Sulfur Oxygenase Reductases - a Structural and Biochemical Perspective

Total Page:16

File Type:pdf, Size:1020Kb

Sulfur Oxygenase Reductases - a Structural and Biochemical Perspective Sulfur Oxygenase Reductases - A Structural and Biochemical Perspective vom Fachbereich Biologie der Technischen Universität Darmstadt zur Erlangung des akademischen Grades eines Doctor rerum naturalium genehmigte Dissertation vorgelegt von Dipl. Biol. Andreas Veith aus Seeheim-Jugenheim 1. Referent: Dr. habil. Arnulf Kletzin 2. Referent: Prof. Dr. Felicitas Pfeifer Eingereicht am 21.07.2011 Tag der mündlichen Prüfung: 16.09.2011 Darmstadt 2011 D 17 "Trying to determine the structure of a protein by UV spectroscopy was like trying to determine the structure of a piano by listening to the sound it made while being dropped down a flight of stairs." -- Francis Crick Die vorliegende Arbeit wurde als Promotionsarbeit am Institut für Mikrobiologie und Genetik des Fachbereichs Biologie der Technischen Universität Darmstadt unter Leitung von Herrn Dr. Arnulf Kletzin in der Abteilung von Frau Prof. Felicitas Pfeifer im Zeitraum von Mai 2007 bis Juli 2011 angefertigt. Ein Teil der vorliegenden Arbeit wurde in Portugal am Instituto de Tecnologia Químicia e Biológica, Universidade Nova de Lisboa (ITQB/UNL), Oeiras, Portugal in der Arbeitsgruppe von Dr. Carlos Frazão, Dr. Cláudio M. Gomes und Prof. Miguel Teixeira im Rahmen einer Kooperation durchgeführt. Ehrenwörtliche Erklärung Ich erkläre hiermit ehrenwörtlich, dass ich die vorliegende Arbeit selbstständig angefertigt habe. Sämtliche aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche kenntlich gemacht. Die Arbeit wurde bisher keiner anderen Prüfungsbehörde vorgelegt und noch nicht veröffentlicht. Darmstadt, den 21.07.2011 Andreas Veith Acknowledgements First and foremost I would like to thank my supervisor Dr. Arnulf Kletzin for giving me the opportunity to step into the fascinating world of proteins. I was in the lucky position to receive great support, encouragement and to find a door that was always open for questions and discussions. Special thanks go to Prof. Felicitas Pfeifer for taking the position of the co-advisor and for her extensive support throughout my work. And many thanks for making Darmstadt an outpost for the intriguing Archaea. I would like to express my deepest gratitude for Dr. Carlos Frazão (ITQB, Oeiras, Portugal), my supervisor of the crystallographic part of the thesis. He never got tired to teach crystallography to a raw beginner and to discuss results over and over again, even beyond my visits at ITQB. Putting much work into all SOR projects, he managed it to determine the HnSOR structure. Thanks to all members of the Molecular Xtallography group at ITQB, especially Catarina, Joana, Ana, Mario, José, Miguel, Matteo, Bruno and Przemek for their help and for sharing various wild-pig or Fado experiences. You made me feel extremely comfortable from the first day on! Specials thanks go to Tiago Bandeiras for his great passion for science (and Benfica) and many lunch-time discussions (Zé Varunca). I also would like to thank Ricardo Coelho for having a helping hand in growing and fishing crystals and also for taking care of the HnSOR, when I was absent. I would like to thank Prof. Miguel Teixeira (ITQB) for providing the EPR data. Dr. Cláudio M. Gomes (ITQB) and his entire group are gratefully acknowledged for the time at their lab. Special thanks go to Hugo Botelho for his great help during my short stay. Claudia Rittmeyer (Goethe-Universität, Frankfurt, Germany) is acknowledged for performing the TXRF measurements. Ok, this might take a while, but it cannot be missed out: a huge thank you goes to all former and present colleagues from the Kletzin & Pfeifer Lab, especially Ina Schmidt, Larissa Marschaus, Stella Tavlaridou, Regina Frommherz, Dennis Petrasch, Michael Forth, Matti Eckert, ―Cpt.