Principle of Scalar Electrodynamics Phenomena Proof and Theoretical Research

Total Page:16

File Type:pdf, Size:1020Kb

Principle of Scalar Electrodynamics Phenomena Proof and Theoretical Research Journal of Energy and Power Engineering 12 (2018) 408-417 doi: 10.17265/1934-8975/2018.08.005 D DAVID PUBLISHING Principle of Scalar Electrodynamics Phenomena Proof and Theoretical Research Bahman Zohuri Electrical and Computer Engineering Department, University of New Mexico, Albuquerque, New Mexico 87131, USA Abstract: There exist a lot of controversial issues around the subject of SW (Scalar Waves) and the purpose of this white paper is to take an innovative theoretical approach to prove and backup up existence of such phenomena. We basically define this wave as a SLW (Scalar Longitudinal Wave), whose existence derives from the MCE (More Complete Electrodynamic) theory aspect of Maxwell’s classical electrodynamic equations. MCE falls into the QED (Quantum Electrodynamic) aspect of the Maxwell’s equations, in particular out of his four famous classical equations, our interest focuses on the one that is known to us as Faraday’s Law of the Maxwell’s Equation set. Key words: Scalar wave, more complete Maxwell’s equation, longitudinal wave, quantum electrodynamic, lagrangian and hamiltonian relationship. 1. Introduction Of the above two waves, the SLW wave is the matter of interest and it is the subject of this white paper. From a classical physics point of view, typically there are three kinds of waves: 2. Description of Transverse and Longitudinal (1) Mechanical waves (i.e. wave on string); Waves G G (2) EM (Electromagnetic) waves (i.e. E and B A wave is defined as a disturbance which travels fields from Maxwell’s Equations to deduce the Wave through a particular medium. The medium is a material Equations, where these waves carry energy from one through which a wave travels from one location to place to another); another location. We can take as an example a slinky (3) Quantum mechanical waves (i.e. using wave which can be stretched from one end to the other Schrödinger’s Equation to study particle movement). and comes to a static condition. This static condition is Note that a Soliton Wave is an exceptional case and called its neutral condition or equilibrium state. should be addressed separately, since this wave falls In the slinky coil, the particles move up and down into a different category than the three types defined and then come into their equilibrium state. This above. generates a disturbance in the coil which moves from The second type wave in the above list (i.e. EM one end to the other. This is the movement of a slinky Waves) is the subject of our interest, which is G pulse. This is a single disturbance in a medium from consistent with the electric field E and the magnetic G one location to another. If it is done continuously and in field B . The EM Wave itself divides into two a periodical manner, then it is called a wave. These sub-categories as: disturbances are also called energy transport waves. (A) Transverse waves; They are found in different shapes, showing different (B) Longitudinal Pressure Waves, also known as behaviors, and characteristic properties. They are SLW (Scalar Longitudinal Waves). classified mainly into two types that are longitudinal and transverse. Here we are discussing the longitudinal Corresponding author: Bahman Zohuri, Ph.D., associate professor, research fields: electromagnetic and plasma physics. waves, their properties and examples. The movement Principle of Scalar Electrodynamics Phenomena Proof and Theoretical Research 409 of wave is parallel to direction of travel of the particles direction of wave propagation. Sound waves [and in these waves. Primary-Waves or (P-Waves) in general] are longitudinal waves. A wave motion in which the 2.1 Transverse Waves particles of the medium oscillate about their mean For transverse waves the displacement of the positions in the direction of propagation of the wave, is medium is perpendicular to the direction of called a longitudinal wave. propagation of the wave. A ripple on a pond and a wave 3. What Are SLWs? on a string are easily visualized transverse waves (see Fig. 1). SLWs are conceived as longitudinal waves, similar Transverse waves cannot propagate in a gas or a to sound waves. Unlike the transversal waves of liquid because there is no mechanism for driving electromagnetism, which move up and down motion perpendicular to the direction of propagation of perpendicular to the direction of propagation, the wave. In summary, a transverse wave is a wave in longitudinal waves vibrate in line with the direction of which the oscillation is perpendicular to the direction propagation. Transversal waves can be, observed in of wave propagation. EM waves (and water ripples: the ripples move up and down as the Secondary-Waves (or S-Waves or Shear waves overall waves move outward, such that there are two sometimes called an Elastic S-Waves) in general are actions: one moving up and down, and the other transverse waves. propagating in a specific direction outward. Technically speaking, scalar waves have magnitude 2.2 Longitudinal Waves but no direction, since they are, imagined to be the In longitudinal waves the displacement of the result of two EM waves that are 180 degrees out of medium is parallel to the propagation of the wave. A phase with one another, which leads to both signals wave in a “slinky” is a good visualization. Sound being canceled out. This results in a kind of “pressure waves in air are longitudinal waves (see Fig. 2). wave”. Therefore, a longitudinal wave is one in which the Mathematical physicist James Clerk Maxwell, in oscillation is in the direction of, or opposite to the his original mathematical equations concerning Fig. 1 Depiction of a transverse wave. Fig. 2 Depiction of a longitudinal wave. 410 Principle of Scalar Electrodynamics Phenomena Proof and Theoretical Research electromagnetism, established the theoretical existence by Eq. (1) for the total EM energy flow. of scalar waves. After his death, however, later Therefore, based on above suggestion, the scalar G physicists assumed these equations were meaningless, wave could be accompanied by a vector potential A . G G since scalar waves had not been observed, and they E , and yet B remain zero in the far field. were not repeatedly verified by the scientific From EM theory, one can write the following community at large. relationship: G Vibrational, or subtle energetic research, however, ⎧ ⎪ GG1 ∂A has helped advance our understanding of scalar waves. ⎪E =-∇φ - ⎨ ct∂ (2) One important discovery states that there are many ⎪ GGG ⎪BA=×∇ different types of scalar waves, not just those of the EM ⎩⎪ variety. For example, there are vital scalar waves In this case φ in Eq. (2) is the scalar (electric) G (corresponding with the vital or “Qi” body), emotional potential and A is the magnetic vector potential. The scalar waves, mental scalar waves, causal scalar waves, Maxwell’s equations, then predict the following and so forth. In essence, as far as we are aware, all mathematical relations [1]: “subtle” energies are, made up of various types of 1 ∂2φ ∇−2φ = 0 (Scalar Potential Waves) (3) scalar waves. ct22∂ G Some general properties of scalar waves (of the G 1 ∂2A ∇−2A = 0 (Vector Potential Waves) (4) beneficial kind) include: ct22∂ y Seem to travel faster than the speed of light; A solution appears to exist for the special case of G G G y Seem to transcend space and time; E = 0 , B = 0 , and ∇×=A 0 , for a new wave y Cause the molecular structure of water to become satisfying the following relations. G G ⎧ coherently reordered; ⎪A = ∇S ⎪ y Positively increase immune function in mammals; ⎨ 1 ∂S (5) ⎪φ = − y Are involved in the formation process in nature. ⎩⎪ ct∂ It has been suggested that the scalar wave, as it was In Eq. (5), S then satisfies the following understood by some physicists and engineers in the relationship: field, is not an EM (electromagnetic) wave. An EM 1 ∂2S G G ∇−2S (6) wave has both Electric ( E ) fields and Magnetic (B ) ct22∂ fields and power flow in EM waves is by means of the Note that in Eq. (6) the quantity c represents the Poynting vector, as Eq. (1) written below: speed of light. G GG SEB=× Watts/m2 (1) Mathematically S is a “Potential” with a wave The energy per second crossing a unit area whose equation, one that suggests propagation of this wave G G G normal is pointed in the direction of S is the energy even through EB==0 and the Poynting theorem in the EM wave. indicates no EM power flow. G A scalar wave has no time varying B field (In From the above analyses, the suggestion is that there G some cases, it also has no E field). Thus, it has no exists a solution to Maxwell’s Equations involving a energy propagated in the EM wave form. It must be scalar wave with potential S that can propagate realized, however that any vector could be added that without Poynting vector EM power flow. However, the may be integrated to zero over a closed surface and question arises as to where the energy is drawn from to Poynting theorem still applies. Thus, there is some sustain such a flow of energy. Some suggesting a ambiguity in even stating the relationship that is given vector that integrates to zero over a closed surface Principle of Scalar Electrodynamics Phenomena Proof and Theoretical Research 411 might be added in the theory, as suggested above. we may even wonder whether it exists at all; and if it Another is the possibility of drawing energy from the exists, do we need exotic conditions to produce and use vacuum, assuming net energy could be drawn from it, or will it require a drastic transformation in our “free space”.
