Functional Specialization in Nucleotide Sugar Transporters Occurred Through Differentiation of the Gene Cluster Eama
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
High-Throughput, Pooled Sequencing Identifies Mutations in NUBPL And
ARTICLES High-throughput, pooled sequencing identifies mutations in NUBPL and FOXRED1 in human complex I deficiency Sarah E Calvo1–3,10, Elena J Tucker4,5,10, Alison G Compton4,10, Denise M Kirby4, Gabriel Crawford3, Noel P Burtt3, Manuel Rivas1,3, Candace Guiducci3, Damien L Bruno4, Olga A Goldberger1,2, Michelle C Redman3, Esko Wiltshire6,7, Callum J Wilson8, David Altshuler1,3,9, Stacey B Gabriel3, Mark J Daly1,3, David R Thorburn4,5 & Vamsi K Mootha1–3 Discovering the molecular basis of mitochondrial respiratory chain disease is challenging given the large number of both mitochondrial and nuclear genes that are involved. We report a strategy of focused candidate gene prediction, high-throughput sequencing and experimental validation to uncover the molecular basis of mitochondrial complex I disorders. We created seven pools of DNA from a cohort of 103 cases and 42 healthy controls and then performed deep sequencing of 103 candidate genes to identify 151 rare variants that were predicted to affect protein function. We established genetic diagnoses in 13 of 60 previously unsolved cases using confirmatory experiments, including cDNA complementation to show that mutations in NUBPL and FOXRED1 can cause complex I deficiency. Our study illustrates how large-scale sequencing, coupled with functional prediction and experimental validation, can be used to identify causal mutations in individual cases. Complex I of the mitochondrial respiratory chain is a large ~1-MDa assembly factors are probably required, as suggested by the 20 factors macromolecular machine composed of 45 protein subunits encoded necessary for assembly of the smaller complex IV9 and by cohort by both the nuclear and mitochondrial (mtDNA) genomes. -
Differential Expression Profile Prioritization of Positional Candidate Glaucoma Genes the GLC1C Locus
LABORATORY SCIENCES Differential Expression Profile Prioritization of Positional Candidate Glaucoma Genes The GLC1C Locus Frank W. Rozsa, PhD; Kathleen M. Scott, BS; Hemant Pawar, PhD; John R. Samples, MD; Mary K. Wirtz, PhD; Julia E. Richards, PhD Objectives: To develop and apply a model for priori- est because of moderate expression and changes in tization of candidate glaucoma genes. expression. Transcription factor ZBTB38 emerges as an interesting candidate gene because of the overall expres- Methods: This Affymetrix GeneChip (Affymetrix, Santa sion level, differential expression, and function. Clara, Calif) study of gene expression in primary cul- ture human trabecular meshwork cells uses a positional Conclusions: Only1geneintheGLC1C interval fits our differential expression profile model for prioritization of model for differential expression under multiple glau- candidate genes within the GLC1C genetic inclusion in- coma risk conditions. The use of multiple prioritization terval. models resulted in filtering 7 candidate genes of higher interest out of the 41 known genes in the region. Results: Sixteen genes were expressed under all condi- tions within the GLC1C interval. TMEM22 was the only Clinical Relevance: This study identified a small sub- gene within the interval with differential expression in set of genes that are most likely to harbor mutations that the same direction under both conditions tested. Two cause glaucoma linked to GLC1C. genes, ATP1B3 and COPB2, are of interest in the con- text of a protein-misfolding model for candidate selec- tion. SLC25A36, PCCB, and FNDC6 are of lesser inter- Arch Ophthalmol. 2007;125:117-127 IGH PREVALENCE AND PO- identification of additional GLC1C fami- tential for severe out- lies7,18-20 who provide optimal samples for come combine to make screening candidate genes for muta- adult-onset primary tions.7,18,20 The existence of 2 distinct open-angle glaucoma GLC1C haplotypes suggests that muta- (POAG) a significant public health prob- tions will not be limited to rare descen- H1 lem. -