‖ Fabian Müller, Bastian Naß and Gerald Losensky. Jonas Protze is acknowledged for providing mutant and biochemical data during his ―Forschungspraktikum‖ and for keeping the ÄKTA running. Katrin Faist and Gaby Liebing (who will do the ―back-scratching‖ now?) are especially acknowledged for their excellent assistance. Special thanks go to Renate Fröhlich, who shared the lab with me the past few years and always guaranteed a ―fresh‖ start to the day. Thanks also to Nam-Suk Polin, Cordula Bernhardt and Giuseppe Vetrano for making work a bit easier. Thanks to all of you for providing such an amazing working atmosphere and for sharing those great experiences in- and outside the lab. I would also like to thank all present and former colleagues from the third floor (AG Heider, AG Simon and AG Göringer). Tamara Heß is especially acknowledged for her great help all these years. Thanks go to Tim Urich for always finding time to discuss some new facts about the ―tiny and lovely‖ SOR. Mark Günzel and Till Albrecht are gratefully acknowledged for the correction of this work. Thanks to Andreas ―Flash‖ Klingl for the great ―heavy metal‖ interaction. The Mühlhiasl prophesized it! A very special thank you goes to Dr. Sabrina Fröls for personal care, encouragement, discussions and unlimited helpfulness throughout practical courses, diploma and PhD thesis. Jens Riede is thankfully acknowledged for his friendship and for his help to think outside the ―microbiology box‖. Thanks to Gabi, Thomas, Heinz, Anni and Kurt for their continuous support all these years. This would have never been possible without you!!! And more than thousand thanks to Nadine for her special support and her surpassing patience especially at the end of this work. Publications Parts of the present work and of other projects during the time of this thesis have already been published or have been submitted for publication. Veith, A., Klingl, A., Zolghadr, B., Lauber, K., Mentele, R., Lottspeich, F., Rachel, R., Albers, S. V. and Kletzin, A. (2009) Acidianus, Sulfolobus and Metallosphaera surface layers: structure, composition and gene expression. Mol Microbiol 73: 58-72. Botelho, H. M., Leal, S. S., Veith, A., Prosinecki, V., Bauer, C., Fröhlich, R., Kletzin, A. and Gomes, C. M. (2010) Role of a novel disulfide bridge within the all-beta fold of soluble Rieske proteins. J Biol Inorg Chem 15: 271-281. 1Veith, A., Urich, T., Seyfarth, K., Protze, J., Frazão, C. and Kletzin, A. (2011) Substrate pathways and mechanisms of inhibition in the sulfur oxygenase reductase of Acidianus ambivalens. Front Microbio 2:37. doi: 0.3389/fmicb.2011.00037 2Veith, A., Botelho, H. M., Gomes, C. M. and Kletzin, A. (2011) The Sulfur Oxygenase Reductase from the Mesophilic Bacterium Halothiobacillus neapolitanus is a Highly Active Thermozyme. Submitted June 2011 Veith, A., Coelho, R., Kletzin, A. and Frazão, C. (2011) Cloning, expression, purification, crystallization and preliminary crystallographic studies of the sulfur oxygenase reductase of Halothiobacillus neapolitanus DSM 15147. In preparation 1 The tetramer channel mutants Del L, Del K, F141A, F133A and F133A/F141A were originally constructed by Kerstin Seyfarth. The active site pore mutants M296V, M297A, MM296/297TT and MM296/297VT were constructed by Jonas Protze under my supervision in the course of this work. Mutants of the trimer channel and of the zinc-binding site were generated in the course of this work. The structural datasets of AaSOR complexed with iodoacetamide, zinc acetate or p-chloromercuribenzoic acid were initially obtained by Tim Urich and refined by Carlos Frazão (ITQB). 2All Far UV / CD spectroscopy experiments were performed under the guidance of Hugo Botelho (ITQB) in the group of Cláudio M. Gomes (ITQB) in the course of this work. All other experiments were carried out in Darmstadt in the course of this work. Index Summary ................................................................................................................................ 1 1. Introduction ................................................................................................................... 3 1.1. Elemental sulfur ..................................................................................................... 3 1.2. Microbial sulfur oxidation ..................................................................................... 4 1.2.1. Bacterial sulfur oxidation pathways ................................................................ 4 1.2.2. Archaeal sulfur oxidation pathways ................................................................ 7 1.2.3. Sulfur oxidation pathway of Acidianus ambivalens ........................................ 8 1.3. The sulfur oxygenase reductase ........................................................................... 10 1.4. Goals of this study ............................................................................................... 18 2. Materials and Methods ................................................................................................ 