Internet Peering Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PEERING: an AS for Us
PEERING: An AS for Us Brandon Schlinker1, Kyriakos Zarifis1, Italo Cunha2, Nick Feamster3, and Ethan Katz-Bassett1 1University of Southern California — 2Universidade Federal de Minas Gerais — 3Georgia Institute of Technology {bschlink, kyriakos, ethan.kb}@usc.edu — [email protected] — [email protected] ABSTRACT 29, 45]. BGP, the Internet’s interdomain routing protocol, Internet routing suffers from persistent and transient failures, can experience slow convergence [30] and persistent route circuitous routes, oscillations, and prefix hijacks. A ma- oscillations [17,54]. It lacks mechanisms to prevent spoof- jor impediment to progress is the lack of ways to conduct ing [5,27] and prefix hijacks [24,32,58]. Despite known impactful interdomain research. Most research is based ei- problems, little has changed with interdomain routing, and ther on passive observation of existing routes, keeping re- there has been little impactful research in recent years. searchers from assessing how the Internet will respond to This stagnancy in the face of known problems is in stark route or policy changes; or simulations, which are restricted contrast to the rapid innovation in other areas of network- by limitations in our understanding of topology and policy. ing. We are in an era of remarkable changes in networking We propose a new class of interdomain research: re- and its role in our lives, as mobile connectivity and stream- searchers can instantiate an AS of their choice, including ing video change how we use the Internet, and advances in its intradomain topology and interdomain interconnectivity, software defined networking and data centers change how and connect it with the “live” Internet to exchange routes we run networks. -
Growth of the Internet
Growth of the Internet K. G. Coffman and A. M. Odlyzko AT&T Labs - Research [email protected], [email protected] Preliminary version, July 6, 2001 Abstract The Internet is the main cause of the recent explosion of activity in optical fiber telecommunica- tions. The high growth rates observed on the Internet, and the popular perception that growth rates were even higher, led to an upsurge in research, development, and investment in telecommunications. The telecom crash of 2000 occurred when investors realized that transmission capacity in place and under construction greatly exceeded actual traffic demand. This chapter discusses the growth of the Internet and compares it with that of other communication services. Internet traffic is growing, approximately doubling each year. There are reasonable arguments that it will continue to grow at this rate for the rest of this decade. If this happens, then in a few years, we may have a rough balance between supply and demand. Growth of the Internet K. G. Coffman and A. M. Odlyzko AT&T Labs - Research [email protected], [email protected] 1. Introduction Optical fiber communications was initially developed for the voice phone system. The feverish level of activity that we have experienced since the late 1990s, though, was caused primarily by the rapidly rising demand for Internet connectivity. The Internet has been growing at unprecedented rates. Moreover, because it is versatile and penetrates deeply into the economy, it is affecting all of society, and therefore has attracted inordinate amounts of public attention. The aim of this chapter is to summarize the current state of knowledge about the growth rates of the Internet, with special attention paid to the implications for fiber optic transmission. -
Interconnection
Interconnection 101 As cloud usage takes off, data production grows exponentially, content pushes closer to the edge, and end users demand data and applications at all hours from all locations, the ability to connect with a wide variety of players becomes ever more important. This report introduces interconnection, its key players and busi- ness models, and trends that could affect interconnection going forward. KEY FINDINGS Network-dense, interconnection-oriented facilities are not easy to replicate and are typically able to charge higher prices for colocation, as well as charging for cross-connects and, in some cases, access to public Internet exchange platforms and cloud platforms. Competition is increasing, however, and competitors are starting the long process of creating network-dense sites. At the same time, these sites are valuable and are being acquired, so the sector is consolidating. Having facili- ties in multiple markets does seem to provide some competitive advantage, particularly if the facilities are similar in look and feel and customers can monitor them all from a single portal and have them on the same contract. Mobility, the Internet of Things, services such as SaaS and IaaS (cloud), and content delivery all depend on net- work performance. In many cases, a key way to improve network performance is to push content, processing and peering closer to the edge of the Internet. This is likely to drive demand for facilities in smaller markets that offer interconnection options. We also see these trends continuing to drive demand for interconnection facilities in the larger markets as well. © 2015 451 RESEARCH, LLC AND/OR ITS AFFILIATES. -
Cologix Torix Case Study
