A Case Report of Complex Auricular Neuralgia Treated with the Great Auricular Nerve and Facet Blocks

Total Page:16

File Type:pdf, Size:1020Kb

A Case Report of Complex Auricular Neuralgia Treated with the Great Auricular Nerve and Facet Blocks Journal name: Journal of Pain Research Article Designation: CASE REPORT Year: 2017 Volume: 10 Journal of Pain Research Dovepress Running head verso: Eghtesadi et al Running head recto: Complex auricular neuralgia treated with GAN and facet blocks open access to scientific and medical research DOI: http://dx.doi.org/10.2147/JPR.S126923 Open Access Full Text Article CASE REPORT A case report of complex auricular neuralgia treated with the great auricular nerve and facet blocks Marzieh Eghtesadi1 Background: The great auricular nerve is a cutaneous branch of the cervical plexus originating Elizabeth Leroux2 from the C2 and C3 spinal nerves. It innervates the skin over the external ear, the angle of the Grisell Vargas-Schaffer3 mandible and the parotid gland. It communicates with the ansa cervicalis. Great auricular neu- ralgia is rarely diagnosed in clinical practice and can be refractory. We present a new approach 1Department of Pain Clinic, Headache Management, Centre Hospitalier de using ultrasound-guided nerve blocks. l’Université de Montréal (CHUM), Centre Case: We present a case of a 41-year-old female with paroxysmal ear pain accompanied by de Recherche de l’Université de Montréal (CRCHUM), 2Department of General dysautonomia, tingling in the tongue, dysphagia, dysarthria and abdominal symptoms. No Neurology, Headache Management, significant findings were found on cervical and brain imaging. The patient responded partially Centre Hospitalier de l’Université de Montréal (CHUM), Centre de Recherche to a great auricular nerve block. A combined approach using this block with facet block of C2 de l’Université de Montréal (CRCHUM), and C3 induced a more pronounced and prolonged benefit. 3Department of Anesthesiology, Pain Clinic, Centre Hospitalier de l’Université Conclusion: Great auricular neuralgia is not often encountered in practice and can be accom- de Montréal (CHUM), Centre de panied by symptoms originating from the ansa cervicalis network. A combined approach of Recherche de l’Université de Montréal nerve blocks can be considered in refractory cases. (CRCHUM), Montreal, QC, Canada Keywords: ansa cervicalis, neuropathic pain, facet block, red ear syndrome, great auricular nerve Video abstract Introduction The great auricular nerve (GAN) is a cutaneous branch of the cervical plexus originat- ing from the C2 and C3 spinal nerves.1 It innervates the skin over the external ear, the angle of the mandible and the parotid gland.2 Here, we present a case of unusual ear pain with dysautonomia and gastrointestinal manifestations. The patient was refractory to usual neuropathic pain pharmacotherapy. Great auricular neuralgia is a rare condition. It can be associated with symptoms linked to the cervical plexus. Treatment may include a combination of peripheral nerve blocks targeting the GAN itself and the C2–C3 cervical roots. Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: http://youtu.be/bccCtE3DBxE Case presentation The patient is a 41-year-old female who presented with a 1-year history of paroxys- Correspondence: Marzieh Eghtesadi mal left ear pain and tingling sensation in her tongue. The pain in her ear radiated to Department of Pain Clinic, Headache the ipsilateral side of her face as well as posteriorly in the distribution of the lesser Management, Centre Hospitalier de l’Université de Montréal (CHUM), 3840 rue occipital nerve. She reported associated jaw clenching and allodynia to teeth brushing Saint Urbain, Hôpital Hôtel-Dieu du CHUM, and mastication. The pain worsened at the end of the day to a severe intensity, at which Clinique antidouleur 2 étage, Pavillon Jean Mance, Montreal, QC H2W 1T8, Canada time there was red discoloration of the ear. The patient alternated between a constant Tel +1 514 890 8000 dull aching pain at 5 out of 10 and periods of paroxysmal pain reaching 8 out of 10 Fax +1 514 412 7132 Email [email protected] on a numerical rating scale and lasting between 1 and 5 consecutive days. submit your manuscript | www.dovepress.com Journal of Pain Research 2017:10 435–438 435 Dovepress © 2017 