20 2.1. Materials .............................................................................................................. 20 2.1.1. Chemicals ...................................................................................................... 20 2.1.2. Microorganisms ............................................................................................. 21 2.1.3. Plasmids ......................................................................................................... 21 2.1.4. Enzymes and kits ........................................................................................... 21 2.1.5. Synthetic oligonucleotides ............................................................................. 22 2.1.6. Molecular weight standards
Recommended publications
  • IR-3 Elements and Groups of Elements (March 04)
    1 IR-3 Elements and Groups of Elements (March 04) CONTENTS IR-3.1 Names and symbols of atoms IR-3.1.1 Systematic nomenclature and symbols for new elements IR-3.2 Indication of mass, charge and atomic number using indexes (subscripts and superscripts) IR-3.3 Isotopes IR-3.3.1 Isotopes of an element IR-3.3.2 Isotopes of hydrogen IR-3.4 Elements (or elementary substances) IR-3.4.1 Name of an element of infinite or indefinite molecular formula or structure IR-3.4.2 Name of allotropes of definite molecular formula IR-3.5 Allotropic modifications IR-3.5.1 Allotropes IR-3.5.2 Allotropic modifications constituted of discrete molecules IR-3.5.3 Crystalline allotropic modifications of an element IR-3.5.4 Solid amorphous modifications and commonly recognized allotropes of indefinite structure IR-3.6 Groups of elements IR-3.6.1 Groups of elements in the Periodic Table and their subdivisions IR-3.6.2 Collective names of groups of like elements IR-3.7 References IR-3.1 NAMES AND SYMBOLS OF ATOMS The origins of the names of some chemical elements, for example antimony, are lost in antiquity. Other elements recognised (or discovered) during the past three centuries were named according to various associations of origin, physical or chemical properties, etc., and more recently to commemorate the names of eminent scientists. In the past, some elements were given two names because two groups claimed to have discovered them. To avoid such confusion it was decided in 1947 that after the existence of a new element had been proved beyond reasonable doubt, discoverers had the right to IUPACsuggest a nameProvisional to IUPAC, but that only Recommendations the Commission on Nomenclature of Inorganic Chemistry (CNIC) could make a recommendation to the IUPAC Council to make the final Page 1 of 9 DRAFT 2 April 2004 2 decision.
    [Show full text]
  • Supplementary Materials
    Supplementary Materials COMPARATIVE ANALYSIS OF THE TRANSCRIPTOME, PROTEOME AND miRNA PROFILE OF KUPFFER CELLS AND MONOCYTES Andrey Elchaninov1,3*, Anastasiya Lokhonina1,3, Maria Nikitina2, Polina Vishnyakova1,3, Andrey Makarov1, Irina Arutyunyan1, Anastasiya Poltavets1, Evgeniya Kananykhina2, Sergey Kovalchuk4, Evgeny Karpulevich5,6, Galina Bolshakova2, Gennady Sukhikh1, Timur Fatkhudinov2,3 1 Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia 2 Laboratory of Growth and Development, Scientific Research Institute of Human Morphology, Moscow, Russia 3 Histology Department, Medical Institute, Peoples' Friendship University of Russia, Moscow, Russia 4 Laboratory of Bioinformatic methods for Combinatorial Chemistry and Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia 5 Information Systems Department, Ivannikov Institute for System Programming of the Russian Academy of Sciences, Moscow, Russia 6 Genome Engineering Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia Figure S1. Flow cytometry analysis of unsorted blood sample. Representative forward, side scattering and histogram are shown. The proportions of negative cells were determined in relation to the isotype controls. The percentages of positive cells are indicated. The blue curve corresponds to the isotype control. Figure S2. Flow cytometry analysis of unsorted liver stromal cells. Representative forward, side scattering and histogram are shown. The proportions of negative cells were determined in relation to the isotype controls. The percentages of positive cells are indicated. The blue curve corresponds to the isotype control. Figure S3. MiRNAs expression analysis in monocytes and Kupffer cells. Full-length of heatmaps are presented.
