Mapping Protein–Ligand Interactions with Proteolytic Fragmentation, Hydrogen/ Deuterium Exchange-Mass Spectrometry

Total Page:16

File Type:pdf, Size:1020Kb

Mapping Protein–Ligand Interactions with Proteolytic Fragmentation, Hydrogen/ Deuterium Exchange-Mass Spectrometry ARTICLE IN PRESS Mapping Protein–Ligand Interactions with Proteolytic Fragmentation, Hydrogen/ Deuterium Exchange-Mass Spectrometry Elyssia S. Gallagher*,†,1, Jeffrey W. Hudgens*,†,1 *Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA †Biomolecular Measurement Division, National Institute of Standards and Technology, Rockville, Maryland, USA 1Corresponding authors: e-mail address: [email protected]; [email protected] Contents 1. Introduction 2 2. H/D Exchange Theory 3 2.1 H/D Exchange 3 2.2 Acid and Base Catalysis 5 2.3 Temperature 6 2.4 Protein Structure 6 2.5 Effects of Ligand-Binding Interactions upon H/D Exchange Rates 8 3. The HDX-MS Experiment 12 3.1 Synopsis 12 3.2 Protein Preparation 13 3.3 Exchange Reaction 15 3.4 Automated Versus Manual HDX-MS 16 3.5 Reaction Quenching 17 3.6 Enzymatic Digestion 18 3.7 Chromatography 19 3.8 Mass Spectrometry 20 3.9 Generating a Proteomic Map 27 3.10 Data Analysis 28 3.11 Uncertainty Evaluations: Which Deuterium-Uptake Differences Are Meaningful? 30 3.12 Data Display 31 1 Current address: Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA. # Methods in Enzymology 2015 Elsevier Inc. 1 ISSN 0076-6879 All rights reserved. http://dx.doi.org/10.1016/bs.mie.2015.08.010 ARTICLE IN PRESS 2 Elyssia S. Gallagher and Jeffrey W. Hudgens 4. Interpreting HDX-MS Data to Determine Protein–Ligand Interaction Maps 32 4.1 Example: Protein–Ligand Interactions Involving Continuous Amide Contacts 32 4.2 Example: Mapping a Discontinuous Protein–Protein Interaction 37 Disclaimer 39 References 41 Abstract Biological processes are the result of noncovalent, protein–ligand interactions, where the ligands range from small organic and inorganic molecules to lipids, nucleic acids, peptides, and proteins. Amide groups within proteins constantly exchange protons with water. When immersed in heavy water (D2O), mass spectrometry (MS) can measure the change of mass associated with the hydrogen to deuterium exchange (HDX). Protein–ligand interactions modify the hydrogen exchange rates of amide protons, and the measurement of the amide exchange rates can provide rich information regard- ing the dynamical structure of the protein–ligand complex. This chapter describes a pro- tocol for conducting bottom-up, continuous uptake, proteolytic fragmentation HDX-MS experiments that can help identify and map the interacting peptides of a protein–ligand interface. This tutorial outlines the fundamental theory governing hydrogen exchange; provides practical information regarding the preparation of protein samples and solu- tions; and describes the exchange reaction, reaction quenching, enzymatic digestion, chromatographic separation, and peptide analysis by MS. Tables list representative combinations of fluidic components used by HDX-MS researchers and summarize the available HDX-MS analysis software packages. Additionally, two HDX-MS case stud- ies are used to illustrate protein–ligand interactions involving: (1) a continuous sequence of interacting residues and (2) a set of discontinuously numbered residues, residing spatially near each other. 1. INTRODUCTION Biological processes are facilitated by noncovalent, protein–ligand interactions. Ligands range from small organic and inorganic molecules to lipids, nucleic acids, peptides, and proteins. As examples, in the respiration cycle reversible interactions of O2 and carbamino compounds at distinct sites within hemoglobin enable transport of O2 and CO2 (Nelson & Cox, 2012). In blood plasma, progesterone, propranolol, and other small therapeutic molecules are carried by α1-acid glycoprotein (Fournier, Medjoubi-N, & Porquet, 2000; Huang & Hudgens, 2013). Additionally, a plethora of small molecule–protein (Kirschke, Goswami, Southworth, Griffin, & Agard, 2014), peptide–protein (Artimo et al., 