Tese Roberto Molina.Pdf
Universidade de São Paulo FACULDADE DE MEDICINA DE RIBEIRÃO PRETO Roberto Augusto Silva Molina Tese de Doutorado a ser apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo para a obtenção do Título de Doutor em Ciências: Biologia Celular e Molecular. Orientadora: Prof.ª Dr.ª Enilza Maria Espreafico RIBEIRÃO PRETO 2014 Ficha Catalográfica Molina, Roberto Augusto Silva "EMC1 contribui para a malignidade em células de câncer de mama", Ribeirão Preto, 2014. 107p.: il.; 30cm Tese de Doutorado, apresentada à Faculdade de Medicina de Ribeirão Preto/USP. Área de Concentração: Biologia Celular e Molecular. Orientadora: Espreafico, Enilza Maria. 1 - EMC1; 2 - KIAA0090; 3 - câncer de mama; 4 - invasão; 5 - EROs FOLHA DE APROVAÇÃO Roberto Augusto Silva Molina "EMC1 contribui para a malignidade em células de câncer de mama" Tese de doutorado apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo para a obtenção do título de Doutor. Área de Concentração: Biologia Celular e Molecular. Aprovado em: / / Banca Examinadora Professora Dra. Maria Aparecida Nagai Instituição: Assinatura: ________________________________________________________ Professora Dra. Mariana Kiomy Osako Instituição: Assinatura: ________________________________________________________ Professor Dr. Guido Lenz Instituição: Assinatura: ________________________________________________________ Professor Dr. Wilson Araujo da Silva Júnior Instituição: Assinatura: ________________________________________________________ Professora Dra. Enilza Maria Espreafico Instituição: Faculdade de Medicina de Ribeirão Preto/USP Assinatura: ________________________________________________________ i Agradecimentos... Primeiramente a Deus, que me concedeu o dom da vida, por iluminar meu caminho sempre me dando forças para lutar sem perder o ânimo. À Profa. Dra. Enilza Maria Espreafico, por me receber de portas abertas em seu laboratório, pela confiança depositada, por todo ensinamento e pela sua empolgação contagiante pela ciência. -
Human Genome Center Laboratory of Genome Database Laboratory of Sequence Analysis ゲノムデータベース分野 シークエンスデータ情報処理分野
116 Human Genome Center Laboratory of Genome Database Laboratory of Sequence Analysis ゲノムデータベース分野 シークエンスデータ情報処理分野 Professor Minoru Kanehisa, Ph.D. 教授(委嘱) 理学博士 金 久 實 Assistant Professor Toshiaki Katayama, M.Sc. 助 教 理学修士 片山俊明 Assistant Professor Shuichi Kawashima, M.Sc. 助 教 理学修士 川島秀一 Lecturer Tetsuo Shibuya, Ph.D. 講 師 理学博士 渋谷哲朗 Assistant Professor Michihiro Araki, Ph.D. 助 教 薬学博士 荒木通啓 Since the completion of the Human Genome Project, high-throughput experimental projects have been initiated for uncovering genomic information in an extended sense, including transcriptomics, proteomics metabolomics, glycomics, and chemi- cal genomics. We are developing a new generation of databases and computa- tional technologies, beyond the traditional genome databases and sequence analy- sis tools, for making full use of these divergent and ever-increasing amounts of data, especially for medical and pharmaceutical applications. 