Power Struggles: Revisiting the RISC Vs. CISC Debate On

Total Page:16

File Type:pdf, Size:1020Kb

Power Struggles: Revisiting the RISC Vs. CISC Debate On Appears in the 19th IEEE International Symposium on High Performance Computer Architecture (HPCA 2013) 1 Power Struggles: Revisiting the RISC vs. CISC Debate on Contemporary ARM and x86 Architectures Emily Blem, Jaikrishnan Menon, and Karthikeyan Sankaralingam University of Wisconsin - Madison fblem,menon,[email protected] Abstract design complexity were previously the primary constraints, en- ergy and power constraints now dominate. Third, from a com- RISC vs. CISC wars raged in the 1980s when chip area and mercial standpoint, both ISAs are appearing in new markets: processor design complexity were the primary constraints and ARM-based servers for energy efficiency and x86-based mo- desktops and servers exclusively dominated the computing land- bile and low power devices for higher performance. Thus, the scape. Today, energy and power are the primary design con- question of whether ISA plays a role in performance, power, or straints and the computing landscape is significantly different: energy efficiency is once again important. growth in tablets and smartphones running ARM (a RISC ISA) is surpassing that of desktops and laptops running x86 (a CISC Related Work: Early ISA studies are instructive, but miss ISA). Further, the traditionally low-power ARM ISA is enter- key changes in today’s microprocessors and design constraints ing the high-performance server market, while the traditionally that have shifted the ISA’s effect. We review previous com- high-performance x86 ISA is entering the mobile low-power de- parisons in chronological order, and observe that all prior com- vice market. Thus, the question of whether ISA plays an intrinsic prehensive ISA studies considering commercially implemented role in performance or energy efficiency is becoming important, processors focused exclusively on performance. and we seek to answer this question through a detailed mea- Bhandarkar and Clark compared the MIPS and VAX ISA by surement based study on real hardware running real applica- comparing the M/2000 to the Digital VAX 8700 implementa- tions. We analyze measurements on the ARM Cortex-A8 and tions [7] and concluded: “RISC as exemplified by MIPS pro- Cortex-A9 and Intel Atom and Sandybridge i7 microprocessors vides a significant processor performance advantage.” In an- over workloads spanning mobile, desktop, and server comput- other study in 1995, Bhandarkar compared the Pentium-Pro to ing. Our methodical investigation demonstrates the role of ISA the Alpha 21164 [6], again focused exclusively on performance in modern microprocessors’ performance and energy efficiency. and concluded: “...the Pentium Pro processor achieves 80% to We find that ARM and x86 processors are simply engineering 90% of the performance of the Alpha 21164... It uses an aggres- design points optimized for different levels of performance, and sive out-of-order design to overcome the instruction set level there is nothing fundamentally more energy efficient in one ISA limitations of a CISC architecture. On floating-point intensive class or the other. The ISA being RISC or CISC seems irrelevant. benchmarks, the Alpha 21164 does achieve over twice the per- formance of the Pentium Pro processor.” Consensus had grown that RISC and CISC ISAs had fundamental differences that led 1. Introduction to performance gaps that required aggressive microarchitecture optimization for CISC which only partially bridged the gap. The question of ISA design and specifically RISC vs. CISC Isen et al. [22] compared the performance of Power5+ to Intel ISA was an important concern in the 1980s and 1990s when Woodcrest considering SPEC benchmarks and concluded x86 chip area and processor design complexity were the primary matches the POWER ISA. The consensus was that “with ag- constraints [24, 12, 17, 7]. It is questionable if the debate was gressive microarchitectural techniques for ILP, CISC and RISC settled in terms of technical issues. Regardless, both flourished ISAs can be implemented to yield very similar performance.” commercially through the 1980s and 1990s. In the past decade, Many informal studies in recent years claim the x86’s the ARM ISA (a RISC ISA) has dominated mobile and low- “crufty” CISC ISA incurs many power overheads and attribute power embedded computing domains and the x86 ISA (a CISC the ARM processor’s power efficiency to the ISA [1, 2]. These ISA) has dominated