Orphan Enzymes Could Be an Unexplored Reservoir of New Drug Targets

Total Page:16

File Type:pdf, Size:1020Kb

Orphan Enzymes Could Be an Unexplored Reservoir of New Drug Targets Drug Discovery Today Volume 11, Numbers 7/8 April 2006 REVIEWS Reviews GENE TO SCREEN Orphan enzymes could be an unexplored reservoir of new drug targets Olivier Lespinet and Bernard Labedan Institut de Ge´ne´tique et Microbiologie, CNRS UMR 8621, Universite´ Paris Sud, Baˆtiment 400, 91405 Orsay Cedex, France Despite the immense progress of genomics, and the current availability of several hundreds of thousands of amino acid sequences, >39% of well-defined enzyme activities (as represented by enzyme commission, EC, numbers) are not associated with any sequence. There is an urgent need to explore the 1525 orphan enzymes (enzymes having EC numbers without an associated sequence) to bridge the wide gap that separates knowledge of biochemical function and sequence information. Strikingly, orphan enzymes can even be found among enzymatic activities successfully used as drug targets. Here, knowledge of sequence would help to develop molecular-targeted therapies, suppressing many drug-related side-effects. Biology is exploring numerous and diverse fields, each of which discovered before, despite intensive research by thousands of is very complex and difficult to study in its entirety. For many people studying the genetics and biochemistry of Saccharomyces years, immense advances in disclosing molecular functions have cerevisiae over the past 50 years. This observation has been con- been made using reductionist approaches, such as molecular firmed repeatedly, with the cohort of genomes that have been biology. Combining genetic, biophysical and biochemical con- sequenced, at a steady pace, over the past ten years. We now know cepts and methodologies has helped to disclose details of com- that many genes have been missed by reductionist approaches plex molecular mechanisms such as DNA replication. However, and we do not have any information about the actual role of some it became clear that understanding how a living cell functions of these genes in cell metabolism, leading to the concept of requires more detail than simply adding up the operations of orphan (sometimes dubbed ORFan) genes. The OrphanMine each of the cellular constituents. Reductionist approaches are, database has been built to allow the study of taxonomically therefore, inefficient methods for fully comprehending the rela- restricted microbial genes that have no homologues in any organ- tionships between all of the components of a cell and, to go a ism (www.genomics.ceh.ac.uk/orphan_mine/orphanmine.php). step further, we need a more integrative view of the basic The most recent release of OrphanMine has compiled 44,752 mechanisms that are working together in a smooth, tuned orphan genes from 150 analyzed genomes (430,826 predicted process. Systems approaches, such as genomics, help to bring proteins). This means that, on average, 10% of the total number into place an integrative view of interactions between all genes of genes per genome are orphan genes, and this percentage still and their products. holdstruenowthatthecompletesequencesof300 genomes are This trend of using holistic approaches (rather than reduction- available in public databanks [2]. ist ones) has unearthed unexpected weaknesses in previous bio- It appears clear that the traditional approaches of biochemistry chemistry, genetics and molecular biology research. This has and genetics failed to gain access to large parts of living-cell become obvious, for example as soon as the first chromosome mechanisms. In this short review, we describe another important to be sequenced, the yeast chromosome III, was analyzed and flaw that appears because of the absence of interplay between annotated [1].Itcameasabigsurprisethatthecompletesequence biochemistry and genetic advances. We discuss another kind of contained so many open reading frames (ORFs) that had not been orphan, orphan enzymes, and underline their relevance for applied research, for example in pharmacology, medicine and Corresponding author: Labedan, B. ([email protected]) agronomy. 