Eghtesadi et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms. php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work http://dx.doi.org/10.2147/JPR.S126923 you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). Eghtesadi et al Dovepress During exacerbations, the patient also complained of a multiple drug intolerance syndrome, including a probable dysphagia and dysarthria. Other symptoms included post- Stevens–Johnson with carbamazepine. prandial abdominal pain and diarrhea. She was evaluated by an allergist. Due to the serious There was a history of sports-related mild traumatic head nature of side effects, all pain medications had been stopped injury as a young adult and a whiplash involving subluxation at least 2 weeks prior to the ultrasound-guided infiltrations of the C4–C5 cervical vertebrae. Past medical history also described below. included mononucleosis, two previous superficial lower A diet at the patient’s own initiative proved slightly suc- extremity venous thromboses postpartum and heterozygous cessful in reducing her postprandial abdominal pains. factor V Leiden thrombophilia. The patient was initially diagnosed with trigeminal Examination of her cranial nerves revealed diffuse neuralgia. The diagnosis was later revised to great auricular hypoesthesia to touch, pinprick and temperature in the left neuralgia, given the distribution of the pain. Additional trigeminal distribution. No intraoral trigger points were iden- symptoms were attributed to a dysfunction at the level of tified. There was decreased sensation to touch and pinprick the ansa cervicalis. in the area of the greater and lesser occipital nerves. The gag We initially performed a GAN block using ultrasound reflex on the left side was absent. Lateral neck flexion to the guidance (Figure 1). We used a GE Logiq e® Ultrasound right was limited with diffuse tenderness on palpation of machine equipped with a 12 MHz high-frequency transducer. the left paracervical muscles. Neck compression testing for The GAN was identified at its emergence from the posterior radiculopathy and facet syndrome using Spurling’s maneuver border of the sternocleidomastoid muscle, at the level of the was able to provoke the patient’s red ear discoloration after cricoid cartilage located by palpation.3,4 Once the hypoechoic a 15-second compression. round shaped nerve was visualized, a 25G, 50 mm needle The patient’s workup included a 3T cerebral angio- was introduced in plane with the ultrasound probe, and we magnetic resonance imaging with contrast, Constructive injected a mix of 1 mL 2% xylocaine, 1 mL 0.5% bupivacaine Interference in Steady State sequence imaging of the circle and 1 mL of triamcinolone (40 mg). This technique proved of Willis and magnetic resonance imaging of the cervical successful in relieving the patient’s paroxysmal earaches for spine. A contact between the superior cerebellar artery and over 1 month with reduction of pain intensity of 60%. The the cisternal portion of the left trigeminal nerve was seen, but patient reported improvement within 48 hours following without evidence of compression. A chest X-ray was normal. nerve block of the GAN. No adverse events were reported. Rheumatological workup showed mildly elevated antinuclear Three months later, the patient’s pain was back at base- antibodies, but was otherwise inconclusive for collagenosis. line. We combined the GAN block with ultrasound-guided Gastrointestinal workup, including food allergy testing, facet blocks of the C2 and C3 spinal nerves as well as lesser gastroscopy and colonoscopy with biopsies were negative. occipital nerve block. We injected 2 mL of the same analgesic Drug trials included acetaminophen, naproxen, tri- mix at each infiltration point. The combination of these blocks cyclic antidepressant, gabapentinoids, carbamazepine, reduced not only the intensity of her paroxysmal ear pain, topical analgesics, bupropion, muscle relaxant, tapentadol, but also the duration of exacerbations from 1 to 5 days to morphine, hydromorphone and methadone. Pharmacotherapy <24 hours and the background pain by >50%. The relief was was unsuccessful in this patient. In addition, she developed more prolonged, lasting for over 2 months. GAN PSCM Figure 1 Ultrasound-guided transverse view of the GAN. Abbreviations: GAN, great auricular nerve; PSCM, posterior border of sternocleidomastoid muscle. 436 submit your manuscript | www.dovepress.com Journal of Pain Research 2017:10 Dovepress Dovepress Complex auricular neuralgia treated with GAN and facet blocks Discussion revealed pain of neuropathic origin as per the Douleur Neu- The GAN arises from the ventral rami of C2–C3 roots, along ropathique 4 questionnaire, but the patient suffered serious with two other sensory branches, the lesser occipital nerve adverse reactions to usual neuropathic pharmacotherapy. and the transverse cervical nerve.5 The fourth cervical cutane- Our nerve blocks targeted the GAN peripherally