desktops and servers. studies suggest that the microarchitecture optimizations from the Recent trends raise the question of the role of the ISA and past decades have led to RISC and CISC cores with similar per- make a case for revisiting the RISC vs. CISC question. First, the formance, but the power overheads of CISC are intractable. computing landscape has quite radically changed from when the In light of the prior ISA studies from decades past, the signif- previous studies were done. Rather than being exclusively desk- icantly modified computing landscape, and the seemingly vastly tops and servers, today’s computing landscape is significantly different power consumption of ARM implementations (1-2 W) shaped by smartphones and tablets. Second, while area and chip to x86 implementations (5 - 36 W), we feel there is need to Appears in the 19th IEEE International Symposium on High Performance Computer Architecture (HPCA 2013) 2 Perf interface to Hw performance counters Cortex A8 (RISC) Cortex A9 RISC vs. CISC Beagle Board Panda Board WattsUp Simulated ARM Power appears instruction mix Measures Power Mobile Desktop Server irrelevant CoreMark SPEC CPU2006 Lighttpd 2 WebKit CLucene 10 INT Binary Instrumentation Atom N450 (CISC) i7-Core2700 10 FP Database kernels Performance Atom Dev Board SandyBridge for x86 instruction info Four Platforms 26 Workloads Over 200 Measures Over 20,000 Data Points + Careful Analysis Figure 1. Summary of Approach. revisit this debate with a rigorous methodology. Specifically, Key Findings: The main findings from our study are: considering the dominance of ARM and x86 and the multi- ◦ Large performance gaps exist across the implementations, al- pronged importance of the metrics of power, energy, and perfor- though average cycle count gaps are ≤ 2:5×. mance, we need to compare ARM to x86 on those three metrics. ◦ Instruction count and mix are ISA-independent to first order. Macro-op cracking and decades of research in high-performance ◦ Performance differences are generated by ISA-independent microarchitecture techniques and compiler optimizations seem- microarchitecture differences. ingly help overcome x86’s performance and code-effectiveness ◦ The energy consumption is again ISA-independent. bottlenecks, but these approaches are not free. The crux of our ◦ ISA differences have implementation implications, but mod- analysis is the following: After decades of research to mitigate ern microarchitecture techniques render them moot; one CISC performance overheads, do the new approaches introduce ISA is not fundamentally more efficient. fundamental energy inefficiencies? ◦ ARM and x86 implementations are simply design points op- Challenges: Any ISA study faces challenges in separating timized for different performance levels. out the multiple implementation factors that are orthogonal to Implications: Our findings confirm known conventional (or the ISA from the factors that are influenced or driven by the suspected) wisdom, and add value by quantification. Our results ISA. ISA-independent factors include chip process technology imply that microarchitectural effects dominate performance, node, device optimization (high-performance, low-power, or power, and energy impacts. The overall implication of this work low-standby power transistors), memory bandwidth, I/O device is that the ISA being RISC or CISC is largely irrelevant for to- effects, operating system, compiler, and workloads executed. day’s mature microprocessor design world. These issues are exacerbated when considering energy measure- Paper organization: Section 2 describes a framework we de- ments/analysis, since chips implementing an ISA sit on boards velop to understand the ISA’s impacts on performance, power, and separating out chip energy from board energy presents addi- and energy. Section 3 describes our overall infrastructure and tional challenges. Further, some microarchitecture features may rationale for the platforms for this study and our limitations, be required by the ISA, while others may be dictated by perfor- Section 4 discusses our methodology, and Section 5 presents the mance and application domain targets that are ISA-independent. analysis of our data. Section 6 concludes. To separate out the implementation and ISA effects, we con- 2. Framing Key Impacts of the ISA sider multiple chips for each ISA with similar microarchitec- tures, use established technology models to separate out the In this section, we present an intellectual framework in technology impact, use the same operating system and com- which to examine the impact of the ISA—assuming a von Neu- piler front-end on all chips, and construct workloads that do not mann model—on performance, power, and energy. We con- rely significantly on the operating system. Figure 1 presents an sider the three key textbook ISA features that are central to the overview of our approach: the four platforms, 26 workloads, RISC/CISC debate: format, operations, and operands. We do and set of measures collected for each workload on each plat- not consider other textbook features, data types and control, as form. We use multiple implementations of the ISAs and specifi- they are orthogonal to