1. KEGG DRUG and KEGG DISEASE natural product information in the context of plant and other genomes. We also develop Minoru Kanehisa KEGG DISEASE (http://www.genome.jp/kegg/ disease/), a new resource for understanding KEGG is a database of biological systems that molecular mechanisms of human diseases, integrates genomic, chemical, and systemic func- where molecular networks involving disease tional information. It is widely used as a refer- genes are represented as KEGG pathway maps ence knowledge base for understanding higher- or, when such details are not known, simply by order functions and utilities of the cell or the or- a list of diseases genes and other lists of mole- ganism from genomic information. Although the cules including environmental factors. basic components of the KEGG resource are de- veloped in Kyoto University, this Laboratory in 2. -
Improving the Yeast Two-Hybrid System with Permutated Fusion Proteins: the Varicella Zoster Virus Protein Interaction Network
Improving the Yeast two-hybrid system with permutated fusion proteins: The Varicella zoster virus protein interaction network Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN (Dr. rer. nat.) Fakultät für Chemie und Biowissenschaften Karlsruher Institut für Technologie (KIT) - Universitätsbereich vorgelegte DISSERTATION von Diplom-Biologe Thorsten Stellberger aus Rauenberg Dekan: Prof. Dr. Stefan Bräse Referent: Prof. Dr. Jonathan Sleeman Korreferent: Prof. Dr. Jörg Kämper Tag der mündlichen Prüfung: 20.10.2010 Die vorliegende Arbeit wurde in der Zeit von Januar 2007 bis September 2010 in der Arbeitsgruppe von PD Dr. Peter Uetz im Institut für Toxikologie und Genetik des Karlsruher Instituts für Technologie (KIT), Campus Nord, angefertigt. Zusammenfassung Die vorliegende Studie beschreibt den ersten Versuch zur Erstellung eines vergleichenden Protein-Protein Interaktionsnetzwerks mit dem Yeast two-hybrid (Y2H) System. Viele Studien bestätigen, dass Interaktionsnetzwerke aus proteomweiten Screens unvollständig sind. Dies stützt sich auf die Beobachtung, dass Interaktionsdaten, die mit unterschiedlichen Methoden erhoben wurden, nur geringe Überlappungen zeigen. Dies betrifft auch unterschiedliche Systeme innerhalb einer Methode, wie verschiedene Y2H-Systeme. Dadurch wurde die Frage aufgeworfen, welche Rolle strukturelle Unterschiede, insbesondere sterische Bedingungen im Testsystem spielen, verursacht durch die Orientierung der verwendeten Fusionsdomänen. In dieser Arbeit untersuche ich deren Einfluss auf die Detektierbarkeit -
Human Untagged Clone – SC316202 | Origene
OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for SC316202 SLC35G2 (NM_001097599) Human Untagged Clone Product data: Product Type: Expression Plasmids Product Name: SLC35G2 (NM_001097599) Human Untagged Clone Tag: Tag Free Symbol: SLC35G2 Synonyms: TMEM22 Vector: pCMV6-Entry (PS100001) E. coli Selection: Kanamycin (25 ug/mL) Cell Selection: Neomycin Fully Sequenced ORF: >NCBI ORF sequence for NM_001097599, the custom clone sequence may differ by one or more nucleotides ATGGATACTTCTCCCTCCAGAAAATATCCAGTTAAAAAACGGGTGAAAATACATCCCAACACAGTGATGG TGAAATATACTTCTCATTATCCCCAGCCTGGCGATGATGGATATGAAGAAATCAATGAAGGCTATGGAAA TTTTATGGAGGAAAATCCAAAGAAAGGTCTGCTGAGTGAAATGAAAAAAAAAGGGAGAGCTTTCTTTGGA ACCATGGATACCCTACCTCCACCAACAGAAGACCCAATGATCAATGAGATTGGACAATTCCAGAGCTTTG CAGAAAAAAACATTTTTCAATCCCGAAAAATGTGGATAGTGCTGTTTGGATCTGCTTTGGCTCATGGATG TGTAGCTCTTATCACTAGGCTTGTTTCTGATCGGTCTAAAGTTCCATCTCTAGAACTGATTTTTATCCGT TCTGTTTTTCAGGTCTTATCTGTGTTAGTTGTGTGTTACTATCAGGAGGCCCCCTTTGGACCCAGTGGAT ACAGATTACGACTCTTCTTTTATGGTGTATGCAATGTCATTTCTATCACTTGTGCTTATACATCATTTTC AATAGTTCCTCCCAGCAATGGGACCACTATGTGGAGAGCCACAACTACAGTCTTCAGTGCCATTTTGGCT TTTTTACTCGTAGATGAGAAAATGGCTTATGTTGACATGGCTACAGTTGTTTGCAGCATCTTAGGTGTTT GTCTTGTCATGATCCCAAACATTGTTGATGAAGACAATTCTTTGTTAAATGCCTGGAAAGAAGCCTTTGG GTACACCATGACTGTGATGGCTGGACTGACCACTGCTCTCTCAATGATAGTATACAGATCCATCAAGGAG AAGATCAGCATGTGGACTGCACTGTTTACTTTTGGTTGGACTGGGACAATTTGGGGAATATCTACTATGT TTATTCTTCAAGAACCCATCATCCCATTAGATGGAGAAACCTGGAGTTATCTCATTGCTATATGTGTCTG -