Recommended publications
  • Unusual Organization of the Ansa Cervicalis: a Case Report
    CASE REPORT ISSN- 0102-9010 UNUSUAL ORGANIZATION OF THE ANSA CERVICALIS: A CASE REPORT Ranjana Verma1, Srijit Das2 and Rajesh Suri3 Department of Anatomy, Maulana Azad Medical College, New Delhi-110002, India. ABSTRACT The superior root of the ansa cervicalis is formed by C1 fibers carried by the hypoglossal nerve, whereas the inferior root is contributed by C2 and C3 nerves. We report a rare finding in a 40-year-old male cadaver in which the vagus nerve fused with the hypoglossal nerve immediately after its exit from the skull on the left side. The vagus nerve supplied branches to the sternohyoid, sternothyroid and superior belly of the omohyoid muscles and also contributed to the formation of the superior root of the ansa cervicalis. In this arrangement, paralysis of the infrahyoid muscles may result following lesion of the vagus nerve anywhere in the neck. The cervical location of the vagus nerve was anterior to the common carotid artery within the carotid sheath. This case report may be of clinical interest to surgeons who perform laryngeal reinnervation and neurologists who diagnose nerve disorders. Key words: Ansa cervicalis, hypoglossal nerve, vagus nerve, variations INTRODUCTION cadaver. The right side was normal. The neck region The ansa cervicalis is a nerve loop formed was dissected and the neural structures in the carotid by the union of superior and inferior roots. The and muscular triangle regions were exposed, with superior root is a branch of the hypoglossal nerve particular attention given to the organization of the containing C1 fibers, whereas the inferior root is ansa cervicalis.
    [Show full text]
  • Tentorium Cerebelli: the Bridge Between the Central and Peripheral Nervous System, Part 2
    Open Access Review Article DOI: 10.7759/cureus.5679 Tentorium Cerebelli: the Bridge Between the Central and Peripheral Nervous System, Part 2 Bruno Bordoni 1 , Marta Simonelli 2 , Maria Marcella Lagana 3 1. Cardiology, Foundation Don Carlo Gnocchi, Milan, ITA 2. Osteopathy, French-Italian School of Osteopathy, Pisa, ITA 3. Radiology, IRCCS Fondazione Don Carlo Gnocchi Onlus, Milan, ITA Corresponding author: Bruno Bordoni, [email protected] Abstract The tentorium cerebelli is a meningeal portion in relation to the skull, the nervous system, and the cervical tract. In this second part, the article discusses the systematic tentorial relationships, such as the central and cervical neurological connections, the venous circulation and highlights possible clinical alterations that could cause pain. To understand the function of anatomy, we should always remember that every area of the human body is never a segment, but a functional continuum. Categories: Physical Medicine & Rehabilitation, Anatomy, Osteopathic Medicine Keywords: tentorium cerebelli, fascia, pain, venous circulation, neurological connections, cranio Introduction And Background Cervical neurological connections The ansa cervicalis characterizes the first cervical roots and connects all anterior cervical nerve exits with the inferior floor of the oral cavity, the trigeminal system, the respiratory control system, and the sympathetic system. The descending branch of the hypoglossal nerve anastomoses with C1, forming the ansa hypoglossi or ansa cervicalis superior [1]. The inferior root of the ansa cervicalis, also known as descendens cervicalis, is formed by ascendant fibers from spinal nerves C2-C3 and occasionally fibers C4, lying anteriorly to the common carotid artery (it passes laterally or medially to the internal jugular vein upon anatomical variations) [1].