2012; Das, Sharma, Kumar, Krishna, & Mathur, 2013), and protein–protein interactions mediate signal ARTICLE IN PRESS Mapping Protein–Ligand Interactions with HDX-MS 3 transduction across the plasma membrane and within living cells (Chen, Chattopadhyay, Bergen, Gadd, & Tannery, 2007). Hydrogen/deuterium exchange-mass spectrometry (HDX-MS) is an important tool for characterizing protein–ligand interactions (Katta & Chait, 1991; Zhang & Smith, 1993). HDX-MS measures deuterium uptake of amide N–H groups along the protein backbone. This information is use- ful for identifying portions of the protein engaged in binding and the dynamics of the protein–ligand interface. While once quite challenging and labor intensive, advances in instrumentation and software have enabled research groups to rapidly complete insightful, conclusive HDX-MS studies. As a result, more laboratories are conducting analyses that utilize HDX-MS methods (Pirrone, Iacob, & Engen, 2015). This chapter describes protocols for conducting studies with continuous uptake, proteolytic fragmentation HDX-MS, which has demonstrated utility for identifying the interacting peptides in protein–ligand interactions. The power of this HDX-MS protocol for mapping protein–protein interactions is demonstrated in a study by Malito et al. (2013), who used multiple tech- niques to map the epitope of complement factor H-binding protein (fHbp) against a monoclonal antibody (mAb 12C1). Malito et al. studied the inter- action of fHbp with bactericidal mAb 12C1 with diverse mapping techniques, including peptide arrays, phage display, X-ray crystallography, and HDX-MS (Fig. 1A–D). The map obtained with each technique was compared to the epitope of fHbp (Fig. 1E), determined from modeling the fHbp:fH crystal structure (Schneider et al., 2009). Their HDX-MS study accounted for nearly the entire 1000 A˚ 2 contact interface between mAb 12C1 and fHbp. They concluded that “…hydrogen/deuterium exchange- mass spectrometry was the most effective method to rapidly supply near- complete information about epitope structure” (Malito et al., 2013). 2. H/D EXCHANGE THEORY 2.1 H/D Exchange Within proteins, hydrogen atoms manifesting ionic character exchange with the labile protons of the surrounding solvent. When the solvent contains an isotope of hydrogen (deuterium or tritium), exchange can be used to char- acterize protein structure and dynamics via an analytical method that detects a difference between the isotopes. Since hydrogen and deuterium have masses of 1.008 and 2.014 Da, respectively, MS can be utilized to monitor exchange by detecting the mass increase of the protein. ARTICLE IN PRESS 4 Elyssia S. Gallagher and Jeffrey W. Hudgens Figure 1 Binding maps of the fHbp antigenic epitope plotted by different techniques (Malito et al., 2013). The N- and C-terminal domains of fHbp are presented in green (light gray in the print version) and cyan (light gray in the print version), respectively. (A) Red (dark gray in the print version) denotes the fHbp epitope found by synthetic peptide arrays. (B) Red (dark gray in the print version) denotes the fHbp epitope found by phage display. (C) Red (dark gray in the print version) denotes the 23 residues of fHbp con- tacted by the Fab of mAb 12C1, as determined from the X-ray structure of the fHbp: Fab 12C1 complex. (D) Red (dark gray in the print version) denotes the peptide regions of fHbp contacted by the Fab of mAb 12C1 within the fHbp:12C1 complex, as deter- mined by HDX-MS measurements. (E) Red (dark gray in the print version) denotes 52 fHbp surface residues bound with surface residues of domains 6 and 7 in human fH, as prepared by Malito et al. by modeling the crystal structure of fHbp:fH complex (Schneider et al., 2009). Adapted images used with the permission of Malito et al. (2013). Each hydrogen bond type has a distinct range of H/D exchange rates (Fig. 2). For instance, covalently bound C–H groups do not undergo solvent-mediated exchange. Covalently bound hydrogen atoms in amine, indole, and hydroxyl functional groups of amino acid side