The Origins of Birds
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
3H?;Lnbcha Nb? 1?=L?Nm I@
3H?;LNBCHANB?1?=L?NMI@ #>O=;NIL%OC>? 1?=IH>#>CNCIH @C?F>GOM?OGILA13# 'HMC>? ;=EALIOH>'H@ILG;NCIH *?MMIHM@IL%L;>?M] >>CNCIH;F0?MIOL=?M 'HNLI>O=NCIH Unearthing the Secrets of SUE No dinosaur in the world compares to SUE—the largest, most complete, and best preserved Tyrannosaurus rex ever discovered. In May 2000, the unveiling of her 67-million-year-old skeleton at The Field Museum made global headlines. Since then, more than 16 million visitors have marveled over Chicago’s prehistoric giant. Using the story of SUE to captivate students’ imagination, the Unearthing the Secrets of SUE Educator Guide takes pre-k through eighth-grade students on an interactive exploration of SUE at The Field Museum and the scientific insights she’s providing about the world in which she lived. The lessons in this guide will engage students in the science of SUE by: • providing students unique access to SUE, the largest, most complete, and best preserved TYRANNOSAURUS REX ever discovered; • providing students with hands-on activities that enable them to investigate by making observations, developing hypotheses, questioning assumptions, testing ideas, and coming to conclusions; • introducing students to careers in science by highlighting the wide professional expertise involved in the SUE project; and • introducing students to the countless resources available to them through The Field Museum including field trips, and online research and interactive learning opportunities. How to Use this Guide • Detailed Background Information is provided to support educators in sharing the story of SUE with students. Use this information to prepare yourself and your students for learning about SUE. -
Tiny Fossil Sheds Light on Miniaturization of Birds
Retraction Tiny fossil sheds light on miniaturization of birds Roger B. J. Benson Nature 579, 199–200 (2020) In view of the fact that the authors of ‘Hummingbird-sized dinosaur from the Cretaceous period of Myanmar‘ (L. Xing et al. Nature 579, 245–249; 2020) are retracting their report, I wish to retract this News & Views article, which dealt with this study and was based on the accuracy and reproducibility of their data. Nature | 22 July 2020 ©2020 Spri nger Nature Li mited. All rights reserved. drives the assembly of DNA-PK and stimulates regulation of protein synthesis. And, although 3. Dragon, F. et al. Nature 417, 967–970 (2002). its catalytic activity in vitro, although does so further studies are required, we might have 4. Adelmant, G. et al. Mol. Cell. Proteom. 11, 411–421 (2012). much less efficiently than can DNA. taken a step closer to deciphering the 5. Britton, S., Coates, J. & Jackson, S. P. J. Cell Biol. 202, Taken together, these observations suggest mysterious ribosomopathies. 579–595 (2013). a model in which KU recruits DNA-PKcs to the 6. Barandun, J. et al. Nature Struct. Mol. Biol. 24, 944–953 (2017). small-subunit processome. In the case of Alan J. Warren is at the Cambridge Institute 7. Ma, Y. et al. Cell 108, 781–794 (2002). kinase-defective DNA-PK, the mutant enzyme’s for Medical Research, Hills Road, Cambridge 8. Yin, X. et al. Cell Res. 27, 1341–1350 (2017). inability to regulate its own activity gives the CB2 OXY, UK. 9. Sharif, H. et al. -
A New Raptorial Dinosaur with Exceptionally Long Feathering Provides Insights Into Dromaeosaurid flight Performance
ARTICLE Received 11 Apr 2014 | Accepted 11 Jun 2014 | Published 15 Jul 2014 DOI: 10.1038/ncomms5382 A new raptorial dinosaur with exceptionally long feathering provides insights into dromaeosaurid flight performance Gang Han1, Luis M. Chiappe2, Shu-An Ji1,3, Michael Habib4, Alan H. Turner5, Anusuya Chinsamy6, Xueling Liu1 & Lizhuo Han1 Microraptorines are a group of predatory dromaeosaurid theropod dinosaurs with aero- dynamic capacity. These close relatives of birds are essential for testing hypotheses explaining the origin and early evolution of avian flight. Here we describe a new ‘four-winged’ microraptorine, Changyuraptor yangi, from the Early Cretaceous Jehol Biota of China. With tail feathers that are nearly 30 cm long, roughly 30% the length of the skeleton, the new fossil possesses the longest known feathers for any non-avian dinosaur. Furthermore, it is the largest theropod with long, pennaceous feathers attached to the lower hind limbs (that is, ‘hindwings’). The lengthy feathered tail of the new fossil provides insight into the flight performance of microraptorines and how they may have maintained aerial competency at larger body sizes. We demonstrate how the low-aspect-ratio tail of the new fossil would have acted as a pitch control structure reducing descent speed and thus playing a key role in landing. 