    [Show full text]
  • Communications of Transverse Cervical Cutaneous Nerve with the Cervical Branch of Facial Nerve and Its Variant Nerve Endings
    ogy: iol Cu ys r h re P n t & R y e s Anatomy & Physiology: Current m e Sirasanagandla et al., Anatom Physiol 2013, 3:1 o a t r a c n h DOI: 10.4172/2161-0940.1000114 A Research ISSN: 2161-0940 Case Report Open Access Communications of Transverse Cervical Cutaneous Nerve with the Cervical Branch of Facial Nerve and its Variant Nerve Endings Deep in the Parotid Gland Srinivasa Rao Sirasanagandla*, Swamy Ravindra S, Sapna Marpalli and Satheesha Nayak B Department of Anatomy, Melaka Manipal Medical College, Manipal University, Madhav Nagar, Manipal, Karnataka, India Abstract Anastomoses between the transverse cervical cutaneous nerve and the cervical branch of facial nerve are regularly present. The anatomic locations of these anastomoses were poorly documented in the literature. During regular dissection, we came across two of such anastomoses: one of the two anastomoses was identified posterior to submandibular gland, and the other was noted within the parenchyma of the parotid gland. Prior knowledge of anatomic locations of these anastomoses is clinically important as it allows a method for identification and preservation of the cervical branch of the facial nerve as well as a starting point for retrograde facial nerve dissections. In addition, few terminal nerve endings of transverse cervical cutaneous nerve were seen along the retromandibular vein, ducts and some were penetrating the interlobular septa of parotid gland. The functional significance of anatomic variations of its nerve terminal ends deep in the gland is yet to be evaluated. Keywords: Anastomoses; Transverse cervical cutaneous nerve; (TCCN) and supraclavicular nerves pierce the fascia to supply the skin.
    [Show full text]
  • A Source of Complication in Vagus Nerve Stimulation
    PEDIATRICS CASE REPORT J Neurosurg Pediatr 15:535–538, 2015 The “vagal ansa”: a source of complication in vagus nerve stimulation Chittur Viswanathan Gopalakrishnan, MS, MCh,1 John R. W. Kestle, MD,1 and Mary B. Connolly, MB, FRCP(C)2 1Division of Neurosurgery, Department of Surgery, University of British Columbia and BC Children’s Hospital; and 2Division of Neurology, Department of Paediatrics, University of British Columbia and BC Children’s Hospital, Vancouver, British Columbia, Canada A 16-year-old boy underwent vagus nerve stimulation for treatment-resistant multifocal epilepsy. During intraoperative system diagnostics, vigorous contraction of the ipsilateral sternomastoid muscle was observed. On re-exploration, a thin nerve fiber passing from the vagus to the sternomastoid was found hooked up in the upper electrode. Detailed inspec- tion revealed an abnormal course of the superior root of the ansa cervicalis, which descended down as a single nerve trunk with the vagus and separated to join the inferior root. The authors discuss the variation in the course of the ansa cervicalis and how this could be a reason for postoperative neck muscle contractions. http://thejns.org/doi/abs/10.3171/2014.10.PEDS14259 KEY WORDS ansa cervicalis; variation; vagus nerve stimulation; epilepsy; complication; peripheral nerve HE ansa cervicalis, located in the anterior triangle of We describe an intraoperative complication noticed the neck, is formed by the anterior rami of the first during testing of the VNS system after placement of the 3 or 4 cervical spinal nerves. This nerve loop in- electrodes and the pulse generator. To the best of our Tnervates the infrahyoid muscles.5 It is frequently encoun- knowledge, it has not been previously reported.
    [Show full text]
  • A Case of the Human Sternocleidomastoid Muscle Additionally Innervated by the Hypoglossal Nerve
    Okajimas Folia Anat. Jpn., 69(6): 361-368, March, 1993 A Case of the Human Sternocleidomastoid Muscle Additionally Innervated by the Hypoglossal Nerve By Masahiro KOIZUMI, Masaharu HORIGUCHI, Shin'ichi SEKIYA, Sumio ISOGAI and Masato NAKANO Department of Anatomy, Iwate Medical University School of Medicine. Morioka, 020 Japan -Received for Publication, October 19, 1992- Key Words: Sternocleidomastoid muscle, Hypoglossal nerve, Superior sternoclavicular muscle (Hyrtl), Dual nerve supply, Gross anatomy Summary: An anomalous nerve supply from the hypoglossal nerve (XII) to the sternocleidomastoid muscle (SM) was observed in the right neck of an 82-year-old Japanese female. This nerve branch arose from the hypoglossal nerve at the origin of the superior root of the ansa cervicalis. The nerve fiber analysis revealed that this branch consisted of fibers from the hypoglossal nerve, the first and the second cervical nerves and had the same component as the superior root of the ansa cervicalis. SM appeared quite normal and the most part was innervated by the accessory nerve and a branch from the cervical plexus. The anomalous branch from XII supplied the small deep area near the anterior margin of the middle of the sternomastoid portion of SM. It is reasonable to think that the small deep area of SM, which was innervated by the anomalous branch from XII, occurs as the result of fusion of the muscular component from infrahyoid muscles. If the muscular component does not fuse with SM, it is thought to appear as an aberrant muscle such as the superior sternoclavicular muscle (Hyrtl) which is also supplied from a branch of the superior root of the ansa cervicalis.