Recommended publications
  • Glossary Physics (I-Introduction)
    1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay.
    [Show full text]
  • 1 Euclidean Vector Space and Euclidean Affi Ne Space
    Profesora: Eugenia Rosado. E.T.S. Arquitectura. Euclidean Geometry1 1 Euclidean vector space and euclidean a¢ ne space 1.1 Scalar product. Euclidean vector space. Let V be a real vector space. De…nition. A scalar product is a map (denoted by a dot ) V V R ! (~u;~v) ~u ~v 7! satisfying the following axioms: 1. commutativity ~u ~v = ~v ~u 2. distributive ~u (~v + ~w) = ~u ~v + ~u ~w 3. ( ~u) ~v = (~u ~v) 4. ~u ~u 0, for every ~u V 2 5. ~u ~u = 0 if and only if ~u = 0 De…nition. Let V be a real vector space and let be a scalar product. The pair (V; ) is said to be an euclidean vector space. Example. The map de…ned as follows V V R ! (~u;~v) ~u ~v = x1x2 + y1y2 + z1z2 7! where ~u = (x1; y1; z1), ~v = (x2; y2; z2) is a scalar product as it satis…es the …ve properties of a scalar product. This scalar product is called standard (or canonical) scalar product. The pair (V; ) where is the standard scalar product is called the standard euclidean space. 1.1.1 Norm associated to a scalar product. Let (V; ) be a real euclidean vector space. De…nition. A norm associated to the scalar product is a map de…ned as follows V kk R ! ~u ~u = p~u ~u: 7! k k Profesora: Eugenia Rosado, E.T.S. Arquitectura. Euclidean Geometry.2 1.1.2 Unitary and orthogonal vectors. Orthonormal basis. Let (V; ) be a real euclidean vector space. De…nition.
    [Show full text]
  • Chapter 5 ANGULAR MOMENTUM and ROTATIONS
    Chapter 5 ANGULAR MOMENTUM AND ROTATIONS In classical mechanics the total angular momentum L~ of an isolated system about any …xed point is conserved. The existence of a conserved vector L~ associated with such a system is itself a consequence of the fact that the associated Hamiltonian (or Lagrangian) is invariant under rotations, i.e., if the coordinates and momenta of the entire system are rotated “rigidly” about some point, the energy of the system is unchanged and, more importantly, is the same function of the dynamical variables as it was before the rotation. Such a circumstance would not apply, e.g., to a system lying in an externally imposed gravitational …eld pointing in some speci…c direction. Thus, the invariance of an isolated system under rotations ultimately arises from the fact that, in the absence of external …elds of this sort, space is isotropic; it behaves the same way in all directions. Not surprisingly, therefore, in quantum mechanics the individual Cartesian com- ponents Li of the total angular momentum operator L~ of an isolated system are also constants of the motion. The di¤erent components of L~ are not, however, compatible quantum observables. Indeed, as we will see the operators representing the components of angular momentum along di¤erent directions do not generally commute with one an- other. Thus, the vector operator L~ is not, strictly speaking, an observable, since it does not have a complete basis of eigenstates (which would have to be simultaneous eigenstates of all of its non-commuting components). This lack of commutivity often seems, at …rst encounter, as somewhat of a nuisance but, in fact, it intimately re‡ects the underlying structure of the three dimensional space in which we are immersed, and has its source in the fact that rotations in three dimensions about di¤erent axes do not commute with one another.