Recommended publications
  • Robust Architectural Support for Transactional Memory in the Power Architecture
    Robust Architectural Support for Transactional Memory in the Power Architecture Harold W. Cain∗ Brad Frey Derek Williams IBM Research IBM STG IBM STG Yorktown Heights, NY, USA Austin, TX, USA Austin, TX, USA [email protected] [email protected] [email protected] Maged M. Michael Cathy May Hung Le IBM Research IBM Research (retired) IBM STG Yorktown Heights, NY, USA Yorktown Heights, NY, USA Austin, TX, USA [email protected] [email protected] [email protected] ABSTRACT in current p795 systems, with 8 TB of DRAM), as well as On the twentieth anniversary of the original publication [10], strengths in RAS that differentiate it in the market, adding following ten years of intense activity in the research lit- TM must not compromise any of these virtues. A robust erature, hardware support for transactional memory (TM) system is one that is sturdy in construction, a trait that has finally become a commercial reality, with HTM-enabled does not usually come to mind in respect to HTM systems. chips currently or soon-to-be available from many hardware We structured TM to work in harmony with features that vendors. In this paper we describe architectural support for support the architecture's scalability. Our goal has been to TM provide a comprehensive programming environment includ- TM added to a future version of the Power ISA . Two im- ing support for simple system calls and debug aids, while peratives drove the development: the desire to complement providing a robust (in the sense of "no surprises") execu- our weakly-consistent memory model with a more friendly tion environment with reasonably consistent performance interface to simplify the development and porting of multi- and without unexpected transaction failures.2 TM must be threaded applications, and the need for robustness beyond usable throughout the system stack: in hypervisors, oper- that of some early implementations.
    [Show full text]
  • Modelling the Armv8 Architecture, Operationally: Concurrency and ISA
    Modelling the ARMv8 Architecture, Operationally: Concurrency and ISA Shaked Flur1 Kathryn E. Gray1 Christopher Pulte1 Susmit Sarkar2 Ali Sezgin1 Luc Maranget3 Will Deacon4 Peter Sewell1 1 University of Cambridge, UK 2 University of St Andrews, UK 3 INRIA, France 4 ARM Ltd., UK [email protected] [email protected] [email protected] [email protected] Abstract Keywords Relaxed Memory Models, semantics, ISA In this paper we develop semantics for key aspects of the ARMv8 multiprocessor architecture: the concurrency model and much of the 64-bit application-level instruction set (ISA). Our goal is to 1. Introduction clarify what the range of architecturally allowable behaviour is, and The ARM architecture is the specification of a wide range of pro- thereby to support future work on formal verification, analysis, and cessors: cores designed by ARM that are integrated into devices testing of concurrent ARM software and hardware. produced by many other vendors, and cores designed ab initio by Establishing such models with high confidence is intrinsically ARM architecture partners, such as Nvidia and Qualcomm. The difficult: it involves capturing the vendor’s architectural intent, as- architecture defines the properties on which software can rely on, pects of which (especially for concurrency) have not previously identifying an envelope of behaviour that all these processors are been precisely defined. We therefore first develop a concurrency supposed to conform to. It is thus a central interface in the industry, model with a microarchitectural flavour, abstracting from many between those hardware vendors and software developers. It is also hardware implementation concerns but still close to hardware- a desirable target for software verification and analysis: software designer intuition.