300 www.drugdiscoverytoday.com 1359-6446/06/$ - see front matter ß 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.drudis.2006.02.002 Drug Discovery Today Volume 11, Numbers 7/8 April 2006 REVIEWS Defining enzyme activities and their putative TABLE 1 sensitivity to drugs Listing orphan EC numbers in the androgen and estrogen Enzymatic processes have been analyzed in various organisms, by metabolic pathway biochemists. These studies span a wide catalogue of data that have EC number Activity been gathered over several decades – from the mere description of EC_1.1.1.63 Testosterone 17b-dehydrogenase a newly detected activity to studies that disclose many features of EC_1.1.1.64 Testosterone 17b-dehydrogenase (NADP+) an enzyme in thorough detail. As early as the 1960s, an interna- EC_1.1.1.148 Estradiol 17a-dehydrogenase tional effort was launched to organize all the pieces of information EC_1.1.1.152 3 a-Hydroxy-5 b-androstane-17-one 3 a-dehydrogenase and to check its validity and consistency. Accordingly, the Inter- national Enzyme Commission (EC) classifies enzyme activities EC_1.1.1.239 3 a (17b)-Hydroxysteroid dehydrogenase (NAD+) using EC numbers (www.chem.qmul.ac.uk/iubmb/enzyme/ EC_1.14.99.11 Estradiol 6 b-monooxygenase index.html). EC numbers comprise four digits. The first digit (from EC_1.14.99.12 4-Androstene-3,17-dione monooxygenase GENE TO SCREEN numbers 1–6) delineates the broad type of activity: (1) oxidore- EC_4.1.2.30 17a-Hydroxyprogesterone aldolase ductase, (2) transferase, (3) hydrolase, (4) lyase, (5) isomerase, and (6) ligase. The second and third digits detail the reaction that an Reviews enzyme catalyzes. For example, among the transferases (EC 2), (see Box 1). Remarkably, these orphan enzymes currently repre- glycosyltransferases form the subclass EC 2.4 and hexosyltrans- sent 39.3% of the total of the retained EC numbers – a figure close ferases form the sub-subclass EC 2.4.1. The final digit represents to one that we reported in 2005 (42.5%) – despite the description, the substrate specificity. For instance, EC 2.4.1.80 is the ceramide during this past year, of 169 new enzyme activities and the re- glucosyltransferase that catalyzes the first step of glycosphingoli- annotation of many newly sequenced genes. pid metabolism, and is the target of miglustat (1,5-(butylimino)- Interestingly, many orphan enzymes could be drug targets and 1,5-dideoxy-d-glucitol), a drug used for the treatment of the mild– identifying their sequences would be a first step for disclosing new moderate type 1 Gaucher disease in humans [3]. molecular therapies. For instance, no sequences are associated with the two testosterone 17-b-dehydrogenases (EC 1.1.1.63 and Introducing the concept of orphan enzymes EC 1.1.1.64), despite the fact that these enzymatic activities have The EC classification of enzyme activities is constantly evolving been studied intensively over the years. A deficiency in these because the curators of the Nomenclature Committee of the dehydrogenases leads to male pseudohermaphroditism with post- International Union of Biochemistry and Molecular Biology are pubertal virilization and, sometimes, gynecomastia [6]. It has been deciding on the best definition for each enzymatic activity (in proposed that these enzymes should be used as targets for the relation to their specific expertise). Note that, an EC number treatment of prostate cancer, because they are competitively denotes an enzyme activity but not the enzyme itself that catalyzes inhibited by anticancer drugs [7,8]. this activity. Thus, different sequences and structures can share the These two orphan enzymes belong to the androgen and estro- same EC number (see later). gen metabolic pathway comprising 23 EC numbers that corre- Currently (September 2005), 4499 EC numbers are indexed but spond to well-characterized enzyme activities. Interestingly, only 3877 correspond to a defined unambiguous activity. The 622 besides EC 1.1.1.63 and EC 1.1.1.64, this pathway contains six others are either in the process of deletion or have been found to be more orphan enzymes (Table 1). Considering the importance of identical to (or included with) another EC number. hormonal regulations in many aspects of human health, some of It came as a big surprise when Karp et al. [4] and Lespinet and these orphan enzymes could be potential drug targets. Indeed, Labedan [5] independently observed that a significant proportion knowing their sequences could help in designing drugs that are of EC numbers was not associated with any protein sequence. An more efficient. update