chains and the N-terminal amide group of the protein backbone undergo rapid H/D exchange with half-lives on the order of t1/2 0.01–1 ms (Bai, Milne, Mayne, & Englander, 1993; Liepinsh & Otting, 1996). The other amides in the protein backbone exhibit exchange rates with half-lives ranging from t1/2 ¼5 s to 60 days. These rates can be measured using proteolytic fragmen- tation HDX-MS. Since a backbone amide hydrogen is present at every amino acid (except proline) throughout the protein, monitoring the rates of exchange associated with these functional groups allows the entire protein structure to be sampled. In addition to the functional group, H/D exchange rates vary with solution pH, temperature, solvent accessibility, and protein structure (Balasubramaniam & Komives, 2013; Englander & Kallenbach, 1984; Mandell, Falick, & Komives, 1998). ARTICLE IN PRESS Mapping Protein–Ligand Interactions with HDX-MS 5 H O H O S H H H CH3 O 2 O 2 O H H + H N H N H N H N N N O H H H 2 H H H H H O O H2 H H2 O H2 N H N H 2 H H 2 + H N H H Gly – Asp – His – Cys – Lys – Ala Figure 2 Hydrogens classified by exchangeability in an example peptide: glycine- aspartic acid-histidine-cysteine-lysine-alanine. HDX-MS measures the backbone amide hydrogens shown in green (light gray in the print version) pentagons. Hydrogens that are not monitored with HDX-MS due to their very rapid exchange rates are shown in red (dark gray in the print version) circles. The numerous hydrogens that do not exchange due to their covalent binding with carbon are designated by black letters. 2.2 Acid and Base Catalysis A completely unfolded protein has essentially no protection against proton exchange between the solvent and each amide group of the protein back- bone, that is, each amide is in the exchange-competent state, N–Hopen. Pro- ton exchange between an unprotected amide group and aqueous solvent is a chemical reaction catalyzed by acid, base, or water. Accordingly, the exchange rate (kch) is written (Bai et al., 1993; Englander, 2006; Englander & Kallenbach, 1984): int + int À int kch ¼ kacid½H3O + kbase½OH + kwater½H2O (1) int int The kacid and kbase are rate coefficients for the acid- and base-catalyzed int exchange, and kwater is the intrinsic rate coefficient for the water-catalyzed exchange reaction (Englander, 2006).
Recommended publications
  • Membrane Proteins • Cofactors – Plimstex • Membranes • Dna • Small Molecules/Gas • Large Complexes
    Structural mass spectrometry hydrogen/deuterium exchange Petr Man Structural Biology and Cell Signalling Institute of Microbiology, Czech Academy of Sciences Structural biology methods Low-resolution methods High-resolution methods Rigid SAXS IR Raman CD ITC MST Cryo-EM AUC SPR MS X-ray crystallography Chemical cross-linking H/D exchange Native ESI + ion mobility Oxidative labelling Small Large NMR Dynamic Structural biology approaches Simple MS, quantitative MS Cross-linking, top-down, native MS+dissociation native MS+ion mobility Cross-linking Structural MS What can we get using mass spectrometry IM – ion mobility CXL – chemical cross-linking AP – afinity purification OFP – oxidative footprinting HDX – hydrogen/deuterium exchange ISOTOPE EXCHANGE IN PROTEINS 1H 2H 3H occurence [%] 99.988 0.0115 trace 5 …Kaj Ulrik Linderstrøm-Lang „Cartesian diver“ Proteins are migrating in tubes with density gradient until they stop at the point where the densities are equal 1H 2H 3H % 99.9885 0.0115 trace density [g/cm3] 1.000 1.106 1.215 Methods of detection IR: β-: NMR: 1 n = 1.6749 × 10-27 kg MS: 1H 2H 3H výskyt% [%] 99.9885 0.0115 trace hustotadensity vody [g/cm [g/cm3] 3] 1.000 1.106 1.215 jadernýspinspin ½+ 1+ ½+ mass [u] 1.00783 2.01410 3.01605 Factors affecting H/D exchange hydrogen bonding solvent accessibility Factors affecting H/D exchange Side chains (acidity, steric shielding) Bai et al.: Proteins (1993) Glasoe, Long: J. Phys. Chem. (1960) Factors affecting H/D exchange – side chain effects Inductive effect – electron density is Downward shift due to withdrawn from peptide steric hindrance effect of bond (S, O).