Internet Exchange Case Study The Toronto Internet Exchange (TorIX) is the largest IX in Canada with more than 175 peering participants benefiting from lower network costs & faster speeds The non-profit Toronto Internet Exchange (TorIX) is a multi-connection point enabling members to use one hardwired connection to exchange traffic with 175+ members on the exchange. With peering participants swapping traffic with one another through direct connections, TorIX reduces transit times for local data exchange and cuts the significant costs of Internet bandwidth. The success of TorIX is underlined by its tremendous growth, exceeding 145 Gbps as one of the largest IXs in the world. TorIX is in Cologix’s data centre at 151 Front Street, Toronto’s carrier hotel and the country’s largest telecommunications hub in the heart of Toronto. TorIX members define their own routing protocols to dictate their traffic flow, experiencing faster speeds with their data packets crossing fewer hops between the point of origin and destination. Additionally, by keeping traffic local, Canadian data avoids international networks, easing concerns related to privacy and security. Above: In Dec. 2014, TorIX traffic peaked above 140 Gbps, with average traffic hovering around 90 Gbps. Beginning Today Launched in July 1996 Direct TorIX on-ramp in Cologix’s151 Front Street Ethernet-based, layer 2 connectivity data centre in Toronto TorIX-owned switches capable of handling Second largest independent IX in North America ample traffic Operated by telecom industry volunteers IPv4 & IPv6 address provided to each peering Surpassed 145 Gbps with 175+ peering member to use on the IX participants, including the Canadian Broke the 61 Gbps mark in Jan. -
Multimedia, Internet, On-Line
Section IV: Multimedia, the Internet, and On-Line Services High-End Digital Video Applications Larry Amiot Electronic and Computing Technologies Division Argonne National Laboratory The emphasis of this paper is on the high-end applications Internet and Intranet that are driving digital video. The research with which I am involved at Argonne National Laboratory is not done on dig- The packet video networks which currently support many ital video per se, but rather on how the research applications applications such as file transfer, Mbone video (talking at the laboratory drive its requirements for digital video. The heads), and World Wide Web browsing are limiting for high- paper will define what digital video is, what some of its com- quality video because of the low throughput one can achieve ponents are, and then discuss a few applications that are dri- via the Internet or intranets. Examples of national packet ving the development of these components. The focus will be switched networks developed in the last several years include on what digital video means to individuals in the research the National Science Foundation Network (NSFNet). The and education community. Department of Energy had its own network called ESNET, and the National Aeronautics and Space Administration The Digital Video Environment (NASA) had a network as well. Recently, the NSFNet was de- commissioned, and commercial interests are now starting to In 1996, a group of people from several universities in the fill that void. Research and education communities are find- Midwest and from Argonne formed a Video Working Group. ing, however, that this new commercial Internet is too re- This body tried to define the areas of digital video of impor- stricting and does not meet their throughput requirements; it tance to their institutions. -
Peering Concepts and Definitions Terminology and Related Jargon
Peering Concepts and Definitions Terminology and Related Jargon Presentation Overview Brief On Peering Jargon Peering & Related Jargon BRIEF ON PEERING JARGON Brief On Peering Jargon A lot of terminologies used in the peering game. We shall look at the more common ones. Will be directly related to peering, as well as ancillary non-peering functions that support peering. PEERING & RELATED JARGON Peering & Related Jargon ASN (or AS - Autonomous System Number): . A unique number that identifies a collection/grouping of IP addresses or networks under the control of one entity on the Internet Bi-lateral (peering): . Peering relationships setup “directly” between two networks (see “Multi-lateral [peering]”). BGP (Border Gateway Protocol): . Routing protocol used on the Internet and at exchange points as the de-facto routing technique to share routing information (IPs and prefixes) between networks or between ASNs Peering & Related Jargon Carrier-neutral (data centre): . A facility where customers can purchase network services from “any” other networks within the facility. Cold-potato routing: . A situation where a network retains traffic on its network for as long as possible (see “Hot-potato routing”). Co-lo (co-location): . Typically a data centre where customers can house their network/service infrastructure. Peering & Related Jargon Dark fibre: . Fibre pairs offered by the owner, normally on a lease basis, without any equipment at each end of it to “activate” it (see “Lit fibre”). Data centre: . A purpose-built facility that provides space, power, cooling and network facilities to customers. Demarc (Demarcation): . Typically information about a co-lo customer, e.g., rack number, patch panel and port numbers, e.t.c. -
Peering Personals at TWNOG 4.0