    [Show full text]
  • Computer Architectures an Overview
    Computer Architectures An Overview PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 25 Feb 2012 22:35:32 UTC Contents Articles Microarchitecture 1 x86 7 PowerPC 23 IBM POWER 33 MIPS architecture 39 SPARC 57 ARM architecture 65 DEC Alpha 80 AlphaStation 92 AlphaServer 95 Very long instruction word 103 Instruction-level parallelism 107 Explicitly parallel instruction computing 108 References Article Sources and Contributors 111 Image Sources, Licenses and Contributors 113 Article Licenses License 114 Microarchitecture 1 Microarchitecture In computer engineering, microarchitecture (sometimes abbreviated to µarch or uarch), also called computer organization, is the way a given instruction set architecture (ISA) is implemented on a processor. A given ISA may be implemented with different microarchitectures.[1] Implementations might vary due to different goals of a given design or due to shifts in technology.[2] Computer architecture is the combination of microarchitecture and instruction set design. Relation to instruction set architecture The ISA is roughly the same as the programming model of a processor as seen by an assembly language programmer or compiler writer. The ISA includes the execution model, processor registers, address and data formats among other things. The Intel Core microarchitecture microarchitecture includes the constituent parts of the processor and how these interconnect and interoperate to implement the ISA. The microarchitecture of a machine is usually represented as (more or less detailed) diagrams that describe the interconnections of the various microarchitectural elements of the machine, which may be everything from single gates and registers, to complete arithmetic logic units (ALU)s and even larger elements.
    [Show full text]
  • Outline What Makes a Good ISA? Programmability Implementability
    Outline What Makes a Good ISA? • Instruction Sets in General • Programmability • MIPS Assembly Programming • Easy to express programs efficiently? • Other Instruction Sets • Implementability • Goals of ISA Design • Easy to design high-performance implementations (i.e., microarchitectures)? • RISC vs. CISC • Intel x86 (IA-32) • Compatibility • Easy to maintain programmability as languages and programs evolve? • Easy to maintain implementability as technology evolves? © 2012 Daniel J. Sorin 66 © 2012 Daniel J. Sorin 67 from Roth and Lebeck from Roth and Lebeck Programmability Implementability • Easy to express programs efficiently? • Every ISA can be implemented • For whom? • But not every ISA can be implemented well • Human • Bad ISA bad microarchitecture (slow, power-hungry, etc.) • Want high-level coarse-grain instructions • As similar to HLL as possible • We’d like to use some of these high-performance • This is the way ISAs were pre-1985 implementation techniques • Compilers were terrible, most code was hand-assembled • Pipelining, parallel execution, out-of-order execution • Compiler • We’ll discuss these later in the semester • Want low-level fine-grain instructions • Compiler can’t tell if two high-level idioms match exactly or not • Certain ISA features make these difficult • This is the way most post-1985 ISAs are • Variable length instructions • Optimizing compilers generate much better code than humans • Implicit state (e.g., condition codes) • ICQ: Why are compilers better than humans? • Wide variety of instruction formats © 2012 Daniel J. Sorin 68 © 2012 Daniel J. Sorin 69 from Roth and Lebeck from Roth and Lebeck Compatibility Compatibility in the Age of VMs • Few people buy new hardware … if it means they have to • Virtual machine (VM) : piece of software that emulates buy new software, too behavior of hardware platform • Intel was the first company to realize this • Examples: VMWare, Xen, Simics • ISA must stay stable, no matter what (microarch.