    [Show full text]
  • Progress in the Field of Aspartic Proteinases in Cheese Manufacturing
    Progress in the field of aspartic proteinases in cheese manufacturing: structures, functions, catalytic mechanism, inhibition, and engineering Sirma Yegin, Peter Dekker To cite this version: Sirma Yegin, Peter Dekker. Progress in the field of aspartic proteinases in cheese manufacturing: structures, functions, catalytic mechanism, inhibition, and engineering. Dairy Science & Technology, EDP sciences/Springer, 2013, 93 (6), pp.565-594. 10.1007/s13594-013-0137-2. hal-01201447 HAL Id: hal-01201447 https://hal.archives-ouvertes.fr/hal-01201447 Submitted on 17 Sep 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Dairy Sci. & Technol. (2013) 93:565–594 DOI 10.1007/s13594-013-0137-2 REVIEW PAPER Progress in the field of aspartic proteinases in cheese manufacturing: structures, functions, catalytic mechanism, inhibition, and engineering Sirma Yegin & Peter Dekker Received: 25 February 2013 /Revised: 16 May 2013 /Accepted: 21 May 2013 / Published online: 27 June 2013 # INRA and Springer-Verlag France 2013 Abstract Aspartic proteinases are an important class of proteinases which are widely used as milk-coagulating agents in industrial cheese production. They are available from a wide range of sources including mammals, plants, and microorganisms.
    [Show full text]
  • Discovery of Digestive Enzymes in Carnivorous Plants with Focus on Proteases
    A peer-reviewed version of this preprint was published in PeerJ on 5 June 2018. View the peer-reviewed version (peerj.com/articles/4914), which is the preferred citable publication unless you specifically need to cite this preprint. Ravee R, Mohd Salleh F‘, Goh H. 2018. Discovery of digestive enzymes in carnivorous plants with focus on proteases. PeerJ 6:e4914 https://doi.org/10.7717/peerj.4914 Discovery of digestive enzymes in carnivorous plants with focus on proteases Rishiesvari Ravee 1 , Faris ‘Imadi Mohd Salleh 1 , Hoe-Han Goh Corresp. 1 1 Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia Corresponding Author: Hoe-Han Goh Email address: [email protected] Background. Carnivorous plants have been fascinating researchers with their unique characters and bioinspired applications. These include medicinal trait of some carnivorous plants with potentials for pharmaceutical industry. Methods. This review will cover recent progress based on current studies on digestive enzymes secreted by different genera of carnivorous plants: Drosera (sundews), Dionaea (Venus flytrap), Nepenthes (tropical pitcher plants), Sarracenia (North American pitcher plants), Cephalotus (Australian pitcher plants), Genlisea (corkscrew plants), and Utricularia (bladderworts). Results. Since the discovery of secreted protease nepenthesin in Nepenthes pitcher, digestive enzymes from carnivorous plants have been the focus of many studies. Recent genomics approaches have accelerated digestive enzyme discovery. Furthermore, the advancement in recombinant technology and protein purification helped in the identification and characterisation of enzymes in carnivorous plants. Discussion. These different aspects will be described and discussed in this review with focus on the role of secreted plant proteases and their potential industrial applications.