1 Paleontological Center, Bohai University, 19 Keji Road, New Shongshan District, Jinzhou, Liaoning Province 121013, China. 2 Dinosaur Institute, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA. 3 Institute of Geology, Chinese Academy of Geological Sciences, 26 Baiwanzhuang Road, Beijing 100037, China. 4 University of Southern California, Health Sciences Campus, BMT 403, Mail Code 9112, Los Angeles, California 90089, USA. -
Gerhard Heilmann Og Teorierne Om Fuglenes Oprindelse
Gerhard Heilmann gav DOF et logo længe før ordet var opfundet de Viber, som vi netop med dette nr har forgrebet os på og stiliseret. Ude i verden huskes han imidlertid af en helt anden grund. Gerhard Heilmann og teorierne om fuglenes oprindelse SVEND PALM Archaeopteryx og teorierne I årene 1912 - 1916 bragte DOFT fem artikler, som fik betydning for spørgsmålet om fuglenes oprindelse. Artiklerne var skrevet af Gerhard Heilmann og havde den fælles titel »Vor nuvæ• rende Viden om Fuglenes Afstamning«. Artiklerne tog deres udgangspunkt i et fossil, der i 1861 og 1877 var fundet ved Solnhofen nær Eichstatt, og som fik det videnskabelige navn Archaeopteryx. Dyret var på størrelse med en due, tobenet og havde svingfjer og fjerhale, men det havde også tænder, hvirvelhale og trefingrede forlemmer med klør. Da Archaeopteryx-fundene blev gjort, var der kun gået få årtier, siden man havde fået det første kendskab til de uddøde dinosaurer, af hvilke nog le var tobenede og meget fugleagtige. Her kom da Archaeopteryx, der mest lignede en dinosaur i mini-format, men som med sine fjervinger havde en tydelig tilknytning til fuglene, ind i billedet (Fig. 1). Kort forinden havde Darwin (1859) med sit værk »On the Origin of Species« givet et viden Fig. 1. Archaeopteryx. Fra Heilmann (1926). skabeligt grundlag for udviklingslæren, og Ar chaeopteryx kom meget belejligt som trumfkort for Darwins tilhængere, som et formodet binde led mellem krybdyr og fugle. gernes og flyveevnens opståen. I den nulevende I begyndelsen hæftede man sig især ved lighe fauna findes adskillige eksempler på dyr med en derne mellem dinosaurer, Archaeopteryx og fug vis flyveevne, f.eks. -
Ghost of the Forest: the Tangible and Intangible in Natural and Cultural Heritage
Ghost of the Forest: the Tangible and Intangible in Natural and Cultural Heritage Marcel Robischon Ghost of the Forest Ghost of the Forest: the Tangible and Intangible in Natural and Cultural Heritage Marcel Robischon Junior Professor, Department of Life Sciences, Humboldt Universität zu Berlin, Germany ABSTRACT Understanding the close interconnectedness of cultural and natural, tangible and intangible heritage is central to conservation efforts. This point is illustrated by examples in which works of culture have lost their original cultural or natural context – and this includes intangible natural phenomena. Further examples are given in which biological species survived as a genetic continuum but were changed in terms of their intangibles, i.e. their behaviour, in ways that can be perceived by human observers. In this article it is argued that the addition of a fourth category of ‘intangible natural heritage’ to the existing categories of World Heritage would strengthen conservation efforts and bring forward the discussion with an integrated understanding of natural and cultural heritage. Keywords Intangible Natural Heritage, co-extinction of cultural and biological phenomena, conservation, artistic inspiration, bio- diversity, bio-cultural interaction, ephemerality, World Heritage. The interdependence and the fragility of phrased by Singer (2006), Tangible heritage is expressed tangible and intangible heritage in objects, concrete matter, enduring years and Ultimately, buildings, human-made structures and sometimes centuries, carrying with it some of the artwork would be merely near-surface biogenic substance of human life, feeling, and thought. sediments resulting from highly complex processes of bio-turbation if it were not for the cultural motivation The cultural significance of ancient tangible heritage behind their creation and the meanings attached to them. -