    [Show full text]
  • Electronic Supplementary Material (ESI) for Metallomics
    Electronic Supplementary Material (ESI) for Metallomics. This journal is © The Royal Society of Chemistry 2018 Uniprot Entry name Gene names Protein names Predicted Pattern Number of Iron role EC number Subcellular Membrane Involvement in disease Gene ontology (biological process) Id iron ions location associated 1 P46952 3HAO_HUMAN HAAO 3-hydroxyanthranilate 3,4- H47-E53-H91 1 Fe cation Catalytic 1.13.11.6 Cytoplasm No NAD biosynthetic process [GO:0009435]; neuron cellular homeostasis dioxygenase (EC 1.13.11.6) (3- [GO:0070050]; quinolinate biosynthetic process [GO:0019805]; response to hydroxyanthranilate oxygenase) cadmium ion [GO:0046686]; response to zinc ion [GO:0010043]; tryptophan (3-HAO) (3-hydroxyanthranilic catabolic process [GO:0006569] acid dioxygenase) (HAD) 2 O00767 ACOD_HUMAN SCD Acyl-CoA desaturase (EC H120-H125-H157-H161; 2 Fe cations Catalytic 1.14.19.1 Endoplasmic Yes long-chain fatty-acyl-CoA biosynthetic process [GO:0035338]; unsaturated fatty 1.14.19.1) (Delta(9)-desaturase) H160-H269-H298-H302 reticulum acid biosynthetic process [GO:0006636] (Delta-9 desaturase) (Fatty acid desaturase) (Stearoyl-CoA desaturase) (hSCD1) 3 Q6ZNF0 ACP7_HUMAN ACP7 PAPL PAPL1 Acid phosphatase type 7 (EC D141-D170-Y173-H335 1 Fe cation Catalytic 3.1.3.2 Extracellular No 3.1.3.2) (Purple acid space phosphatase long form) 4 Q96SZ5 AEDO_HUMAN ADO C10orf22 2-aminoethanethiol dioxygenase H112-H114-H193 1 Fe cation Catalytic 1.13.11.19 Unknown No oxidation-reduction process [GO:0055114]; sulfur amino acid catabolic process (EC 1.13.11.19) (Cysteamine
    [Show full text]
  • Hydrogen Sulfide Metabolite, Sodium Thiosulfate
    International Journal of Molecular Sciences Review Hydrogen Sulfide Metabolite, Sodium Thiosulfate: Clinical Applications and Underlying Molecular Mechanisms Max Y. Zhang 1,2, George J. Dugbartey 1,2,3, Smriti Juriasingani 1,3 and Alp Sener 1,2,3,4,* 1 Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, ON N6A 5A5, Canada; [email protected] (M.Y.Z.); [email protected] (G.J.D.); [email protected] (S.J.) 2 London Health Sciences Center, Multi-Organ Transplant Program, Western University, London, ON N6A 5A5, Canada 3 London Health Sciences Center, Department of Surgery, Division of Urology, Western University, London, ON N6A 5A5, Canada 4 Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 3K7, Canada * Correspondence: [email protected]; Tel.: +1(519) 6633352 Abstract: Thiosulfate in the form of sodium thiosulfate (STS) is a major oxidation product of hydrogen sulfide (H2S), an endogenous signaling molecule and the third member of the gasotransmitter family. STS is currently used in the clinical treatment of acute cyanide poisoning, cisplatin toxicities in cancer therapy, and calciphylaxis in dialysis patients. Burgeoning evidence show that STS has antioxidant and anti-inflammatory properties, making it a potential therapeutic candidate molecule that can target multiple molecular pathways in various diseases and drug-induced toxicities. This review Citation: Zhang, M.Y.; Dugbartey, discusses the biochemical and molecular pathways in the generation of STS from H2S, its clinical G.J.; Juriasingani, S.; Sener, A. usefulness, and potential clinical applications, as well as the molecular mechanisms underlying these Hydrogen Sulfide Metabolite, clinical applications and a future perspective in kidney transplantation.