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • Crystal Structures of Native and Inhibitedforms of Human Cathepsin
    Proc. Natl. Acad. Sci. USA Vol. 90, pp. 6796-6800, July 1993 Biochemustry Crystal structures of native and inhibited forms of human cathepsin D: Implications for lysosomal targeting and drug design (aspartic protcase/N-linked oligosaccharide/pepstatin A) ERic T. BALDWIN*, T. NARAYANA BHAT*, SERGEI GULNIK*, MADHUSOODAN V. HOSUR*t, RAYMOND C. SOWDER Il, RAUL E. CACHAU*, JACK COLLINS*, ABELARDO M. SILVA*, AND JOHN W. ERICKSON*§ *Structural Biochemistry Program, Frederick Biomedical Supercomputing Center and tAIDS Vaccine Program, Program Resources Inc./DynCorp, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, MD 21702 Communicated by David R. Davies, March 24, 1993 (receivedfor review February 4, 1993) ABSTRACT Cathepsin D (EC 3.4.23.5) is a lysosomal duced in the vicinity of the growing tumor, may degrade the protease suspected to play important roles in protein catabo- extracellular matrix and thereby promote the escape of lism, antigen processing, degenerative diseases, and breast cancer cells to the lymphatic and circulatory systems and cancer progresson. Determination of the crystal structures of enhance the invasion of new tissues (17, 18). The design of cathepsin D and a complex with pepstatin at 2.5 A resolution potent and specific inhibitors of cathepsin D will aid the provides insights into inhibitor binding and lysosomal targeting further elucidation of the roles of this enzyme in human for this two-chain, N-glycosylated aspartic protease. Compar- disease. We previously described the purification and crys- ison with the structures of a complex of pepstatin bound to tallization ofhuman cathepsin D from liver (3); similar studies rhizopuspepsin and with a human renin-bihbitor complex have been reported recently for cathepsin D isolated from revealed differences in subsite structures and inhibitor-enzyme bovine liver (19) and human spleen (20).
    [Show full text]
  • The Coordinate Regulation of Digestive Enzymes in the Pitchers of Nepenthes Ventricosa
    Rollins College Rollins Scholarship Online Honors Program Theses Spring 2020 The Coordinate Regulation of Digestive Enzymes in the Pitchers of Nepenthes ventricosa Zephyr Anne Lenninger [email protected] Follow this and additional works at: https://scholarship.rollins.edu/honors Part of the Plant Biology Commons Recommended Citation Lenninger, Zephyr Anne, "The Coordinate Regulation of Digestive Enzymes in the Pitchers of Nepenthes ventricosa" (2020). Honors Program Theses. 120. https://scholarship.rollins.edu/honors/120 This Open Access is brought to you for free and open access by Rollins Scholarship Online. It has been accepted for inclusion in Honors Program Theses by an authorized administrator of Rollins Scholarship Online. For more information, please contact [email protected]. The Coordinate Regulation of Digestive Enzymes in the Pitchers of Nepenthes ventricosa Zephyr Lenninger Rollins College 2020 Abstract Many species of plants have adopted carnivory as a way to obtain supplementary nutrients from otherwise nutrient deficient environments. One such species, Nepenthes ventricosa, is characterized by a pitcher shaped passive trap. This trap is filled with a digestive fluid that consists of many different digestive enzymes, the majority of which seem to have been recruited from pathogen resistance systems. The present study attempted to determine whether the introduction of a prey stimulus will coordinately upregulate the enzymatic expression of a chitinase and a protease while also identifying specific chitinases that are expressed by Nepenthes ventricosa. We were able to successfully clone NrCHIT1 from a mature Nepenthes ventricosa pitcher via a TOPO-vector system. In order to asses enzymatic expression, we utilized RT-qPCR on pitchers treated with chitin, BSA, or water.