Dinosaur Footprints
DINOSAUR FOOTPRINTS ACTIVITY SHEET YOU WILL NEED: Measuring tape and chalk DINOSAUR BODY SIZE Playground Calculator/paper for calculations Dinosaur footprint length: measure in a straight line from the back of the foot to the tip of the longest toe. Dinosaur leg length = footprint length × 4 Dinosaur stride length: Distance between footprints Dinosaur body length = from the same foot footprint length × 10 1. Use a measuring tape, chalk and the information below to draw out your dinosaur footprints in the playground. Tip - measure the footprint length first and then draw your footprint shape. If students are working in groups, each group could choose a different footprint. Footprint length - from back Dinosaur Footprint shape of foot to tip of longest toe Stride length (cm) (cm) Allosaurus 85 340 Triceratops 90 360 Compsognathus 7.5 90 Brachiosaurus 260 1040 DINOSAUR FOOTPRINTS ACTIVITY SHEET Stride length 2. Use your measuring tape to measure the dinosaur’s stride length. Use chalk to mark where the second dinosaur footprint would go. Footprint 2 Footprint 1 3. Using the calculations on page 1 work out the leg lengths and body lengths of each dinosaur. If you have space use a measuring tape and chalk to measure out the dinosaur body lengths in the playground (some of them will be very long!). Dinosaur Footprint length (cm) Leg length (cm) Body length (cm) Allosaurus 85 Triceratops 90 Compsognathus 7.5 Brachiosaurus 260 DINOSAUR SPEED We can now work out the relative speed of the dinosaur – whether it was walking, trotting or running, by looking at its leg length and stride length. -
Dating Dinosaurs
The PRINCETON FIELD GUIDE to DINOSAURS 2ND EDITION PRINCETON FIELD GUIDES Rooted in field experience and scientific study, Princeton’s guides to animals and plants are the authority for professional scientists and amateur naturalists alike. Princeton Field Guides present this information in a compact format carefully designed for easy use in the field. The guides illustrate every species in color and provide detailed information on identification, distribution, and biology. Albatrosses, Petrels, and Shearwaters of the World, by Derek Onley Birds of Southern Africa, Fourth Edition, by Ian Sinclair, Phil and Paul Scofield Hockey, Warwick Tarboton, and Peter Ryan Birds of Aruba, Curaçao, and Bonaire by Bart de Boer, Eric Birds of Thailand, by Craig Robson Newton, and Robin Restall Birds of the West Indies, by Herbert Raffaele, James Wiley, Birds of Australia, Eighth Edition, by Ken Simpson and Nicolas Orlando Garrido, Allan Keith, and Janis Raffaele Day Birds of Western Africa, by Nik Borrow and Ron Demey Birds of Borneo: Brunei, Sabah, Sarawak, and Kalimantan, by Carnivores of the World, by Luke Hunter Susan Myers Caterpillars of Eastern North America: A Guide to Identification Birds of Botswana, by Peter Hancock and Ingrid Weiersbye and Natural History, by David L. Wagner Birds of Central Asia, by Raffael Ayé, Manuel Schweizer, and Common Mosses of the Northeast and Appalachians, by Karl B. Tobias Roth McKnight, Joseph Rohrer, Kirsten McKnight Ward, and Birds of Chile, by Alvaro Jaramillo Warren Perdrizet Birds of the Dominican Republic and Haiti, by Steven Latta, Coral Reef Fishes, by Ewald Lieske and Robert Meyers Christopher Rimmer, Allan Keith, James Wiley, Herbert Dragonflies and Damselflies of the East, by Dennis Paulson Raffaele, Kent McFarland, and Eladio Fernandez Dragonflies and Damselflies of the West, by Dennis Paulson Birds of East Africa: Kenya, Tanzania, Uganda, Rwanda, and Mammals of Europe, by David W. -
Late Pleistocene Birds from Kingston Saltpeter Cave, Southern Appalachian Mountains, Georgia