    [Show full text]
  • Appendix K Survey of Instruction Set Architectures
    K.1 Introduction K-2 K.2 A Survey of RISC Architectures for Desktop, Server, and Embedded Computers K-3 K.3 The Intel 80x86 K-30 K.4 The VAX Architecture K-50 K.5 The IBM 360/370 Architecture for Mainframe Computers K-69 K.6 Historical Perspective and References K-75 K Survey of Instruction Set Architectures RISC: any computer announced after 1985. Steven Przybylski A Designer of the Stanford MIPS K-2 ■ Appendix K Survey of Instruction Set Architectures K.1 Introduction This appendix covers 10 instruction set architectures, some of which remain a vital part of the IT industry and some of which have retired to greener pastures. We keep them all in part to show the changes in fashion of instruction set architecture over time. We start with eight RISC architectures, using RISC V as our basis for compar- ison. There are billions of dollars of computers shipped each year for ARM (includ- ing Thumb-2), MIPS (including microMIPS), Power, and SPARC. ARM dominates in both the PMD (including both smart phones and tablets) and the embedded markets. The 80x86 remains the highest dollar-volume ISA, dominating the desktop and the much of the server market. The 80x86 did not get traction in either the embed- ded or PMD markets, and has started to lose ground in the server market. It has been extended more than any other ISA in this book, and there are no plans to stop it soon. Now that it has made the transition to 64-bit addressing, we expect this architecture to be around, although it may play a smaller role in the future then it did in the past 30 years.
    [Show full text]
  • POWER® Instruction Set Architecture(ISA): Openpower Profile Revision 1.0.0 (2016-02-17) Copyright © 2016 Openpower Foundation
    www.openpowerfoundation.org POWER® Instruction Set February 17, 2016 Revision 1.0.0 Architecture(ISA) POWER® Instruction Set Architecture(ISA): OpenPOWER Profile Revision 1.0.0 (2016-02-17) Copyright © 2016 OpenPOWER Foundation All capitalized terms in the following text have the meanings assigned to them in the OpenPOWER Intellectual Property Rights Poli- cy (the "OpenPOWER IPR Policy"). The full Policy may be found at the OpenPOWER website or are available upon request. This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise ex- plain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. Howev- er, this document itself may not be modified in any way, including by removing the copyright notice or references to OpenPOWER, except as needed for the purpose of developing any document or deliverable produced by an OpenPOWER Work Group (in which case the rules applicable to copyrights, as set forth in the OpenPOWER IPR Policy, must be followed) or as required to translate it into languages other than English. The limited permissions granted above are perpetual and will not be revoked by OpenPOWER or its successors or assigns. This document and the information contained herein is provided on an "AS IS" basis AND TO THE MAXIMUM EXTENT PERMIT- TED BY APPLICABLE LAW, THE OpenPOWER Foundation AS WELL AS THE AUTHORS AND DEVELOPERS OF THIS STAN- DARDS FINAL DELIVERABLE OR OTHER DOCUMENT HEREBY DISCLAIM ALL OTHER WARRANTIES AND CONDITIONS, EITHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES, DUTIES OR CONDITIONS OF MERCHANTABILITY, OF FITNESS FOR A PARTICULAR PURPOSE, OF ACCURACY OR COMPLETENESS OF RESPONSES, OF RESULTS, OF WORKMANLIKE EFFORT, OF LACK OF VIRUSES, OF LACK OF NEGLIGENCE OR NON- INFRINGEMENT.
    [Show full text]
  • The Design of Scalar AES Instruction Set Extensions for RISC-V
    The design of scalar AES Instruction Set Extensions for RISC-V Ben Marshall1, G. Richard Newell2, Dan Page1, Markku-Juhani O. Saarinen3 and Claire Wolf4 1 Department of Computer Science, University of Bristol {ben.marshall,daniel.page}@bristol.ac.uk 2 Microchip Technology Inc., USA [email protected] 3 PQShield, UK [email protected] 4 Symbiotic EDA [email protected] Abstract. Secure, efficient execution of AES is an essential requirement on most computing platforms. Dedicated Instruction Set Extensions (ISEs) are often included for this purpose. RISC-V is a (relatively) new ISA that lacks such a standardised ISE. We survey the state-of-the-art industrial and academic ISEs for AES, implement and evaluate five different ISEs, one of which is novel. We recommend separate ISEs for 32 and 64-bit base architectures, with measured performance improvements for an AES-128 block encryption of 4× and 10× with a hardware cost of 1.1K and 8.2K gates respectivley, when compared to a software-only implementation based on use of T-tables. We also explore how the proposed standard bit-manipulation extension to RISC-V can be harnessed for efficient implementation of AES-GCM. Our work supports the ongoing RISC-V cryptography extension standardisation process. Keywords: ISE, AES, RISC-V 1 Introduction Implementing the Advanced Encryption Standard (AES). Compared to more general workloads, cryptographic algorithms like AES present a significant implementation chal- lenge. They involve computationally intensive and specialised functionality, are used in a wide range of contexts, and form a central target in a complex attack surface. The demand for efficiency (however measured) is an example of this challenge in two ways.