    [Show full text]
  • Springer Handbook of Enzymes
    Dietmar Schomburg and Ida Schomburg (Eds.) Springer Handbook of Enzymes Volume 25 Class 1 • Oxidoreductases X EC 1.9-1.13 co edited by Antje Chang Second Edition 4y Springer Index of Recommended Enzyme Names EC-No. Recommended Name Page 1.13.11.50 acetylacetone-cleaving enzyme 673 1.10.3.4 o-aminophenol oxidase 149 1.13.12.12 apo-/?-carotenoid-14',13'-dioxygenase 732 1.13.11.34 arachidonate 5-lipoxygenase 591 1.13.11.40 arachidonate 8-lipoxygenase 627 1.13.11.31 arachidonate 12-lipoxygenase 568 1.13.11.33 arachidonate 15-lipoxygenase 585 1.13.12.1 arginine 2-monooxygenase 675 1.13.11.13 ascorbate 2,3-dioxygenase 491 1.10.2.1 L-ascorbate-cytochrome-b5 reductase 79 1.10.3.3 L-ascorbate oxidase 134 1.11.1.11 L-ascorbate peroxidase 257 1.13.99.2 benzoate 1,2-dioxygenase (transferred to EC 1.14.12.10) 740 1.13.11.39 biphenyl-2,3-diol 1,2-dioxygenase 618 1.13.11.22 caffeate 3,4-dioxygenase 531 1.13.11.16 3-carboxyethylcatechol 2,3-dioxygenase 505 1.13.11.21 p-carotene 15,15'-dioxygenase (transferred to EC 1.14.99.36) 530 1.11.1.6 catalase 194 1.13.11.1 catechol 1,2-dioxygenase 382 1.13.11.2 catechol 2,3-dioxygenase 395 1.10.3.1 catechol oxidase 105 1.13.11.36 chloridazon-catechol dioxygenase 607 1.11.1.10 chloride peroxidase 245 1.13.11.49 chlorite O2-lyase 670 1.13.99.4 4-chlorophenylacetate 3,4-dioxygenase (transferred to EC 1.14.12.9) .
    [Show full text]
  • (Riscs) in Acidithiobacillus Thiooxidans
    ARTICLE Stoichiometric Modeling of Oxidation of Reduced Inorganic Sulfur Compounds (Riscs) in Acidithiobacillus thiooxidans Roberto A. Bobadilla Fazzini,1 Maria Paz Corte´s,2,3 Leandro Padilla,1 Daniel Maturana,2,3 Marko Budinich,2,3 Alejandro Maass,3,4 Pilar Parada1 1 BioSigma ‘S.A.’, Loteo Los Libertadores, Lote 106, Colina, Chile; telephone: 56-2-437 9030; fax: 56-2-460 0416; e-mail: [email protected], [email protected] 2 Laboratory of Bioinformatics and Mathematics of the Genome, Center for Mathematical Modeling (UMI2807-CNRS) and FONDAP Center for Genome Regulation, Santiago, Chile 3 Faculty of Mathematical and Physical Sciences, University of Chile, Santiago, Chile 4 Department of Mathematical Engineering, Center for Mathematical Modeling (UMI2807-CNRS) and FONDAP Center for Genome Regulation, Santiago, Chile dioxygenase as the main catalyzer and a moderate function ABSTRACT: The prokaryotic oxidation of reduced inorgan- of tetrathionate hydrolase in elemental sulfur catabolism, ic sulfur compounds (RISCs) is a topic of utmost impor- demonstrating that this model constitutes an advanced tance from a biogeochemical and industrial perspective. instrument for the optimization of At. thiooxidans biomass Despite sulfur oxidizing bacterial activity is largely known, production with potential use in biohydrometallurgical and no quantitative approaches to biological RISCs oxidation environmental applications. have been made, gathering all the complex abiotic and Biotechnol. Bioeng. 2013;110: 2242–2251. enzymatic stoichiometry involved. Even though in the ß 2013 Wiley Periodicals, Inc. case of neutrophilic bacteria such as Paracoccus and Beggia- KEYWORDS: At. thiooxidans; reduced Inorganic sulfur toa species the RISCs oxidation systems are well described, compounds (RISCs); chemolithoautotrophic oxidation there is a lack of knowledge for acidophilic microorganisms.