of our results confirms this finding. At present, only 2352 EC numbers have at least one associated sequence in the UniProt Are orphan enzymes currently used as drug targets? Knowledgebase (Release 5.8 30th August 2005). We have assigned In a recent review, Robertson [9] listed 71 EC numbers for enzymes orphan enzymes the 1525 EC numbers found to be sequence-less that are targets for marketed drugs. These enzyme activities are in Uniprot and in public databases specializing in EC numbers present in humans (48), bacteria (13), viruses (5), fungi (4) and protists (1). Unexpectedly, we found that there were orphans even among BOX 1 enzymes used as drug targets. Three of the 71 reported activities Searching information about EC numbers in inhibited by drugs have no associated sequences. Here is the specialized databases detailed list of these orphan EC numbers used as targets for pharmaceutical drugs: Uniprot (www.expasy.uniprot.org/index.shtml) The vitamin-K-epoxide
Recommended publications
  • Contig Protein Description Symbol Anterior Posterior Ratio
    Table S2. List of proteins detected in anterior and posterior intestine pooled samples. Data on protein expression are mean ± SEM of 4 pools fed the experimental diets. The number of the contig in the Sea Bream Database (http://nutrigroup-iats.org/seabreamdb) is indicated. Contig Protein Description Symbol Anterior Posterior Ratio Ant/Pos C2_6629 1,4-alpha-glucan-branching enzyme GBE1 0.88±0.1 0.91±0.03 0.98 C2_4764 116 kDa U5 small nuclear ribonucleoprotein component EFTUD2 0.74±0.09 0.71±0.05 1.03 C2_299 14-3-3 protein beta/alpha-1 YWHAB 1.45±0.23 2.18±0.09 0.67 C2_268 14-3-3 protein epsilon YWHAE 1.28±0.2 2.01±0.13 0.63 C2_2474 14-3-3 protein gamma-1 YWHAG 1.8±0.41 2.72±0.09 0.66 C2_1017 14-3-3 protein zeta YWHAZ 1.33±0.14 4.41±0.38 0.30 C2_34474 14-3-3-like protein 2 YWHAQ 1.3±0.11 1.85±0.13 0.70 C2_4902 17-beta-hydroxysteroid dehydrogenase 14 HSD17B14 0.93±0.05 2.33±0.09 0.40 C2_3100 1-acylglycerol-3-phosphate O-acyltransferase ABHD5 ABHD5 0.85±0.07 0.78±0.13 1.10 C2_15440 1-phosphatidylinositol phosphodiesterase PLCD1 0.65±0.12 0.4±0.06 1.65 C2_12986 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase delta-1 PLCD1 0.76±0.08 1.15±0.16 0.66 C2_4412 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase gamma-2 PLCG2 1.13±0.08 2.08±0.27 0.54 C2_3170 2,4-dienoyl-CoA reductase, mitochondrial DECR1 1.16±0.1 0.83±0.03 1.39 C2_1520 26S protease regulatory subunit 10B PSMC6 1.37±0.21 1.43±0.04 0.96 C2_4264 26S protease regulatory subunit 4 PSMC1 1.2±0.2 1.78±0.08 0.68 C2_1666 26S protease regulatory subunit 6A PSMC3 1.44±0.24 1.61±0.08
    [Show full text]
  • Membrane Proteins • Cofactors – Plimstex • Membranes • Dna • Small Molecules/Gas • Large Complexes
    Structural mass spectrometry hydrogen/deuterium exchange Petr Man Structural Biology and Cell Signalling Institute of Microbiology, Czech Academy of Sciences Structural biology methods Low-resolution methods High-resolution methods Rigid SAXS IR Raman CD ITC MST Cryo-EM AUC SPR MS X-ray crystallography Chemical cross-linking H/D exchange Native ESI + ion mobility Oxidative labelling Small Large NMR Dynamic Structural biology approaches Simple MS, quantitative MS Cross-linking, top-down, native MS+dissociation native MS+ion mobility Cross-linking Structural MS What can we get using mass spectrometry IM – ion mobility CXL – chemical cross-linking AP – afinity purification OFP – oxidative footprinting HDX – hydrogen/deuterium exchange ISOTOPE EXCHANGE IN PROTEINS 1H 2H 3H occurence [%] 99.988 0.0115 trace 5 …Kaj Ulrik Linderstrøm-Lang „Cartesian diver“ Proteins are migrating in tubes with density gradient until they stop at the point where the densities are equal 1H 2H 3H % 99.9885 0.0115 trace density [g/cm3] 1.000 1.106 1.215 Methods of detection IR: β-: NMR: 1 n = 1.6749 × 10-27 kg MS: 1H 2H 3H výskyt% [%] 99.9885 0.0115 trace hustotadensity vody [g/cm [g/cm3] 3] 1.000 1.106 1.215 jadernýspinspin ½+ 1+ ½+ mass [u] 1.00783 2.01410 3.01605 Factors affecting H/D exchange hydrogen bonding solvent accessibility Factors affecting H/D exchange Side chains (acidity, steric shielding) Bai et al.: Proteins (1993) Glasoe, Long: J. Phys. Chem. (1960) Factors affecting H/D exchange – side chain effects Inductive effect – electron density is Downward shift due to withdrawn from peptide steric hindrance effect of bond (S, O).