    [Show full text]
  • Penicillopepsin-JT2, a Recombinant Enzyme from Penicillium Janthinellum and the Contribution of a Hydrogen Bond in Subsite S3 to Kcat
    Protein Science ~2000!, 9:991–1001. Cambridge University Press. Printed in the USA. Copyright © 2000 The Protein Society Penicillopepsin-JT2, a recombinant enzyme from Penicillium janthinellum and the contribution of a hydrogen bond in subsite S3 to kcat QING-NA CAO,1,3 MARLENE STUBBS,1 KENNY Q.P. NGO,1 MICHAEL WARD,2 ANNIE CUNNINGHAM,1 EMIL F. PAI,1 GUANG-CHOU TU,1,3 and THEO HOFMANN1 1 Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada 2 Genencor International, Inc., 925 Page Mill Road, Palo Alto, California 94304-1013 ~Received August 30, 1999; Final Revision February 7, 2000; Accepted March 10, 2000! Abstract The nucleotide sequence of the gene ~ pepA! of a zymogen of an aspartic proteinase from Penicillium janthinellum with a 71% identity in the deduced amino acid sequence to penicillopepsin ~which we propose to call penicillopepsin-JT1! has been determined. The gene consists of 60 codons for a putative leader sequence of 20 amino acid residues, a sequence of about 150 nucleotides that probably codes for an activation peptide and a sequence with two introns that codes for the active aspartic proteinase. This gene, inserted into the expression vector pGPT-pyrG1, was expressed in an aspartic proteinase-free strain of Aspergillus niger var. awamori in high yield as a glycosylated form of the active enzyme that we call penicillopepsin-JT2. After removal of the carbohydrate component with endoglycosidase H, its relative molecular mass is between 33,700 and 34,000. Its kinetic properties, especially the rate-enhancing effects of the presence of alanine residues in positions P3 and P29 of substrates, are similar to those of penicillopepsin-JT1, endothia- pepsin, rhizopuspepsin, and pig pepsin.
    [Show full text]
  • ( 12 ) United States Patent
    US009745565B2 (12 ) United States Patent (10 ) Patent No. : US 9 , 745 , 565 B2 Schriemer (45 ) Date of Patent: * Aug. 29 , 2017 ( 54 ) TREATMENT OF GLUTEN INTOLERANCE FOREIGN PATENT DOCUMENTS AND RELATED CONDITIONS EP 2 090 662 A2 8 /2009 WO WO - 2010 /021752 2 / 2010 ( 71 ) Applicant: Nepety , LLC , Destin , FL (US ) WO WO - 2011 /097266 8 / 2011 ( 72 ) Inventor: David Schriemer , Chestermere (CA ) WO WO - 2011 / 126873 10 / 2011 ( 73 ) Assignee : NEPETX , LLC , Destin , FL (US ) OTHER PUBLICATIONS Adlassnig W et al . Traps of carnivorous pitcher plants as a habitat: ( * ) Notice : Subject to any disclaimer, the term of this composition of the fluid , biodiversity and mutualistic activities . patent is extended or adjusted under 35 2011. Annals of Botany . 107 : 181 - 194 . * U . S . C . 154 (b ) by 98 days . Amagase , et al . , “ Acid Protease in Nepenthes, " The Journal of Biochemistry , ( 1969 ) , 66 ( 4 ) :431 -439 . This patent is subject to a terminal dis Athauda , et al . “ Enzymic and structural characterization of claimer . nepenthesin , a unique member of a novel subfamily of aspartic proteinases , ” Biochemical Journal ( 2004 ) 381 ( 1 ) :295 - 306 . (21 ) Appl. No. : 14/ 506 ,456 Bennett et al. , “ Discovery and Characterization of the Laulimalide Microtubule Binding Mode by Mass Shift Perturbation Mapping ," Chemistry & Biology , (2010 ) , 17 :725 - 734 . ( 22 ) Filed : Oct. 3 , 2014 Bethune, et al. , " Oral enzyme therapy for celiac sprue ,” Methods Enzymol. , (2012 ) , 502 :241 - 271 . (65 65) Prior Publication Data Blonder et al. , “ Proteomic investigation of natural killer cell US 2015 /0265686 A1 Sep . 24 , 2015 microsomes using gas -phase fractionation by mass spectrometry, " Biochimica et Biophysica Acta , (2004 ) , 1698 :87 -95 .