    [Show full text]
  • Structural Enzymology of Sulfide Oxidation by Persulfide Dioxygenase and Rhodanese
    Structural Enzymology of Sulfide Oxidation by Persulfide Dioxygenase and Rhodanese by Nicole A. Motl A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Biological Chemistry) in the University of Michigan 2017 Doctoral Committee Professor Ruma Banerjee, Chair Assistant Professor Uhn-Soo Cho Professor Nicolai Lehnert Professor Stephen W. Ragsdale Professor Janet L. Smith Nicole A. Motl [email protected] ORCID iD: 0000-0001-6009-2988 © Nicole A. Motl 2017 ACKNOWLEDGEMENTS I would like to take this opportunity to acknowledge the many people who have provided me with guidance and support during my doctoral studies. First I would like to express my appreciation and gratitude to my advisor Dr. Ruma Banerjee for the mentorship, guidance, support and encouragement she has provided. I would like to thank my committee members Dr. Uhn-Soo Cho, Dr. Nicolai Lehnert, Dr. Stephen Ragsdale and Dr. Janet Smith for their advice, assistance and support. I would like to thank Dr. Janet Smith and members of Dr. Smith’s lab, especially Meredith Skiba, for sharing their expertise in crystallography. I would like to thank Dr. Omer Kabil for his help, suggestions and discussions in various aspects of my study. I would also like to thank members of Dr. Banerjee’s lab for their suggestions and discussions. Additionally, I would like to thank my friends and family for their support. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS ii LIST OF TABLES viii LIST OF FIGURES ix ABBREVIATIONS xi ABSTRACT xii CHAPTER I. Introduction:
    [Show full text]
  • Hydrogen Sulfide Blocks HIV Rebound by Maintaining Mitochondrial Bioenergetics and Redox Homeostasis
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.21.440760; this version posted April 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Hydrogen sulfide blocks HIV rebound by maintaining mitochondrial 2 bioenergetics and redox homeostasis 3 4 Virender Kumar Pal1,2, Ragini Agrawal1,2, Srabanti Rakshit2, Pooja Shekar3, Diwakar 5 Tumkur Narasimha Murthy4, Annapurna Vyakarnam2, and Amit Singh*1,2. 6 7 1Department of MiCrobiology and Cell Biology, Indian Institute of SCience, Bangalore, 8 India 9 2Centre for InfeCtious Disease Research (CIDR), Indian Institute of SCience, Bangalore, 10 India 11 3Bangalore MediCal College and Research Institute, Bangalore, India 12 4Department of Internal MediCine, Bangalore MediCal College and Research Institute, 13 Bangalore, India 14 15 * Correspondence: 16 Amit Singh ([email protected]) 17 18 19 20 21 22 23 24 25 26 27 28 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.04.21.440760; this version posted April 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 29 Abstract 30 A fundamental Challenge in HIV eradiCation is to understand how the virus establishes 31 latency, maintains stable Cellular reservoirs, and promotes rebound upon interruption 32 of antiretroviral treatment (ART).
    [Show full text]
  • Orphan Enzymes Could Be an Unexplored Reservoir of New Drug Targets
    Drug Discovery Today Volume 11, Numbers 7/8 April 2006 REVIEWS Reviews GENE TO SCREEN Orphan enzymes could be an unexplored reservoir of new drug targets Olivier Lespinet and Bernard Labedan Institut de Ge´ne´tique et Microbiologie, CNRS UMR 8621, Universite´ Paris Sud, Baˆtiment 400, 91405 Orsay Cedex, France Despite the immense progress of genomics, and the current availability of several hundreds of thousands of amino acid sequences, >39% of well-defined enzyme activities (as represented by enzyme commission, EC, numbers) are not associated with any sequence. There is an urgent need to explore the 1525 orphan enzymes (enzymes having EC numbers without an associated sequence) to bridge the wide gap that separates knowledge of biochemical function and sequence information. Strikingly, orphan enzymes can even be found among enzymatic activities successfully used as drug targets. Here, knowledge of sequence would help to develop molecular-targeted therapies, suppressing many drug-related side-effects. Biology is exploring numerous and diverse fields, each of which discovered before, despite intensive research by thousands of is very complex and difficult to study in its entirety. For many people studying the genetics and biochemistry of Saccharomyces years, immense advances in disclosing molecular functions have cerevisiae over the past 50 years. This observation has been con- been made using reductionist approaches, such as molecular firmed repeatedly, with the cohort of genomes that have been biology. Combining genetic, biophysical and biochemical con- sequenced, at a steady pace, over the past ten years. We now know cepts and methodologies has helped to disclose details of com- that many genes have been missed by reductionist approaches plex molecular mechanisms such as DNA replication.