Peering Personals at TWNOG 4.0 6 Dec. 2019 請注意, Peering Personal 場次將安排於下午時段的演講結束前進行, 請留意議程進行以 確保報告人當時在現場 Please note that Peering Personals will be done in the afternoon sessions so please check with Agenda and be on site. AS number 10133 (TPIX) and 17408 (Chief Telecom) Traffic profile Internet Exchange (Balanced) + ISP (Balanced) Traffic Volume TPIX: 160 Gbps ( https://www.tpix.net.tw/traffic.html ); Chief: 80 Gbps (2015- 10.7G; 2016- 25.9G; 2017- 58G; 2018- 96G) Peering Policy Open Peering Locations Taiwan: TPIX, Chief LY, Chief HD HK: HKIX, AMS-IX, EIE (HK1), Mega-i Europe: AMS-IX Message Biggest IX in Taiwan in both traffic and AS connected (59). Contact •[email protected] or •https://www.peeringdb.com/ix/823 •[email protected] or •https://www.peeringdb.com/net/8666 AS number 7527(JPIX) Traffic profile Internet Exchange (Balanced) Traffic Volume JPIX Tokyo 1.2T &JPIX Osaka 600G Peering Policy Open Peering Locations Tokyo: KDDI Otemachi, NTT Data Otemachi ,Comspace I, Equinix, Tokyo, AT Tokyo, COLT TDC1, NTT DATA Mitaka DC East, NTT COM Nexcenter DC, Meitetsucom DC (Nagoya),OCH DC (Okinawa), BBT New Otemachi DC Osaka: NTT Dojima Telepark, KDDI TELEHOUSE Osaka2, Equinix OS1,Meitetsucom DC (Nagoya), OBIS DC (Okayama) Site introduction: https://www.jpix.ad.jp/en/service_introduction.php Message Of connected ASN: Tokyo 211 Osaka 70 Remarks Our IX switch in Nagoya can offer both JPIX Tokyo vlan and Osaka one. Contact •[email protected] or [email protected] AS number 41095 Traffic profile 1:3 Balanced where content prevail Traffic Volume -
Before the FEDERAL COMMUNICATIONS COMMISSION Washington, D.C
Before the FEDERAL COMMUNICATIONS COMMISSION Washington, D.C. 20554 In the Maller of ) ) Global Crossing Limited and Level 3 ) Communications, Inc., Application for ) Consent to Transfer Control ofAuthority to ) Provide Global facilities-Based and Global ) IB Docket No. I 1-78 Resale International Telecommunications ) Services and ofDomestic Common Carrier ) Transmission Lines, Pursuant to Section 214 ) of the Communications Act, as Amended ) ) Level 3 Communications, Inc., Petition for ) Declaratory Ruling Under Section 31 0(b)(4) ) Ofthe Communications Act of 1934, as ) AJnended ) DECLARATION OF MARCELLUS NIXON I. My name is Marcellus I ixon. I am the Director ofIP Network Planning at XO Communications, LLC. (XO). My business address is 13865 Sunrise Valley Drive, Hcrndon, VA 20171. 2. I have bcen employed at XO since 2002, initially as an IP Network Engineer. I have been in my current position as Dircctor ofIP Network Planning since 2008. My career with IP nctworks began in the US Army. I have also held networking positions with the NASD and internet MCT. I hold a Bachelor ofInterdisciplinary Studies from the University of Virginia. 3. In my current position, I am responsible for all strategic aspects of IP network planning, and I am the peering coordinator for XO. In that capacity, I manage relationships with other Tier I and lower tier Internet Backbone Providers (lI3Ps), including detennining wbere peering occurs, evaluating network arcbitecture needs such as capacity requirements, routing requirements, and the impact of technological changes on the peering arrangement. I also am responsible for negotiating interconnection (peering) agreements. To date, I have negotiated on behalf ofXO forty-seven (47) peering agreements. -
Networking and the Internet
Networking and Today’s lecture the Internet History of the Internet How the Internet works Lecture 4 – COMPSCI111/111G S2 2018 Network protocols The telephone WWII and the Cold War 1876: first successful bi-directional Computer technology played an important role transmission of clear speech in code-breaking during WW2 by Alexander Bell and Thomas Watson Cold War between US and USSR led to a technology and arms race Peaked with the launch of Sputnik in 1957 1958: Advanced Research Projects Agency (ARPA) 1940: first successful transmission established of digital data through over telegraph wires by George Stibitz April 1969: construction of ARPANET begins, a packet-switching network Circuit-switching network Packet-switching network Nodes are connected physically via a central Data is broken into packets, which are then sent node on the best route in the network Used by the telephone network Each node on the route sends the packet onto its next destination, avoiding congested or broken Originally, switchboard operators had to nodes manually connect phone calls, today this is done electronically B A ARPANET ARPANET in 1977 October 1969: ARPANET is completed with four nodes 1973: Norway connects to ARPANET via satellite, followed by London via a terrestrial link ARPANET ARPANET to the Internet 1983: TCP/IP implemented in ARPANET Networks similar to ARPANET sprang up around the USA and in other countries 1990: ARPANET is formally decommissioned 1984: domain name system (DNS) implemented 1985: NSFNET was established 1989: Waikato University connects to NSFNET 1991: World Wide Web (WWW) created at CERN (European Organization for Nuclear Research) by Tim Berners-Lee 1995: NSFNET is retired WWW vs Internet Internet growth The Internet is a global system of interconnected computer networks. -
Design of a Lan-Based Voice Over Ip (Voip) Telephone System