    [Show full text]
  • Scalar-Tensor Theories of Gravity: Some Personal History
    history-st-cuba-slides 8:31 May 27, 2008 1 SCALAR-TENSOR THEORIES OF GRAVITY: SOME PERSONAL HISTORY Cuba meeting in Mexico 2008 Remembering Johnny Wheeler (JAW), 1911-2008 and Bob Dicke, 1916-1997 We all recall Johnny as one of the most prominent and productive leaders of relativ- ity research in the United States starting from the late 1950’s. I recall him as the man in relativity when I entered Princeton as a graduate student in 1957. One of his most recent students on the staff there at that time was Charlie Misner, who taught a really new, interesting, and, to me, exciting type of relativity class based on then “modern mathematical techniques involving topology, bundle theory, differential forms, etc. Cer- tainly Misner had been influenced by Wheeler to pursue these then cutting-edge topics and begin the re-write of relativity texts that ultimately led to the massive Gravitation or simply “Misner, Thorne, and Wheeler. As I recall (from long! ago) Wheeler was the type to encourage and mentor young people to investigate new ideas, especially mathe- matical, to develop and probe new insights into the physical universe. Wheeler himself remained, I believe, more of a “generalist, relying on experts to provide details and rigorous arguments. Certainly some of the world’s leading mathematical work was being done only a brief hallway walk away from Palmer Physical Laboratory to Fine Hall. Perhaps many are unaware that Bob Dicke had been an undergraduate student of Wheeler’s a few years earlier. It was Wheeler himself who apparently got Bob thinking about the foundations of Einstein’s gravitational theory, in particular, the ever present mysteries of inertia.
    [Show full text]
  • Integrating Electrical Machines and Antennas Via Scalar and Vector Magnetic Potentials; an Approach for Enhancing Undergraduate EM Education
    Integrating Electrical Machines and Antennas via Scalar and Vector Magnetic Potentials; an Approach for Enhancing Undergraduate EM Education Seemein Shayesteh Maryam Rahmani Lauren Christopher Maher Rizkalla Department of Electrical and Department of Electrical and Department of Electrical and Department of Electrical and Computer Engineering Computer Engineering Computer Engineering Computer Engineering Indiana University Purdue Indiana University Purdue Indiana University Purdue Indiana University Purdue University Indianapolis University Indianapolis University Indianapolis University Indianapolis Indianapolis, IN Indianapolis, IN Indianapolis, IN Indianapolis, IN [email protected] [email protected] [email protected] [email protected] Abstract—This Innovative Practice Work In Progress paper undergraduate course. In one offering the course was attached presents an approach for enhancing undergraduate with a project using COMSOL software that assisted students Electromagnetic education. with better understanding of the differential EM equations within the course. Keywords— Electromagnetic, antennas, electrical machines, undergraduate, potentials, projects, ECE II. COURSE OUTLINE I. INTRODUCTION A. Typical EM Course within an ECE Curriculum Often times, the subject of using two potential functions in A typical EM undergraduate course requires Physics magnetism, the scalar magnetic potential function, ܸ௠, and the (electricity and magnetism) and Differential equations as pre- vector magnetic potential function, ܣ (with zero current requisite
    [Show full text]
  • Basic Four-Momentum Kinematics As
    L4:1 Basic four-momentum kinematics Rindler: Ch5: sec. 25-30, 32 Last time we intruduced the contravariant 4-vector HUB, (II.6-)II.7, p142-146 +part of I.9-1.10, 154-162 vector The world is inconsistent! and the covariant 4-vector component as implicit sum over We also introduced the scalar product For a 4-vector square we have thus spacelike timelike lightlike Today we will introduce some useful 4-vectors, but rst we introduce the proper time, which is simply the time percieved in an intertial frame (i.e. time by a clock moving with observer) If the observer is at rest, then only the time component changes but all observers agree on ✁S, therefore we have for an observer at constant speed L4:2 For a general world line, corresponding to an accelerating