    [Show full text]
  • Regulation of Xenobiotic and Bile Acid Metabolism by the Anti-Aging Intervention Calorie Restriction in Mice
    REGULATION OF XENOBIOTIC AND BILE ACID METABOLISM BY THE ANTI-AGING INTERVENTION CALORIE RESTRICTION IN MICE By Zidong Fu Submitted to the Graduate Degree Program in Pharmacology, Toxicology, and Therapeutics and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Dissertation Committee ________________________________ Chairperson: Curtis Klaassen, Ph.D. ________________________________ Udayan Apte, Ph.D. ________________________________ Wen-Xing Ding, Ph.D. ________________________________ Thomas Pazdernik, Ph.D. ________________________________ Hao Zhu, Ph.D. Date Defended: 04-11-2013 The Dissertation Committee for Zidong Fu certifies that this is the approved version of the following dissertation: REGULATION OF XENOBIOTIC AND BILE ACID METABOLISM BY THE ANTI-AGING INTERVENTION CALORIE RESTRICTION IN MICE ________________________________ Chairperson: Curtis Klaassen, Ph.D. Date approved: 04-11-2013 ii ABSTRACT Calorie restriction (CR), defined as reduced calorie intake without causing malnutrition, is the best-known intervention to increase life span and slow aging-related diseases in various species. However, current knowledge on the exact mechanisms of aging and how CR exerts its anti-aging effects is still inadequate. The detoxification theory of aging proposes that the up-regulation of xenobiotic processing genes (XPGs) involved in phase-I and phase-II xenobiotic metabolism as well as transport, which renders a wide spectrum of detoxification, is a longevity mechanism. Interestingly, bile acids (BAs), the metabolites of cholesterol, have recently been connected with longevity. Thus, this dissertation aimed to determine the regulation of xenobiotic and BA metabolism by the well-known anti-aging intervention CR. First, the mRNA expression of XPGs in liver during aging was investigated.
    [Show full text]
  • Discovery of Digestive Enzymes in Carnivorous Plants with Focus on Proteases
    A peer-reviewed version of this preprint was published in PeerJ on 5 June 2018. View the peer-reviewed version (peerj.com/articles/4914), which is the preferred citable publication unless you specifically need to cite this preprint. Ravee R, Mohd Salleh F‘, Goh H. 2018. Discovery of digestive enzymes in carnivorous plants with focus on proteases. PeerJ 6:e4914 https://doi.org/10.7717/peerj.4914 Discovery of digestive enzymes in carnivorous plants with focus on proteases Rishiesvari Ravee 1 , Faris ‘Imadi Mohd Salleh 1 , Hoe-Han Goh Corresp. 1 1 Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia Corresponding Author: Hoe-Han Goh Email address: [email protected] Background. Carnivorous plants have been fascinating researchers with their unique characters and bioinspired applications. These include medicinal trait of some carnivorous plants with potentials for pharmaceutical industry. Methods. This review will cover recent progress based on current studies on digestive enzymes secreted by different genera of carnivorous plants: Drosera (sundews), Dionaea (Venus flytrap), Nepenthes (tropical pitcher plants), Sarracenia (North American pitcher plants), Cephalotus (Australian pitcher plants), Genlisea (corkscrew plants), and Utricularia (bladderworts). Results. Since the discovery of secreted protease nepenthesin in Nepenthes pitcher, digestive enzymes from carnivorous plants have been the focus of many studies. Recent genomics approaches have accelerated digestive enzyme discovery. Furthermore, the advancement in recombinant technology and protein purification helped in the identification and characterisation of enzymes in carnivorous plants. Discussion. These different aspects will be described and discussed in this review with focus on the role of secreted plant proteases and their potential industrial applications.