Chromosomal Microarray Analysis in Turkish Patients with Unexplained Developmental Delay and Intellectual Developmental Disorders
177 Arch Neuropsychitry 2020;57:177−191 RESEARCH ARTICLE https://doi.org/10.29399/npa.24890 Chromosomal Microarray Analysis in Turkish Patients with Unexplained Developmental Delay and Intellectual Developmental Disorders Hakan GÜRKAN1 , Emine İkbal ATLI1 , Engin ATLI1 , Leyla BOZATLI2 , Mengühan ARAZ ALTAY2 , Sinem YALÇINTEPE1 , Yasemin ÖZEN1 , Damla EKER1 , Çisem AKURUT1 , Selma DEMİR1 , Işık GÖRKER2 1Faculty of Medicine, Department of Medical Genetics, Edirne, Trakya University, Edirne, Turkey 2Faculty of Medicine, Department of Child and Adolescent Psychiatry, Trakya University, Edirne, Turkey ABSTRACT Introduction: Aneuploids, copy number variations (CNVs), and single in 39 (39/123=31.7%) patients. Twelve CNV variant of unknown nucleotide variants in specific genes are the main genetic causes of significance (VUS) (9.75%) patients and 7 CNV benign (5.69%) patients developmental delay (DD) and intellectual disability disorder (IDD). were reported. In 6 patients, one or more pathogenic CNVs were These genetic changes can be detected using chromosome analysis, determined. Therefore, the diagnostic efficiency of CMA was found to chromosomal microarray (CMA), and next-generation DNA sequencing be 31.7% (39/123). techniques. Therefore; In this study, we aimed to investigate the Conclusion: Today, genetic analysis is still not part of the routine in the importance of CMA in determining the genomic etiology of unexplained evaluation of IDD patients who present to psychiatry clinics. A genetic DD and IDD in 123 patients. diagnosis from CMA can eliminate genetic question marks and thus Method: For 123 patients, chromosome analysis, DNA fragment analysis alter the clinical management of patients. Approximately one-third and microarray were performed. Conventional G-band karyotype of the positive CMA findings are clinically intervenable. -
Differential Expression Profile Prioritization of Positional Candidate Glaucoma Genes the GLC1C Locus
LABORATORY SCIENCES Differential Expression Profile Prioritization of Positional Candidate Glaucoma Genes The GLC1C Locus Frank W. Rozsa, PhD; Kathleen M. Scott, BS; Hemant Pawar, PhD; John R. Samples, MD; Mary K. Wirtz, PhD; Julia E. Richards, PhD Objectives: To develop and apply a model for priori- est because of moderate expression and changes in tization of candidate glaucoma genes. expression. Transcription factor ZBTB38 emerges as an interesting candidate gene because of the overall expres- Methods: This Affymetrix GeneChip (Affymetrix, Santa sion level, differential expression, and function. Clara, Calif) study of gene expression in primary cul- ture human trabecular meshwork cells uses a positional Conclusions: Only1geneintheGLC1C interval fits our differential expression profile model for prioritization of model for differential expression under multiple glau- candidate genes within the GLC1C genetic inclusion in- coma risk conditions. The use of multiple prioritization terval. models resulted in filtering 7 candidate genes of higher interest out of the 41 known genes in the region. Results: Sixteen genes were expressed under all condi- tions within the GLC1C interval. TMEM22 was the only Clinical Relevance: This study identified a small sub- gene within the interval with differential expression in set of genes that are most likely to harbor mutations that the same direction under both conditions tested. Two cause glaucoma linked to GLC1C. genes, ATP1B3 and COPB2, are of interest in the con- text of a protein-misfolding model for candidate selec- tion. SLC25A36, PCCB, and FNDC6 are of lesser inter- Arch Ophthalmol. 2007;125:117-127 IGH PREVALENCE AND PO- identification of additional GLC1C fami- tential for severe out- lies7,18-20 who provide optimal samples for come combine to make screening candidate genes for muta- adult-onset primary tions.7,18,20 The existence of 2 distinct open-angle glaucoma GLC1C haplotypes suggests that muta- (POAG) a significant public health prob- tions will not be limited to rare descen- H1 lem. -