    [Show full text]
  • An Unusual Superior Root of the Ansa Cervicalis
    Open Access Case Report DOI: 10.7759/cureus.4558 An Unusual Superior Root of the Ansa Cervicalis Shogo Kikuta 1 , Joe Iwanaga 2 , Jingo Kusukawa 3 , R. Shane Tubbs 4 1. Seattle Science Foundation, Seattle, USA 2. Medical Education and Simulation, Seattle Science Foundation, Seattle, USA 3. Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, JPN 4. Neurosurgery, Seattle Science Foundation, Seattle, USA Corresponding author: Joe Iwanaga, [email protected] Abstract The ansa cervicalis is located around the carotid sheath and forms a neural loop, which consists of superior and inferior roots. It innervates the infrahyoid muscles. Anatomical variations of the superior root of the ansa cervicalis are uncommon. Herein, we present an extremely rare case of the superior root of the ansa cervicalis arising both from the hypoglossal and vagus nerves. Categories: Miscellaneous Keywords: ansa cervicalis, anatomy, neck surgery, variation, vagus nerve Introduction The ansa cervicalis is located deep into the sternocleidomastoid muscle and innervates the infrahyoid muscles. It is formed by two roots, superior and inferior. The fibers from the ventral rami of the first and second cervical spinal nerves (C1-C2) hitchhike along the hypoglossal nerve (HN) for a distance of 3-4 cm to become the superior root of the ansa cervicalis [1-3]. The superior root consistently leaves the HN and descends along the anterior wall of the carotid sheath. The inferior root arises from the ventral rami of the second and third cervical spinal nerves (C2-C3). The superior and inferior roots join to form a neural loop anterior to the internal jugular vein (IJV), in most cases [4].
    [Show full text]
  • The LATIN LANGUAGE and Bases of Medical Terminology
    The LATIN LANGUAGE and Bases of Medical Terminology The LATIN LANGUAGE and Bases of Medical Terminology ОДЕСЬКИЙ ДЕРЖАВНИЙ МЕДИЧНИЙ УНІВЕРСИТЕТ THE ODESSA STATE MEDICAL UNIVERSITY Áiáëiîòåêà ñòóäåíòà-ìåäèêà Medical Student’s Library Започатковано 1999 р. на честь 100-річчя Одеського державного медичного університету (1900–2000 рр.) Initiated in 1999 to mark the Centenary of the Odessa State Medical University (1900–2000) 2 THE LATIN LANGUAGE AND BASES OF MEDICAL TERMINOLOGY Practical course Recommended by the Central Methodical Committee for Higher Medical Education of the Ministry of Health of Ukraine as a manual for students of higher medical educational establishments of the IV level of accreditation using English Odessa The Odessa State Medical University 2008 3 BBC 81.461я73 UDC 811.124(075.8)61:001.4 Authors: G. G. Yeryomkina, T. F. Skuratova, N. S. Ivashchuk, Yu. O. Kravtsova Reviewers: V. K. Zernova, doctor of philological sciences, professor of the Foreign Languages Department of the Ukrainian Medical Stomatological Academy L. M. Kim, candidate of philological sciences, assistant professor, the head of the Department of Foreign Languages, Latin Language and Bases of Medical Terminology of the Vinnitsa State Medical University named after M. I. Pyrogov The manual is composed according to the curriculum of the Latin lan- guage and bases of medical terminology for medical higher schools. Designed to study the bases of general medical and clinical terminology, it contains train- ing exercises for the class-work, control questions and exercises for indivi- dual student’s work and the Latin-English and English-Latin vocabularies (over 2,600 terms). For the use of English speaking students of the first year of study at higher medical schools of IV accreditation level.