    [Show full text]
  • Altivec Technology Programming Environments Manual for Power ISA Processors
    AltiVec Technology Programming Environments Manual for Power ISA Processors ALTIVECPOWERISAPEM Rev 0 06/2014 How to Reach Us: Information in this document is provided solely to enable system and software Home Page: implementers to use Freescale products. There are no express or implied copyright freescale.com licenses granted hereunder to design or fabricate any integrated circuits based on the Web Support: information in this document. freescale.com/support Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer’s technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior, ColdFire, C-Ware, Energy Efficient Solutions logo, Kinetis, mobileGT, PowerQUICC, Processor Expert, QorIQ, Qorivva, StarCore, Symphony, and VortiQa are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast, BeeKit, BeeStack, ColdFire+, CoreNet, Flexis, MagniV, MXC, Platform in a Package, QorIQ Qonverge, QUICC Engine, Ready Play, SafeAssure, SMARTMOS, TurboLink, Vybrid, and Xtrinsic are trademarks of Freescale Semiconductor, Inc.
    [Show full text]
  • Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8
    Front cover Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8 Peter Bergner Bernard King Smith Brian Hall Julian Wang Alon Shalev Housfater Suresh Warrier Madhusudanan Kandasamy David Wendt Tulio Magno Alex Mericas Steve Munroe Mauricio Oliveira Bill Schmidt Will Schmidt Redbooks International Technical Support Organization Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8 August 2015 SG24-8171-01 Note: Before using this information and the product it supports, read the information in “Notices” on page ix. Second Edition (August 2015) This edition pertains to IBM Power Systems servers based on IBM Power Systems processor-based technology, including but not limited to IBM POWER8 processor-based systems. Specific software levels and firmware levels that are used are noted throughout the text. © Copyright International Business Machines Corporation 2014, 2015. All rights reserved. Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Notices . ix Trademarks . .x IBM Redbooks promotions . xi Preface . xiii Authors. xiii Now you can become a published author, too! . xvii Comments welcome. xvii Stay connected to IBM Redbooks . xvii Summary of changes. xix August 2015, Second Edition. xix Chapter 1. Optimization and tuning on IBM POWER8 processor-based systems . 1 1.1 Introduction . 2 1.2 Outline of this guide . 2 1.3 Conventions that are used in this guide . 5 1.4 Background . 5 1.5 Optimizing performance on POWER8 processor-based systems. 6 1.5.1 Lightweight tuning and optimization guidelines. 7 1.5.2 Deployment guidelines .