    [Show full text]
  • 20Th International Mass Spectrometry Conference
    IMSC 2014 20th International Mass Spectrometry Conference August 24-29, 2014 Geneva, Switzerland PROGRAM v. 17.09.2014 More targets. More accurately. Faster than ever. Analytical challenges grow in quantity and complexity. Quantify a larger number of compounds and more complex analytes faster and more accurately with our new portfolio of LC-MS instruments, sample prep solutions and software. High-resolution, accurate mass solutions using Thermo Scientific™ Orbitrap™ MS quantifies all detectable compounds with high specificity, and triple quadrupole MS delivers SRM sensitivity and speed to detect targeted compounds more quickly. Join us in meeting today’s challenges. Together we’ll transform quantitative science. Quantitation transformed. • Discover more at thermoscientific.com/quan-transformed • Visit thermoscientific.com/imsc or booth 23 for more information © 2014 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are © 2014 Thermo Fisher Scientific Inc. All rights the property of Thermo Fisher Scientific and its subsidiaries. the property Thermo Scientific™ Q Exactive™ HF MS Thermo Scientific™ TSQ Quantiva™ MS Thermo Scientific™ TSQ Endura™ MS Screen and quantify known and unknown targets Leading SRM sensitivity and speed Ultimate SRM quantitative value and with HRAM Orbitrap technology in a triple quadrupole MS/MS unprecedented usability TABLE OF CONTENTS th 1. Welcome from the Chairs of the 20 IMSC ............................................................................................................................
    [Show full text]
  • Crystal Structure of a Synthetic HIV-1 Protease
    Conserved Folding in Retroviral Proteases: Crystal Structure of a Synthetic HIV-1 Protease ALEXANDER WLODAWER, MARIA MILLER, MARIUSZ JASK6LsKi,* BANGALoRE K. SATHYANARAYANA, EIuc BALDWIN, IRENE T. WEBER, LINDA M. SELK, LEIGH CLAWSON, JENS SCHNEIDER, STEPHEN B. H. KENTt symmetric dimers with active sites resembling those in pepsin-like The rational design ofdrugs that can inhibit the action of proteases (14). However, significant differences in main chain viral proteases depends on obtaining accurate structures connectivity and secondary structure were observed between the of these enzymes. The crystal structure of chemically reported crystallographic structures ofthese two homologous retro- synthesized HIV-1 protease has been determined at 2.8 viral proteases. Particularly disturbing were the drastic differences in angstrom resolution (R factor of0.184) with the use ofa the topology of the dimer interface regions (15). model based on the Rous sarcoma virus protease struc- This puzzling disparity between the structures reported for the ture. In this enzymatically active protein, the cysteines RSV and HIV-l proteases was reinforced by a model ofHIV-1 PR were replaced by ac-amino-n-butyric acid, a nongenetically based on the crystal structure of RSV PR, proposed by Weber et al. coded amino acid. This structure, in which all 99 amino (16). The model showed that the HIV-1 PR residues could be acids were located, differs in several important details accommodated in a conformation almost identical to that of the on February 13, 2012 from that reported previously by others. The interface RSV PR. Most of the differences between the RSV PR and the between the identical subunits forming the active protease smaller HIV-1 PR molecule (124 amino acids versus 99 per dimer is composed of four well-ordered ,B strands from monomer) were limited to contiguous regions located in two both the amino and carboxyl termini and residues 86 to surface loops, and the core regions of the two structures were 94 have a helical conformation.
