, Guoxing Wu1* 1 State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China, 2 Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China a1111111111 ☯ These authors contributed equally to this work. a1111111111 * [email protected] (XG); [email protected] (GW) a1111111111 a1111111111 a1111111111 Abstract The tephritid gall fly, Procecidochares utilis, is an important obligate parasitic insect of the malignant weed Eupatorium adenophorum which biosynthesizes toxic secondary metabo- OPEN ACCESS lites. Insect alimentary tracts secrete several enzymes that are used for detoxification, Citation: Li L, Lan M, Lu W, Li Z, Xia T, Zhu J, et al. including cytochrome P450s, glutathione S-transferases, and carboxylesterases. To (2018) De novo transcriptomic analysis of the explore the adaptation of P. utilis to its toxic host plant, E. adenophorum at molecular level, alimentary tract of the tephritid gall fly, we sequenced the transcriptome of the alimentary tract of P. utilis using Illumina sequenc- Procecidochares utilis. PLoS ONE 13(8): ing. Sequencing and de novo assembly yielded 62,443 high-quality contigs with an average e0201679. https://doi.org/10.1371/journal. pone.0201679 length of 604 bp that were further
    [Show full text]