Namyoung Jung
EPIGENETIC BASIS OF STEM CELL IDENTITY IN NORMAL AND MALIGNANT HEMATOPOIETIC DEVELOPMENT by Namyoung Jung A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland July, 2015 © 2015 Namyoung Jung All Rights Reserved Abstract Acute myeloid leukemia (AML) is a heterogeneous hematologic malignancy characterized by subpopulations of leukemia-initiating or leukemia stem cells (LSC) that give rise to clonally related non-stem leukemic blasts. The LSC model proposes that since LSC and their blast progeny are clonally related, their functional properties must be due to epigenetic differences. In addition, the cell of origin of LSC among normal hematopoietic stem and progenitor cells (HSPCs) has yet to be clearly demonstrated. In order to investigate the role of epigenetics in LSC function and hematopoietic development, we profiled DNA methylation and gene expression of CD34+CD38-, CD34+CD38+ and CD34- cells from 15 AML patients, along with 6 well-defined HSPC populations from 5 normal bone marrows using Illumina Infinium HumanMethylation450 BeadChip and Affymetrix Human Genome U133 Plus 2.0 Array. To define LSC and blast functionally, we performed engraftment assays on the three subpopulations from 15 AML patients and defined 20 LSCs and 24 blast samples. We identified the key functional LSC epigenetic signature able to distinguish LSC from blasts that consisted of 84 differential methylations regions (DMRs) in 70 genes that correlated with differential gene expression. HOXA cluster genes were enriched within the LSC epigenetic signature. We found that most of these DMRs involve epigenetic alteration independent of underlying mutations, although several are downstream targets of genetic mutation in epigenome modifying enzymes and upstream regulators. -
Functional Annotation and Curation of Hypothetical Proteins Present in a Newly Emerged Serotype 1C of Shigella Flexneri
G C A T T A C G G C A T genes Article Functional Annotation and Curation of Hypothetical Proteins Present in A Newly Emerged Serotype 1c of Shigella flexneri: Emphasis on Selecting Targets for Virulence and Vaccine Design Studies Tanuka Sen and Naresh K. Verma * Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia; [email protected] * Correspondence: [email protected] Received: 12 February 2020; Accepted: 19 March 2020; Published: 23 March 2020 Abstract: Shigella flexneri is the principal cause of bacillary dysentery, contributing significantly to the global burden of diarrheal disease. The appearance and increase in the multi-drug resistance among Shigella strains, necessitates further genetic studies and development of improved/new drugs against the pathogen. The presence of an abundance of hypothetical proteins in the genome and how little is known about them, make them interesting genetic targets. The present study aims to carry out characterization of the hypothetical proteins present in the genome of a newly emerged serotype of S. flexneri (strain Y394), toward their novel regulatory functions using various bioinformatics databases/tools. Analysis of the genome sequence rendered 4170 proteins, out of which 721 proteins were annotated as hypothetical proteins (HPs) with no known function. The amino acid sequences of these HPs were evaluated using a combination of latest bioinformatics tools based on homology search against functionally identified proteins. Functional domains were considered as the basis to infer the biological functions of HPs in this case and the annotation helped in assigning various classes to the proteins such as signal transducers, lipoproteins, enzymes, membrane proteins, transporters, virulence, and binding proteins. -