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • Supplementary Materials
    Supplementary Materials COMPARATIVE ANALYSIS OF THE TRANSCRIPTOME, PROTEOME AND miRNA PROFILE OF KUPFFER CELLS AND MONOCYTES Andrey Elchaninov1,3*, Anastasiya Lokhonina1,3, Maria Nikitina2, Polina Vishnyakova1,3, Andrey Makarov1, Irina Arutyunyan1, Anastasiya Poltavets1, Evgeniya Kananykhina2, Sergey Kovalchuk4, Evgeny Karpulevich5,6, Galina Bolshakova2, Gennady Sukhikh1, Timur Fatkhudinov2,3 1 Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia 2 Laboratory of Growth and Development, Scientific Research Institute of Human Morphology, Moscow, Russia 3 Histology Department, Medical Institute, Peoples' Friendship University of Russia, Moscow, Russia 4 Laboratory of Bioinformatic methods for Combinatorial Chemistry and Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia 5 Information Systems Department, Ivannikov Institute for System Programming of the Russian Academy of Sciences, Moscow, Russia 6 Genome Engineering Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia Figure S1. Flow cytometry analysis of unsorted blood sample. Representative forward, side scattering and histogram are shown. The proportions of negative cells were determined in relation to the isotype controls. The percentages of positive cells are indicated. The blue curve corresponds to the isotype control. Figure S2. Flow cytometry analysis of unsorted liver stromal cells. Representative forward, side scattering and histogram are shown. The proportions of negative cells were determined in relation to the isotype controls. The percentages of positive cells are indicated. The blue curve corresponds to the isotype control. Figure S3. MiRNAs expression analysis in monocytes and Kupffer cells. Full-length of heatmaps are presented.
    [Show full text]
  • AST / Aspartate Transaminase Assay Kit (ARG81297)
    Product datasheet [email protected] ARG81297 Package: 100 tests AST / Aspartate Transaminase Assay Kit Store at: -20°C Summary Product Description ARG81297 AST / Aspartate Transaminase Assay Kit is a detection kit for the quantification of AST / Aspartate Transaminase in serum and plasma. Tested Reactivity Hu, Ms, Rat, Mamm Tested Application FuncSt Specificity Aspartate aminotransferase (ASAT/AAT) facilitates the conversion of aspartate and alpha-ketoglutarate to oxaloacetate and glutamate. And then oxaloacetate and NADH are converted to malate and NAD by malate dehydrogenase. Therefore, the decrease in NADH absorbance at 340 nm is proportionate to AST activity. Target Name AST / Aspartate Transaminase Conjugation Note Read at 340 nm. Sensitivity 2 U/l Detection Range 2 - 100 U/l Sample Type Serum and plasma. Sample Volume 20 µl Alternate Names Cysteine transaminase, cytoplasmic; cAspAT; GIG18; Glutamate oxaloacetate transaminase 1; cCAT; EC 2.6.1.3; Cysteine aminotransferase, cytoplasmic; ASTQTL1; AST1; EC 2.6.1.1; Transaminase A; Aspartate aminotransferase, cytoplasmic Application Instructions Application Note Please note that this kit does not include a microplate. Assay Time 10 min Properties Form Liquid Storage instruction Store the kit at -20°C. Do not expose test reagents to heat, sun or strong light during storage and usage. Please refer to the product user manual for detail temperatures of the components. Note For laboratory research only, not for drug, diagnostic or other use. Bioinformation Gene Symbol GOT1 Gene Full Name glutamic-oxaloacetic transaminase 1, soluble Background Glutamic-oxaloacetic transaminase is a pyridoxal phosphate-dependent enzyme which exists in cytoplasmic and mitochondrial forms, GOT1 and GOT2, respectively.
    [Show full text]
  • Como As Enzimas Agem?
