1 Algal Research Achimer December 2016, Volume 20 Pages 229-248 http://dx.doi.org/10.1016/j.algal.2016.10.017 http://archimer.ifremer.fr http://archimer.ifremer.fr/doc/00356/46702/ © 2016 Elsevier B.V. All rights reserved Use of a lipid rich strain reveals mechanisms of nitrogen limitation and carbon partitioning in the haptophyte Tisochrysis lutea Garnier Matthieu 1, *, Bougaran Gael 1, Pavlovic Marija 2, Berard Jean-Baptiste 1, Carrier Gregory 1, Charrier Aurelie 1, Le Grand Fabienne 3, Lukomska Ewa 1, Rouxel Catherine 1, Schreiber Nathalie 1, Cadoret Jean-Paul 1, Rogniaux Hélène 2, Saint-Jean Bruno 1 1 IFREMER, PBA, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 03, France 2 INRA UR1268 BIA, rue de la Géraudière, BP71627, 44313 Nantes Cedex 03, France 3 CNRS, Univ Brest, IRD, Ifremer, LEMAR, IUEM, Place Nicolas Copernic, 29280 Plouzané, France * Corresponding author : Matthieu Garnier, email addresses :
[email protected] ;
[email protected] Abstract : Haptophytes are a diverse monophyletic group with a worldwide distribution, known to be significantly involved in global climate regulation in their role as a carbon sink. Because nitrogen is a major limiting macronutrient for phytoplankton in oceans and for cultures of microalgae, understanding the involvement of nitrogen availability in haptophyte carbon partitioning is of global and biotechnological importance. Here, we made an ecophysiological study coupled with comprehensive large scale proteomic analysis to examine differences of behavior in reaction to nitrogen availability changes between a wild type strain of Tisochrysis lutea (WTc1) and a mutant strain (2Xc1) known to accumulate more storage lipids.