    [Show full text]
  • Structure of the Human Renin Gene
    Proc. Nati. Acad. Sci. USA Vol. 81, pp. 5999-6003, October 1984 Biochemistry Structure of the human renin gene (hypertension/aspartyl proteinase/nucleotide sequence/splice junction) HITOSHI MIYAZAKI*, AKIYOSHI FUKAMIZU*, SHIGEHISA HIROSE*, TAKASHI HAYASHI*, HITOSHI HORI*, HIROAKI OHKUBOt, SHIGETADA NAKANISHIt, AND KAZUO MURAKAMI** *Institute of Applied Biochemistry, University of Tsukuba, Ibaraki 305, Japan; and tInstitute for Immunology, Kyoto University Faculty of Medicine, Kyoto 606, Japan Communicated by Leroy Hood, June 27, 1984 ABSTRACT The human renin gene was isolated from a between the intron-exon organization of the gene and the Charon 4A human genomic library and characterized. The tertiary structure of the protein. gene spans about 11.7 kilobases and consists of 10 exons and 9 introns that map at points that could be variable surface loops MATERIALS AND METHODS of the enzyme. The complete coding regions, the 5'- and 3'- Materials. All restriction enzymes were obtained from flanking regions, and the exon-intron boundaries were se- either New England Biolabs or Takara Shuzo (Kyoto, Ja- quenced. The active site aspartyl residues Asp-38 and Asp-226 pan). Escherichia coli alkaline phosphatase and T4 DNA li- are encoded by the third and eighth exons, respectively. The gase were from Takara Shuzo. [_y-32P]ATP (>5000 Ci/mmol; extra three amino acids (Asp-165, Ser-166, Glu-167) that are 1 Ci = 37 GBq) and [a-32P]dCTP (=3000 Ci/mmol) were not present in mouse renin are encoded by the separate sixth from Amersham. exon, an exon as small as 9 nucleotides. The positions of the Screening. A human genomic library, prepared from partial introns are in remarkable agreement with those in the human Alu I and Hae III digestion and ligated into the EcoRI arms pepsin gene, supporting the view that the genes coding for of the X vector Charon 4A, was kindly provided by T.
    [Show full text]
  • Arabidopsis Thaliana Atypical Aspartic Proteases Involved in Primary Root Development and Lateral Root Formation
    André Filipe Marques Soares RLR1 and RLR2, two novel Arabidopsis thaliana atypical aspartic proteases involved in primary root development and lateral root formation 2016 Thesis submitted to the Institute for Interdisciplinary Research of the University of Coimbra to apply for the degree of Doctor in Philosophy in the area of Experimental Biology and Biomedicine, specialization in Molecular, Cell and Developmental Biology This work was conducted at the Center for Neuroscience and Cell Biology (CNC) of University of Coimbra and at Biocant - Technology Transfer Association, under the scientific supervision of Doctor Isaura Simões and at the Department of Biochemistry of University of Massachusetts, Amherst, under the scientific supervision of Doctor Alice Y. Cheung. Part of this work was also performed at the Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, under the scientific supervision of Doctor Herta Steinkellner and also at the Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, under the schientific supervision of Doctor Pitter F. Huesgen. André Filipe Marques Soares was a student of the Doctoral Programme in Experimental Biology and Biomedicine coordinated by the Center for Neuroscience and Cell Biology (CNC) of the University of Coimbra and a recipient of the fellowship SFRH/BD/51676/2011 from the Portuguese Foundation for Science and Technology (FCT). The execution of this work was supported by a PPP grant of the German Academic Exchange Service with funding from the Federal Ministry of Education and Research (Project-ID 57128819 to PFH) and the Fundação para a Ciência e a Tecnologia (FCT) (grant: Scientific and Technological Bilateral Agreement 2015/2016 to IS) Agradecimentos/Acknowledgments Esta tese e todo o percurso que culminou na sua escrita não teriam sido possíveis sem o apoio, o carinho e a amizade de várias pessoas que ainda estão ou estiveram presentes na minha vida.
    [Show full text]