    O que são enzimas? Catalizadores biológicos - Aceleram reações químicas específicas sem a formação de produtos colaterais PRODUTO SUBSTRATO COMPLEXO SITIO ATIVO ENZIMA SUBSTRATO Características das enzimas 1 - Grande maioria das enzimas são proteínas (algumas moléculas de RNA tem atividade catalítica) 2 - Funcionam em soluções aquosas diluídas, em condições muito suaves de temperatura e pH (mM, pH neutro, 25 a 37oC) Pepsina estômago – pH 2 Enzimas de organismos hipertermófilos (crescem em ambientes quentes) atuam a 95oC 3 - Apresentam alto grau de especificidade por seus reagentes (substratos) Molécula que se liga ao sítio ativo Região da enzima e que vai sofrer onde ocorre a a ação da reação = sítio ativo enzima = substrato 4 - Peso molecular: varia de 12.000 à 1 milhão daltons (Da), são portanto muito grandes quando comparadas ao substrato. 5 - A atividade catalítica das Enzimas depende da integridade de sua conformação protéica nativa – local de atividade catalítica (sitio ativo) Sítio ativo e toda a molécula proporciona um ambiente adequado para ocorrer a reação química desejada sobre o substrato A atividade de algumas enzimas podem depender de outros componentes não proteicos Enzima ativa = Holoenzimas Parte protéica das enzimas + cofator Apoenzima ou apoproteína •Íon inorgânico •Molécula complexa (coenzima) Covalentemente ligados à apoenzima GRUPO PROSTÉTICO COFATORES Elemento com ação complementar ao sitio ativo as enzimas que auxiliam na formação de um ambiente ideal para ocorrer a reação química ou participam diretamente dela
    [Show full text]
  • Identification and Characterization of Enzymes Involved in Post- Translational Modifications of Phycobiliproteins in the Cyanobacterium Synechocystis Sp
    University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses 8-8-2007 Identification and Characterization of Enzymes Involved in Post- translational Modifications of Phycobiliproteins in the Cyanobacterium Synechocystis sp. PCC 6803 Crystal Miller University of New Orleans Follow this and additional works at: https://scholarworks.uno.edu/td Recommended Citation Miller, Crystal, "Identification and Characterization of Enzymes Involved in Post-translational Modifications of Phycobiliproteins in the Cyanobacterium Synechocystis sp. PCC 6803" (2007). University of New Orleans Theses and Dissertations. 572. https://scholarworks.uno.edu/td/572 This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights- holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an authorized administrator of ScholarWorks@UNO. For more information, please contact [email protected]. Identification and Characterization of Enzymes Involved in Post-translational Modifications of Phycobiliproteins in the Cyanobacterium Synechocystis sp. PCC 6803 A Thesis Submitted to the Graduate Faculty of the University of New Orleans in partial fulfillment of the requirements for degree of Master of Science in Biological Sciences by Crystal Miller B.S. University of New Orleans, 2004 August, 2007 ACKNOWLEDGMENTS I would first like to thank my fiancé, Gus Mugnier, for always being there for me and supporting me through my graduate career.
    [Show full text]
  • Review Article the Role of Microbial Aspartic Protease Enzyme in Food and Beverage Industries
    Hindawi Journal of Food Quality Volume 2018, Article ID 7957269, 15 pages https://doi.org/10.1155/2018/7957269 Review Article The Role of Microbial Aspartic Protease Enzyme in Food and Beverage Industries Jermen Mamo and Fassil Assefa Microbial, Cellular and Molecular Biology Department, College of Natural Science, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia Correspondence should be addressed to Jermen Mamo; [email protected] Received 3 April 2018; Revised 16 May 2018; Accepted 29 May 2018; Published 3 July 2018 Academic Editor: Antimo Di Maro Copyright © 2018 Jermen Mamo and Fassil Assefa. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Proteases represent one of the three largest groups of industrial enzymes and account for about 60% of the total global enzymes sale. According to the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology, proteases are classied in enzymes of class 3, the hydrolases, and the subclass 3.4, the peptide hydrolases or peptidase. Proteases are generally grouped into two main classes based on their site of action, that is, exopeptidases and endopeptidases. Protease has also been grouped into four classes based on their catalytic action: aspartic, cysteine, metallo, and serine proteases. However, lately, three new systems have been dened: the threonine-based proteasome system, the glutamate-glutamine system of eqolisin, and the serine-glutamate-aspartate system of sedolisin. Aspartic proteases (EC 3.4.23) are peptidases that display various activities and specicities.