Bull. Fla. Mus. Nat. Hist. (2005) 45(4):231-248 231 LATE PLEISTOCENE BIRDS FROM KINGSTON SALTPETER CAVE, SOUTHERN APPALACHIAN MOUNTAINS, GEORGIA David W. Steadman1 Kingston Saltpeter Cave, Bartow County, Georgia, has produced late Quaternary fossils of 38 taxa of birds. The presence of extinct species of mammals, and three radiocarbon dates on mammalian bone collagen ranging from approximately 15,000 to 12,000 Cal B.P., indicate a late Pleistocene age for this fauna, although a small portion of the fossils may be Holocene in age. The birds are dominated by forest or woodland species, especially the Ruffed Grouse (Bonasa umbellus) and Passenger Pigeon (Ectopistes migratorius). Species indicative of brushy or edge habitats, wetlands, and grasslands also are present. They include the Greater Prairie Chicken (Tympanuchus cupido, a grassland indicator) and Black-billed Magpie (Pica pica, characteristic of woody edges bordering grasslands). Both of these species reside today no closer than 1000+ km to the west (mainly northwest) of Georgia. An enigmatic owl, perhaps extinct and undescribed, is represented by two juvenile tarsometatarsi. The avifauna of Kingston Saltpeter Cave suggests that deciduous or mixed deciduous/coniferous forests and woodlands were the dominant habitats in the late Pleistocene of southernmost Appalachia, with wetlands and grasslands present as well. Key Words: Georgia; late Pleistocene; southern Appalachians; Aves; extralocal species; faunal change INTRODUCTION dates have been determined from mammal bones at Numerous late Pleistocene vertebrate faunas have been KSC. The first (10,300 ± 130 yr B.P.; Beta-12771, un- recovered from caves and other karst features of the corrected for 13C/12C; = 12,850 – 11,350 Cal B.P.) is Appalachian region (listed in Lundelius et al. -
Alan Feduccia's Riddle of the Feathered Dragons: What Reptiles
Leigh Evolution: Education and Outreach 2014, 7:9 http://www.evolution-outreach.com/content/7/1/9 BOOK REVIEW Open Access Alan Feduccia’s Riddle of the Feathered Dragons: what reptiles gave rise to birds? Egbert Giles Leigh Jr Riddle of the Feathered Dragons: Hidden Birds of China, properly. This is a great pity, for his story is wonderful: by Alan Feduccia. New Haven, CT: Yale University Press, his birds would have made a far better focus for this 2012. Pp. x + 358. H/b $55.00 book than the dispute. This book’s author is at home in the paleontology, So, what is this dispute that spoiled the book? The anatomy, physiology, and behavior of birds. Who could scientific argument is easily summarized. It started be more qualified to write on their origin and evolution? when a paleontologist from Yale University, John Ostrom, This book is unusually, indeed wonderfully, well and unearthed a 75-kg bipedal theropod dinosaur, Deinonychus, clearly illustrated: its producers cannot be praised too buried 110 million years ago in Montana. Deinonychus highly. It is well worth the while of anyone interested in stood a meter tall, and its tail was 1.5 m long. It was active: bird evolution to read it. Although it offers no answers Ostrom thought that both it and Archaeopteryx,which to ‘where birds came from’, it has God’s plenty of fascin- lived 40 million years earlier, were warm-blooded. Deinony- ating, revealing detail, knit together in powerful criticism chus bore many skeletal resemblances to Archaeopteryx, of prevailing views of bird evolution. -
Phylogeny and Avian Evolution Phylogeny and Evolution of the Aves
Phylogeny and Avian Evolution Phylogeny and Evolution of the Aves I. Background Scientists have speculated about evolution of birds ever since Darwin. Difficult to find relatives using only modern animals After publi cati on of “O rigi i in of S peci es” (~1860) some used birds as a counter-argument since th ere were no k nown t ransiti onal f orms at the time! • turtles have modified necks and toothless beaks • bats fly and are warm blooded With fossil discovery other potential relationships! • Birds as distinct order of reptiles Many non-reptilian characteristics (e.g. endothermy, feathers) but really reptilian in structure! If birds only known from fossil record then simply be a distinct order of reptiles. II. Reptile Evolutionary History A. “Stem reptiles” - Cotylosauria Must begin in the late Paleozoic ClCotylosauri a – “il”“stem reptiles” Radiation of reptiles from Cotylosauria can be organized on the basis of temporal fenestrae (openings in back of skull for muscle attachment). Subsequent reptilian lineages developed more powerful jaws. B. Anapsid Cotylosauria and Chelonia have anapsid pattern C. Syypnapsid – single fenestra