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by KhartoumSpace DESIGN OF A LAN-BASED VOICE OVER IP (VOIP) TELEPHONE SYSTEM A thesis submitted to the University of Khartoum in partial fulfillment of the requirement for the degree of MSC in Communication & Information Systems BY HASSAN SULEIMAN ABDALLA OMER B.SC of Electrical Engineering (2000) University of Khartoum Supervisor Dr. MOHAMMED ALI HAMAD ABBAS Faculty of Engineering & Architecture Department of Electrical & Electronics Engineering SEPTEMBER 2009 ﺑﺴﻢ اﷲ اﻟﺮﺣﻤﻦ اﻟﺮﺣﻴﻢ ﺻﺪق اﷲ اﻟﻌﻈﻴﻢ iii ACKNOWLEDGEMENTS First I would like to thanks my supervisor Dr. Mohammed Ali Hamad Abbas, because this research project would not have been possible without his support and guidance; so I take this opportunity to offer him my gratitude for his patience ,support and guidance . Special thanks to the Department of Electrical and Electronics Engineering University Of Khartoum for their facilities, also I would like to convey my thanks to the staff member of MSc program for their help and to all my colleges in the MSc program. It is with great affection and appreciation that I acknowledge my indebtedness to my parents for their understanding & endless love. H.Suleiman iv Abstract The objective of this study was to design a program to transmit voice conversations over data network using the internet protocol –Voice Over IP (VOIP). JAVA programming language was used to design the client-server model, codec and socket interfaces. The design was fully explained as to its input, processing and output. The test of the designed voice over IP model was successful, although some delay in receiving the conversation was noticed. -
The Internet ! Based on Slides Originally Published by Thomas J
15-292 History of Computing The Internet ! Based on slides originally published by Thomas J. Cortina in 2004 for a course at Stony Brook University. Revised in 2013 by Thomas J. Cortina for a computing history course at Carnegie Mellon University. A Vision of Connecting the World – the Memex l Proposed by Vannevar Bush l first published in the essay "As We May Think" in Atlantic Monthly in 1945 and subsequently in Life Magazine. l "a device in which an individual stores all his books, records, and communications, and which is mechanized so that it may be consulted with exceeding speed and flexibility" l also indicated the idea that would become hypertext l Bush’s work was influential on all Internet pioneers The Memex The Impetus to Act l 1957 - U.S.S.R. launches Sputnik I into space l 1958 - U.S. Department of Defense responds by creating ARPA l Advanced Research Projects Agency l “mission is to maintain the technological superiority of the U.S. military” l “sponsoring revolutionary, high-payoff research that bridges the gap between fundamental discoveries and their military use.” l Name changed to DARPA (Defense) in 1972 ARPANET l The Advanced Research Projects Agency Network (ARPANET) was the world's first operational packet switching network. l Project launched in 1968. l Required development of IMPs (Interface Message Processors) by Bolt, Beranek and Newman (BBN) l IMPs would connect to each other over leased digital lines l IMPs would act as the interface to each individual host machine l Used packet switching concepts published by Leonard Kleinrock, most famous for his subsequent books on queuing theory Early work Baran (L) and Davies (R) l Paul Baran began working at the RAND corporation on secure communications technologies in 1959 l goal to enable a military communications network to withstand a nuclear attack. -
Features of the Internet History the Norwegian Contribution to the Development PAAL SPILLING and YNGVAR LUNDH
Features of the Internet history The Norwegian contribution to the development PAAL SPILLING AND YNGVAR LUNDH This article provides a short historical and personal view on the development of packet-switching, computer communications and Internet technology, from its inception around 1969 until the full- fledged Internet became operational in 1983. In the early 1990s, the internet backbone at that time, the National Science Foundation network – NSFNET, was opened up for commercial purposes. At that time there were already several operators providing commercial services outside the internet. This presentation is based on the authors’ participation during parts of the development and on literature Paal Spilling is studies. This provides a setting in which the Norwegian participation and contribution may be better professor at the understood. Department of informatics, Univ. of Oslo and University 1 Introduction Defense (DOD). It is uncertain when DoD really Graduate Center The concept of computer networking started in the standardized on the entire protocol suite built around at Kjeller early 1960s at the Massachusetts Institute of Technol- TCP/IP, since for several years they also followed the ogy (MIT) with the vision of an “On-line community ISO standards track. of people”. Computers should facilitate communica- tions between people and be a support for human The development of the Internet, as we know it today, decision processes. In 1961 an MIT PhD thesis by went through three phases. The first one was the Leonard Kleinrock introduced some of the earliest research and development phase, sponsored and theoretical results on queuing networks. Around the supervised by ARPA. Research groups that actively same time a series of Rand Corporation papers, contributed to the development process and many mainly authored by Paul Baran, sketched a hypotheti- who explored its potential for resource sharing were cal system for communication while under attack that permitted to connect to and use the network.