    [Show full text]
  • Xilinx Logicore IP Virtex-5 APU Floating-Point Unit (V1.01A), Data Sheet
    LogiCORE IP Virtex-5 APU Floating-Point Unit (v1.01a) DS693 March 1, 2011 Product Specification Introduction LogiCORE IP Facts Table The Virtex®-5 Auxiliary Processor Unit (APU) Core Specifics Floating-Point Unit is an optimized FPU designed for Supported Virtex-5 the PowerPC® 440 embedded microprocessor of the Device Family Virtex-5 FXT FPGA family. The FPU implementation Supported User APU Interfaces provides support for IEEE-754 floating-point arithmetic Resources operations in single or double precision. Resources LUT-Reg DSP Blocks Block The FPU is not Power ISA compliant and does not Used Pairs RAMs support every instruction defined by the PowerPC Single 2620 3 0 processor instruction set architecture. The Double 4950 13 0 double-precision FPU configuration will support any -1 (high speed) 200 MHz compiler that allows graphics instructions (fsel, fres and -1 (low latency) 140 MHz frsqrte) to be disabled, which makes it compatible with Clock Speed -2 (high speed) 225 MHz all compilers and operating systems that currently -2 (low latency) 160 MHz support the Virtex-5 FXT family. Provided with Core The FPU is tightly coupled to the PowerPC processor Documentation Product Specification core with the APU interface. Software applications can Design Files VHDL use native PowerPC processor floating-point instructions to achieve typical speedups of 6x over Example Design Not Provided software emulation. Test Bench Not Provided Constraints File Automatically generated UCF Simulation Features Model VHDL • Compatible with the IEEE-754 standard for single- Tested Design Tools and double-precision floating-point arithmetic, Design Entry 13.1 EDK with minor and documented exceptions Tools • Decodes and executes standard PowerPC Simulation ModelSim PE/SE 6.6c or higher processor floating-point instructions Synthesis Tools XST • Optimized for 2:1 and 3:1 APU:CPU clock ratios, Support allowing PowerPC processor to operate at Provided by Xilinx, Inc.
    [Show full text]
  • ECE 152 / 496 Introduction to Computer Architecture Instruction Set Architecture (ISA) Benjamin C
    ECE 152 / 496 Introduction to Computer Architecture Instruction Set Architecture (ISA) Benjamin C. Lee Duke University Slides from Daniel Sorin (Duke) and are derived from work by Amir Roth (Penn) and Alvy Lebeck (Duke) Spring 2013 © 2012 Daniel J. Sorin from Roth and Lebeck Instruction Set Architecture (ISA) Application • ISAs in General OS • Using MIPS as primary example Compiler Firmware • MIPS Assembly Programming CPU I/O • Other ISAs Memory Digital Circuits Gates & Transistors © 2012 Daniel J. Sorin 2 from Roth and Lebeck Readings • Patterson and Hennessy • Chapter 2 • Read this chapter as if you’d have to teach it • Appendix A (reference for MIPS instructions and SPIM) • Read as much of this chapter as you feel you need © 2012 Daniel J. Sorin 3 from Roth and Lebeck What Is an ISA? • ISA • The “contract” between software and hardware • If software does X, hardware promises to do Y • Functional definition of operations, modes, and storage locations supported by hardware • Precise description of how software can invoke and access them • Strictly speaking, ISA is the architecture, i.e., the interface between the hardware and the software • Less strictly speaking, when people talk about architecture, they’re also talking about how the the architecture is implemented © 2012 Daniel J. Sorin 4 from Roth and Lebeck How Would You Design an ISA? • What kind of interface should the hardware present to the software? • Types of instructions? • Instruction representation? • How do we get from instruction 1 to 2 (or to 7 instead)? • Software’s view of storage? Where do variables live? • Does the hardware help to support function/method calls? If so, how? • Should the hardware support other features that are specific to certain HLLs (e.g., garbage collection for Java)? © 2012 Daniel J.
    [Show full text]
  • Assembler Language Reference
    AIX Version 7.1 Assembler Language Reference IBM Note Before using this information and the product it supports, read the information in “Notices” on page 635 . This edition applies to AIX Version 7.1 and to all subsequent releases and modifications until otherwise indicated in new editions. © Copyright International Business Machines Corporation 2010, 2018. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents About this document.............................................................................................xi Highlighting..................................................................................................................................................xi Case sensitivity in AIX................................................................................................................................. xi ISO 9000......................................................................................................................................................xi Assembler language reference...............................................................................1 What's new...................................................................................................................................................1 Assembler overview.....................................................................................................................................1 Features of the AIX® assembler............................................................................................................
    [Show full text]