Includes order Therapsida which gave rise to mammalia D. Diapsida – both supppratemporal and infratemporal fenestrae PttPattern foun did in exti titnct arch osaurs, survi iiving archosaurs and also in primitive lepidosaur – ShSpheno don. All remaining living reptiles and the lineage leading to Aves are classified as Diapsida Handout Mammalia Extinct Groups Cynodontia Therapsida Pelycosaurs Lepidosauromorpha Ichthyosauria Protorothyrididae Synapsida Anapsida Archosauromorpha Euryapsida Mesosaurs Amphibia Sauria Diapsida Eureptilia Sauropsida Amniota Tetrapoda III. Relationshippp to Reptiles Most groups present during Mesozoic considere d ancestors to bird s. -
Cranial Anatomy of Allosaurus Jimmadseni, a New Species from the Lower Part of the Morrison Formation (Upper Jurassic) of Western North America
Cranial anatomy of Allosaurus jimmadseni, a new species from the lower part of the Morrison Formation (Upper Jurassic) of Western North America Daniel J. Chure1,2,* and Mark A. Loewen3,4,* 1 Dinosaur National Monument (retired), Jensen, UT, USA 2 Independent Researcher, Jensen, UT, USA 3 Natural History Museum of Utah, University of Utah, Salt Lake City, UT, USA 4 Department of Geology and Geophysics, University of Utah, Salt Lake City, UT, USA * These authors contributed equally to this work. ABSTRACT Allosaurus is one of the best known theropod dinosaurs from the Jurassic and a crucial taxon in phylogenetic analyses. On the basis of an in-depth, firsthand study of the bulk of Allosaurus specimens housed in North American institutions, we describe here a new theropod dinosaur from the Upper Jurassic Morrison Formation of Western North America, Allosaurus jimmadseni sp. nov., based upon a remarkably complete articulated skeleton and skull and a second specimen with an articulated skull and associated skeleton. The present study also assigns several other specimens to this new species, Allosaurus jimmadseni, which is characterized by a number of autapomorphies present on the dermal skull roof and additional characters present in the postcrania. In particular, whereas the ventral margin of the jugal of Allosaurus fragilis has pronounced sigmoidal convexity, the ventral margin is virtually straight in Allosaurus jimmadseni. The paired nasals of Allosaurus jimmadseni possess bilateral, blade-like crests along the lateral margin, forming a pronounced nasolacrimal crest that is absent in Allosaurus fragilis. Submitted 20 July 2018 Accepted 31 August 2019 Subjects Paleontology, Taxonomy Published 24 January 2020 Keywords Allosaurus, Allosaurus jimmadseni, Dinosaur, Theropod, Morrison Formation, Jurassic, Corresponding author Cranial anatomy Mark A. -
Breathing and Locomotion in Birds
Breathing and locomotion in birds. A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Life Sciences. 2010 Peter George Tickle Contents Abstract 4 Declaration 5 Copyright Statement 6 Author Information 7 Acknowledgements 9 Organisation of this PhD thesis 10 Chapter 1 General Introduction 13 1. Introduction 14 1.1 The Avian Respiratory System 14 1.1.1 Structure of the lung and air sacs 16 1.1.2 Airflow in the avian respiratory system 21 1.1.3 The avian aspiration pump 25 1.2 The uncinate processes in birds 29 1.2.1 Uncinate process morphology and biomechanics 32 1.3 Constraints on breathing in birds 33 1.3.1 Development 33 1.3.2 Locomotion 35 1.3.2.1 The appendicular skeleton 35 1.3.2.2 Overcoming the trade-off between breathing 36 and locomotion 1.3.2.3 Energetics of locomotion in birds 38 1.4 Evolution of the ventilatory pump in birds 41 1.5 Overview and Thesis Aims 42 2 Chapter 2 Functional significance of the uncinate processes in birds. 44 Chapter 3 Ontogenetic development of the uncinate processes in the 45 domestic turkey (Meleagris gallopavo). Chapter 4 Uncinate process length in birds scales with resting metabolic rate. 46 Chapter 5 Load carrying during locomotion in the barnacle goose (Branta 47 leucopsis): The effect of load placement and size. Chapter 6 A continuum in ventilatory mechanics from early theropods to 48 extant birds. Chapter 7 General Discussion 49 References 64 3 Abstract of a thesis by Peter George Tickle submitted to the University of Manchester for the degree of PhD in the Faculty of Life Sciences and entitled ‘Breathing and Locomotion in Birds’.