    [Show full text]
  • Some Basic Concepts
    Topics SI units Protons, electrons and neutrons Elements and allotropes States of matter Atomic number 1 Isotopes Relative atomic mass The mole Some basic Gas laws The periodic table concepts Radicals and ions Molecules and compounds Solution concentration Stoichiometry Oxidation and reduction Basic nomenclature 1.1 What is chemistry and why is it important? Matter, be it animal, vegetable or mineral, is composed of chemical elements or combinations thereof. Over a hundred elements are known, although not all are abundant by any means. The vast majority of these elements occur naturally, but some, such as technetium and curium, are artificial. Chemistry is involved with the understanding of the properties of the elements, how they interact with one another, and how the combination of these elements gives compounds that may undergo chemical changes to generate new compounds. Life has evolved systems that depend on carbon as a fundamental element; carbon, hydrogen, nitrogen and oxygen are particularly important in biological systems. A true understanding of biology and molecular biology must be based upon a full knowledge of the structures, properties and reactivities of the molecular components of life. This basic knowledge comes from the study of chemistry. The line between physical and chemical sciences is also a narrow one. Take, for example, the rapidly expanding field of superconducting materials – compounds that possess negligible resistance to the flow of electrons. Typically, this property persists only at very low temperatures but if the super- " conducting materials are to find general application, they must operate at Superconductors: ambient temperatures. Although a physicist may make the conductivity meas- see Box 9.4 urements, it is the preparation and study of the chemical composition of the materials that drive the basic research area.
    [Show full text]
  • Sattler Wsu 0251E 12373.Pdf (2.595Mb)
    STRUCTURAL AND MECHANISTIC CHARACTERIZATION OF ENZYMES IN PERSULFIDE OXIDATION AND MONOLIGNOL BIOSYNTHESIS PATHWAYS By STEVEN ANDREW SATTLER A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY WASHINGTON STATE UNIVERSITY School of Molecular Biosciences MAY 2018 © Copyright by STEVEN ANDREW SATTLER, 2018 All Rights Reserved © Copyright by STEVEN ANDREW SATTLER, 2018 All Rights Reserved To the Faculty of Washington State University: The members of the Committee appointed to examine the dissertation of STEVEN ANDREW SATTLER find it satisfactory and recommend that it be accepted. ChulHee Kang, Ph.D., Chair Susan Wang, Ph.D. Luying Xun, Ph.D. Margaret Black, Ph.D. ii ACKNOWLEDGMENT There are many people who I would like to thank for helping place me in a position to earn this degree. Foremost, I would like to thank my academic advisors, friends, and family for their guidance, support, and patience while I spent several years as an undergraduate and doctoral student. Most of my achievements are attributed to your respective influences on my education or disposition, and for that I will always be grateful. Even if you are not mentioned by name in this acknowledgment, know that your influence is appreciated. I would first like to thank my doctoral advisor, Dr. ChulHee Kang, for providing me with an opportunity to earn this degree. His guidance and willingness to listen to my ideas were crucial to my development as a scientist and prepared me for a professional career in theoretical work. I would also like to thank Dr. Luis Matos, who provided me with my first research opportunity as an undergraduate.
    [Show full text]
  • The Role of the Second 15-Lipoxygenase, ALOX15B, in Atherosclerosis: a Genetic Approach
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2013 The Role of the Second 15-Lipoxygenase, ALOX15B, in Atherosclerosis: a Genetic Approach Wüst, Sophia Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-92378 Dissertation Published Version Originally published at: Wüst, Sophia. The Role of the Second 15-Lipoxygenase, ALOX15B, in Atherosclerosis: a Genetic Ap- proach. 2013, University of Zurich, Faculty of Medicine. The Role of the Second 15-Lipoxygenase, ALOX15B, in Atherosclerosis: a Genetic Approach Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr.sc.nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich von Sophia Julia Annette Wüst von Oberriet-Montlingen SG Promotionskomitee Prof. Dr. Thierry Hennet Prof. Dr. Martin Hersberger (Leitung der Dissertation) Prof. Dr. Arnold von Eckardstein Zürich, 2014 CONTENTS CONTENTS ..............................................................................................1 ABBREVIATIONS.....................................................................................3 SUMMARY................................................................................................6 ZUSAMMENFASSUNG............................................................................8 1. INTRODUCTION ................................................................................10 1.1 Atherosclerosis .................................................................................10
    [Show full text]