    [Show full text]
  • Electronic Supplementary Material (ESI) for Metallomics
    Electronic Supplementary Material (ESI) for Metallomics. This journal is © The Royal Society of Chemistry 2018 Uniprot Entry name Gene names Protein names Predicted Pattern Number of Iron role EC number Subcellular Membrane Involvement in disease Gene ontology (biological process) Id iron ions location associated 1 P46952 3HAO_HUMAN HAAO 3-hydroxyanthranilate 3,4- H47-E53-H91 1 Fe cation Catalytic 1.13.11.6 Cytoplasm No NAD biosynthetic process [GO:0009435]; neuron cellular homeostasis dioxygenase (EC 1.13.11.6) (3- [GO:0070050]; quinolinate biosynthetic process [GO:0019805]; response to hydroxyanthranilate oxygenase) cadmium ion [GO:0046686]; response to zinc ion [GO:0010043]; tryptophan (3-HAO) (3-hydroxyanthranilic catabolic process [GO:0006569] acid dioxygenase) (HAD) 2 O00767 ACOD_HUMAN SCD Acyl-CoA desaturase (EC H120-H125-H157-H161; 2 Fe cations Catalytic 1.14.19.1 Endoplasmic Yes long-chain fatty-acyl-CoA biosynthetic process [GO:0035338]; unsaturated fatty 1.14.19.1) (Delta(9)-desaturase) H160-H269-H298-H302 reticulum acid biosynthetic process [GO:0006636] (Delta-9 desaturase) (Fatty acid desaturase) (Stearoyl-CoA desaturase) (hSCD1) 3 Q6ZNF0 ACP7_HUMAN ACP7 PAPL PAPL1 Acid phosphatase type 7 (EC D141-D170-Y173-H335 1 Fe cation Catalytic 3.1.3.2 Extracellular No 3.1.3.2) (Purple acid space phosphatase long form) 4 Q96SZ5 AEDO_HUMAN ADO C10orf22 2-aminoethanethiol dioxygenase H112-H114-H193 1 Fe cation Catalytic 1.13.11.19 Unknown No oxidation-reduction process [GO:0055114]; sulfur amino acid catabolic process (EC 1.13.11.19) (Cysteamine
    [Show full text]
  • (10) Patent No.: US 8119385 B2
    US008119385B2 (12) United States Patent (10) Patent No.: US 8,119,385 B2 Mathur et al. (45) Date of Patent: Feb. 21, 2012 (54) NUCLEICACIDS AND PROTEINS AND (52) U.S. Cl. ........................................ 435/212:530/350 METHODS FOR MAKING AND USING THEMI (58) Field of Classification Search ........................ None (75) Inventors: Eric J. Mathur, San Diego, CA (US); See application file for complete search history. Cathy Chang, San Diego, CA (US) (56) References Cited (73) Assignee: BP Corporation North America Inc., Houston, TX (US) OTHER PUBLICATIONS c Mount, Bioinformatics, Cold Spring Harbor Press, Cold Spring Har (*) Notice: Subject to any disclaimer, the term of this bor New York, 2001, pp. 382-393.* patent is extended or adjusted under 35 Spencer et al., “Whole-Genome Sequence Variation among Multiple U.S.C. 154(b) by 689 days. Isolates of Pseudomonas aeruginosa” J. Bacteriol. (2003) 185: 1316 1325. (21) Appl. No.: 11/817,403 Database Sequence GenBank Accession No. BZ569932 Dec. 17. 1-1. 2002. (22) PCT Fled: Mar. 3, 2006 Omiecinski et al., “Epoxide Hydrolase-Polymorphism and role in (86). PCT No.: PCT/US2OO6/OOT642 toxicology” Toxicol. Lett. (2000) 1.12: 365-370. S371 (c)(1), * cited by examiner (2), (4) Date: May 7, 2008 Primary Examiner — James Martinell (87) PCT Pub. No.: WO2006/096527 (74) Attorney, Agent, or Firm — Kalim S. Fuzail PCT Pub. Date: Sep. 14, 2006 (57) ABSTRACT (65) Prior Publication Data The invention provides polypeptides, including enzymes, structural proteins and binding proteins, polynucleotides US 201O/OO11456A1 Jan. 14, 2010 encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides.
    [Show full text]