observer, we have Using this it makes sense to de ne the 4-velocity As transforms as a contravariant 4-vector and as a scalar indeed transforms as a contravariant 4-vector, so the notation makes sense! We also introduce the 4-acceleration Let's calculate the 4-velocity: and the 4-velocity square Multiplying the 4-velocity with the mass we get the 4-momentum Note: In Rindler m is called m and Rindler's I will always mean with . which transforms as, i.e. is, a contravariant 4-vector. Remark: in some (old) literature the factor is referred to as the relativistic mass or relativistic inertial mass. L4:3 The spatial components of the 4-momentum is the relativistic 3-momentum or simply relativistic momentum and the 0-component turns out to give the energy: Remark: Taylor expanding for small v we get: rest energy nonrelativistic kinetic energy for v=0 nonrelativistic momentum For the 4-momentum square we have: As you may expect we have conservation of 4-momentum, i.e.
    [Show full text]
  • Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
    Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions.
    [Show full text]
  • Quantum Theory of Scalar Field in De Sitter Space-Time
    ANNALES DE L’I. H. P., SECTION A N. A. CHERNIKOV E. A. TAGIROV Quantum theory of scalar field in de Sitter space-time Annales de l’I. H. P., section A, tome 9, no 2 (1968), p. 109-141 <http://www.numdam.org/item?id=AIHPA_1968__9_2_109_0> © Gauthier-Villars, 1968, tous droits réservés. L’accès aux archives de la revue « Annales de l’I. H. P., section A » implique l’accord avec les conditions générales d’utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Henri Poincaré, Section A : Vol. IX, n° 2, 1968, 109 Physique théorique. Quantum theory of scalar field in de Sitter space-time N. A. CHERNIKOV E. A. TAGIROV Joint Institute for Nuclear Research, Dubna, USSR. ABSTRACT. - The quantum theory of scalar field is constructed in the de Sitter spherical world. The field equation in a Riemannian space- time is chosen in the = 0 owing to its confor- . mal invariance for m = 0. In the de Sitter world the conserved quantities are obtained which correspond to isometric and conformal transformations. The Fock representations with the cyclic vector which is invariant under isometries are shown to form an one-parametric family. They are inequi- valent for different values of the parameter. However, its single value is picked out by the requirement for motion to be quasiclassis for large values of square of space momentum.
    [Show full text]
  • Scalar Wave Transponder
    Konstantin Meyl Scalar wave transponder Field-physical basis for electrically coupled bi- directional far range transponder With the current RFID -Technology the transfer of energy takes place on a chip card by means of longitudinal wave components in close range of the transmitting antenna. Those are scalar waves, which spread towards the electrical or the magnetic field pointer. In the wave equation with reference to the Maxwell field equations, these wave components are set to zero, why only postulated model computations exist, after which the range is limited to the sixth part of the wavelength. A goal of this paper is to create, by consideration of the scalar wave components in the wave equation, the physical conditions for the development of scalar wave transponders which are operable beyond the close range. The energy is transferred with the same carrier wave as the information and not over two separated ways as with RFID systems. Besides the bi-directional signal transmission, the energy transfer in both directions is additionally possible because of the resonant coupling between transmitter and receiver. First far range transponders developed on the basis of the extended field equations are already functional as prototypes. Scalar wave transponder 3 Preface Before the introduction into the topic, the title of the book should be first explained more in detail. A "scalar wave" spreads like every wave directed, but it consists of physical particles or formations, which represent for their part scalar sizes. Therefore the name, which is avoided by some critics or is even disparaged, because of the apparent contradiction in the designation, which makes believe the wave is not directional, which does not apply however.