    [Show full text]
  • Communication of the Anterior Branch of the Great Auricular Nerve with the Cervical Branch of Facial Nerve and Its Variant Nerve Endings Deep in the Parotid Gland
    Int. J. Morphol., 30(3):840-842, 2012. Communication of the Anterior Branch of the Great Auricular Nerve with the Cervical Branch of Facial Nerve and its Variant Nerve Endings Deep in the Parotid Gland Comunicación del Ramo Anterior del Nervio Auricular Mayor con el Ramo Cervical del Nervio Facial y sus Terminaciones Nerviosas Profundas Variantes en la Glándula Parótida *Srinivasa Rao Sirasanagandla; *Satheesha Nayak B.; **Kumar M. R. Bhat & *Swamy Ravindra S. RAO, S. S.; NAYAK, B. S.; BHAT, K. M. R. & RAVINDRA, S. S. Communication of the anterior branch of the great auricular nerve with the cervical branch of facial nerve and its variant nerve endings deep in the parotid gland. Int. J. Morphol., 30(3):840-842, 2012. SUMMARY: The communications between the branches of cervical plexus and cervical branch of facial nerve are common and are well known. However, this communication usually occurs between the transverse cervical nerve and cervical branch of facial nerve. During routine dissection classes for the Medical undergraduate students, we came across an anatomical variant of anterior division of great auricular nerve. This variation was found in a 60-year-old male cadaver of South Indian origin and it was unilateral. The great auricular nerve arose from the loop of ventral rami of C2 and C3 spinal nerves and divided into anterior and posterior branches. The anterior branch ran obliquely upwards and forwards on the surface of the sternocleidomastoid muscle along with the external jugular vein towards the apex of parotid gland and divided into many branches. One of these branches gave a communicating branch to cervical branch of facial nerve outside the parotid gland.
    [Show full text]
  • 5. Upper Extremity Neuroanatomy
    5. UPPER EXTREMITY compartments of the NEUROANATOMY arm). The brachial plexus divisions INTRODUCTION pass posterior to the mid-point of Regional anesthesia of the upper extremity in- the clavicle through volves two major nerve plexuses, the cervical plexus the cervico-axillary and the brachial plexus. A detailed understanding of canal. the anatomy of these nerve plexuses and surrounding • Three cords. The structures is essential for the safe and successful prac- divisions coalesce tice of regional anesthesia in this area of the body. to form three cords. The anterior CERVICAL PLEXUS divisions of the superior and middle The cervical plexus is formed from a series of nerve trunk form the loops between adjacent anterior rami of cervical nerve lateral cord. The roots C1 through C4. The cervical plexus is deep to the anterior division of sternocleidomastoid muscle and medial to the scalene the inferior trunk muscles. The deep branches of the plexus are motor becomes the medial nerves. They include the phrenic nerve (diaphragm cord. The posterior muscle) and the ansa cervicalis nerve (omohyoid, divisions of all sternothyroid, and sternohyoid muscles). The named three trunks unite nerves of the superficial cervical plexus are branches to form the posterior from the loops and emerge from the middle of the ster- Figure 5-1. Dissection of the superficial cervical plexus in the posterior triangle cord. The cords are nocleidomastoid muscle (Figure 5-1): BRACHIAL PLEXUS named based on their relationship to the axillary artery (as this • Lesser occipital nerve (C2): innervates the skin The brachial plexus is formed from the five roots neurovascular bundle passes in its sheath into posterior to the ear.
    [Show full text]
  • The Cervical Plexus by Prof
    The Cervical Plexus By Prof. Dr. Imran Qureshi The Cervical Plexus is formed by the ventral rami of C1, C2, C3, and C4. It supplies: o Areas of the Skin o The Respiratory Diaphragm o The Strap muscles of the Anterior Triangle of the Neck, and o The nerves to The Sternocleidomastoid, Trapezius, Scalenes, Levator Scapulae, Longus Coli, Longus Capitis etc. I. Branches to the Skin: These appear in the posterior triangle at the midpoint of the posterior border of the sternocleidomastoid. They are: The Greater Auricular Nerve, which crosses the Sternocleidomastoid obliquely, posterior to the external jugular vein and ascends toward the lobe of the ear, Lesser Occipital Nerve, which parallels the posterior border of Sternocleidomastoid and ascends toward the occipital region, Anterior Cutaneous (Transverse Cervical) Nerve, which crosses transversely across the Sternocleidomastoid to reach the skin of the anterior triangle of the neck, The Supraclavicular trunk, which passes from under cover of the Sternocleidomastoid and divides into: The Lateral supraclavicular nerve, The Intermediate supraclavicular nerve, and The Medial supraclavicular nerve. The Lateral supraclavicular passes superficial to the trapezius to supply the skin of the shoulder tip. The Intermediate and Medial supraclavicular nerves pass superficial to the clavicle to the skin of the pectoral region. 1 II. Nerve to Respiratory Diaphragm (Phrenic Nerve): This nerve, which arises from the ventral rami of C3, C4, and C5, is the motor nerve of the diaphragm. It also supplies sensory fibers, including pain, to the central area. The contribution from C5 may join that from C3 and C4 directly, or secondarily as a branch from the nerve to the subclavius muscle.