Supplemental Table 1
Supplemental Data Supplemental Table 1. Genes differentially regulated by Ad-KLF2 vs. Ad-GFP infected EC. Three independent genome-wide transcriptional profiling experiments were performed, and significantly regulated genes were identified. Color-coding scheme: Up, p < 1e-15 Up, 1e-15 < p < 5e-10 Up, 5e-10 < p < 5e-5 Up, 5e-5 < p <.05 Down, p < 1e-15 As determined by Zpool Down, 1e-15 < p < 5e-10 Down, 5e-10 < p < 5e-5 Down, 5e-5 < p <.05 p<.05 as determined by Iterative Standard Deviation Algorithm as described in Supplemental Methods Ratio RefSeq Number Gene Name 1,058.52 KRT13 - keratin 13 565.72 NM_007117.1 TRH - thyrotropin-releasing hormone 244.04 NM_001878.2 CRABP2 - cellular retinoic acid binding protein 2 118.90 NM_013279.1 C11orf9 - chromosome 11 open reading frame 9 109.68 NM_000517.3 HBA2;HBA1 - hemoglobin, alpha 2;hemoglobin, alpha 1 102.04 NM_001823.3 CKB - creatine kinase, brain 96.23 LYNX1 95.53 NM_002514.2 NOV - nephroblastoma overexpressed gene 75.82 CeleraFN113625 FLJ45224;PTGDS - FLJ45224 protein;prostaglandin D2 synthase 21kDa 74.73 NM_000954.5 (brain) 68.53 NM_205545.1 UNQ430 - RGTR430 66.89 NM_005980.2 S100P - S100 calcium binding protein P 64.39 NM_153370.1 PI16 - protease inhibitor 16 58.24 NM_031918.1 KLF16 - Kruppel-like factor 16 46.45 NM_024409.1 NPPC - natriuretic peptide precursor C 45.48 NM_032470.2 TNXB - tenascin XB 34.92 NM_001264.2 CDSN - corneodesmosin 33.86 NM_017671.3 C20orf42 - chromosome 20 open reading frame 42 33.76 NM_024829.3 FLJ22662 - hypothetical protein FLJ22662 32.10 NM_003283.3 TNNT1 - troponin T1, skeletal, slow LOC388888 (LOC388888), mRNA according to UniGene - potential 31.45 AK095686.1 CONFLICT - LOC388888 (na) according to LocusLink. -
Structural Basis for Mammalian Nucleotide Sugar Transport Shivani Ahuja, Matthew R Whorton*
RESEARCH ARTICLE Structural basis for mammalian nucleotide sugar transport Shivani Ahuja, Matthew R Whorton* Vollum Institute, Oregon Health & Science University, Portland, United States Abstract Nucleotide-sugar transporters (NSTs) are critical components of the cellular glycosylation machinery. They transport nucleotide-sugar conjugates into the Golgi lumen, where they are used for the glycosylation of proteins and lipids, and they then subsequently transport the nucleotide monophosphate byproduct back to the cytoplasm. Dysregulation of human NSTs causes several debilitating diseases, and NSTs are virulence factors for many pathogens. Here we present the first crystal structures of a mammalian NST, the mouse CMP-sialic acid transporter (mCST), in complex with its physiological substrates CMP and CMP-sialic acid. Detailed visualization of extensive protein-substrate interactions explains the mechanisms governing substrate selectivity. Further structural analysis of mCST’s unique lumen-facing partially-occluded conformation, coupled with the characterization of substrate-induced quenching of mCST’s intrinsic tryptophan fluorescence, reveals the concerted conformational transitions that occur during substrate transport. These results provide a framework for understanding the effects of disease-causing mutations and the mechanisms of this diverse family of transporters. DOI: https://doi.org/10.7554/eLife.45221.001 Introduction Nucleotide-sugar transporters (NSTs) are products of the solute carrier 35 (SLC35) gene family in humans and are