    [Show full text]
  • Anatomical Study of the Human Ansa Cervicalis Nerve and Its Variations
    International Journal of Anatomy and Physiology ISSN: 2326-7275 Vol. 2 (3), pp. 014-019, March, 2013. Available online at www.internationalscholarsjournals.org © International Scholars Journals Full length research paper Anatomical study of the human ansa cervicalis nerve and its variations Ahmed M.S. Hegazy Anatomy and Embryology, Department of Anatomy, Faculty of Medicine, Benha University, Egypt. E-Mail: [email protected] Accepted 27 February, 2013 With the expanding use of the ansa cervicalis nerve for laryngeal reinnervation procedures. So the aim of this work was to study the anatomical variations of ansa cervicalis in its roots, course and branching pattern. Twenty five Egyptian necks (50 sides) were dissected. The results showed that the ansa cervicalis (AC) consisted of two roots: superior and inferior roots. These two roots joined together to form a nerve loop. The superior root of AC originated from the hypoglossal nerve in 100%.The superior root of AC descended in front of the external carotid artery in 68% and in front of the internal carotid artery in 32%. The inferior root of AC was derived from the ventral rami of C2 and C3 in 84% and from C2 in 16%. There were four morphological forms of the loop of ansa cervicalis: I- U-shaped loop in 84%. II- Y-shaped loop in 8%. III- double fused Y-shaped loop in 4%.VI- double separate Y-shaped loop in 4%. The superior root of AC gave a branch to the superior belly of omohyoid in 96% and a branch to sternomastoid in 24% . The inferior root of AC gave a branch to inferior belly of omohyoid and a communicating branch to phrenic nerve in 4%.
    [Show full text]
  • The Carotid Endarterectomy Cadaveric Investigation for Cranial Nerve Injuries: Anatomical Study
    brain sciences Article The Carotid Endarterectomy Cadaveric Investigation for Cranial Nerve Injuries: Anatomical Study Orhun Mete Cevik 1,2,3 , Murat Imre Usseli 1, Mert Babur 2, Cansu Unal 3,4, Murat Sakir Eksi 1, Mustafa Guduk 1, Talat Cem Ovalioglu 2, Mehmet Emin Aksoy 3 , M. Necmettin Pamir 1 and Baran Bozkurt 1,3,* 1 Department of Neurosurgery, Acıbadem Mehmet Ali Aydinlar University, 34662 Istanbul, Turkey; [email protected] (O.M.C.); [email protected] (M.I.U.); [email protected] (M.S.E.); [email protected] (M.G.); [email protected] (M.N.P.) 2 Department of Neurosurgery, Bakırkoy Training and Research Hospital for Psychiatric and Nervous Diseases, Health Sciences University, 34147 Istanbul, Turkey; [email protected] (M.B.); [email protected] (T.C.O.) 3 (CASE) Center of Advanced Simulation ant Education, Acıbadem Mehmet Ali Aydinlar University, 34684 Istanbul, Turkey; [email protected] (C.U.); [email protected] (M.E.A.) 4 School of Medicine, Acıbadem Mehmet Ali Aydinlar University, 34684 Istanbul, Turkey * Correspondence: [email protected]; Tel.: +90-533-315-6549 Abstract: Cerebral stroke continues to be one of the leading causes of mortality and long-term morbidity; therefore, carotid endarterectomy (CEA) remains to be a popular treatment for both symptomatic and asymptomatic patients with carotid stenosis. Cranial nerve injuries remain one of the major contributor to the postoperative morbidities. Anatomical dissections were carried out on 44 sides of 22 cadaveric heads following the classical CEA procedure to investigate the variations of the local anatomy as a contributing factor to cranial nerve injuries.
    [Show full text]