    [Show full text]
  • The Velocity and Momentum Four-Vectors
    Physics 171 Fall 2015 The velocity and momentum four-vectors 1. The four-velocity vector The velocity four-vector of a particle is defined by: dxµ U µ = =(γc ; γ~v ) , (1) dτ where xµ = (ct ; ~x) is the four-position vector and dτ is the differential proper time. To derive eq. (1), we must express dτ in terms of dt, where t is the time coordinate. Consider the infinitesimal invariant spacetime separation, 2 2 2 µ ν ds = −c dτ = ηµν dx dx , (2) in a convention where ηµν = diag(−1 , 1 , 1 , 1) . In eq. (2), there is an implicit sum over the repeated indices as dictated by the Einstein summation convention. Dividing by −c2 yields 3 1 c2 − v2 v2 dτ 2 = c2dt2 − dxidxi = dt2 = 1 − dt2 = γ−2dt2 , c2 c2 c2 i=1 ! X i i 2 i i where we have employed the three-velocity v = dx /dt and v ≡ i v v . In the last step we have introduced γ ≡ (1 − v2/c2)−1/2. It follows that P dτ = γ−1 dt . (3) Using eq. (3) and the definition of the three-velocity, ~v = d~x/dt, we easily obtain eq. (1). Note that the squared magnitude of the four-velocity vector, 2 µ ν 2 U ≡ ηµνU U = −c (4) is a Lorentz invariant, which is most easily evaluated in the rest frame of the particle where ~v = 0, in which case U µ = c (1 ; ~0). 2. The relativistic law of addition of velocities Let us now consider the following question.
    [Show full text]
  • Angular Momentum and Magnetic Moment
    Angular momentum and magnetic moment Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 | January 12, 2011 NUCS 342 (Lecture 1) January 12, 2011 1 / 27 2 Conservation laws 3 Scalar and vector product 4 Rotational motion 5 Magnetic moment 6 Angular momentum in quantum mechanics 7 Spin Outline 1 Scalars and vectors NUCS 342 (Lecture 1) January 12, 2011 2 / 27 3 Scalar and vector product 4 Rotational motion 5 Magnetic moment 6 Angular momentum in quantum mechanics 7 Spin Outline 1 Scalars and vectors 2 Conservation laws NUCS 342 (Lecture 1) January 12, 2011 2 / 27 4 Rotational motion 5 Magnetic moment 6 Angular momentum in quantum mechanics 7 Spin Outline 1 Scalars and vectors 2 Conservation laws 3 Scalar and vector product NUCS 342 (Lecture 1) January 12, 2011 2 / 27 5 Magnetic moment 6 Angular momentum in quantum mechanics 7 Spin Outline 1 Scalars and vectors 2 Conservation laws 3 Scalar and vector product 4 Rotational motion NUCS 342 (Lecture 1) January 12, 2011 2 / 27 6 Angular momentum in quantum mechanics 7 Spin Outline 1 Scalars and vectors 2 Conservation laws 3 Scalar and vector product 4 Rotational motion 5 Magnetic moment NUCS 342 (Lecture 1) January 12, 2011 2 / 27 7 Spin Outline 1 Scalars and vectors 2 Conservation laws 3 Scalar and vector product 4 Rotational motion 5 Magnetic moment 6 Angular momentum in quantum mechanics NUCS 342 (Lecture 1) January 12, 2011 2 / 27 Outline 1 Scalars and vectors 2 Conservation laws 3 Scalar and vector product 4 Rotational motion 5 Magnetic moment 6 Angular momentum in quantum mechanics 7 Spin NUCS 342 (Lecture 1) January 12, 2011 2 / 27 Scalars and vectors Scalars Scalars are used to describe objects which are fully characterized by their magnitude (a number and a unit).
    [Show full text]
  • Quantum Fields in Curved Spacetime
    Quantum fields in curved spacetime June 11, 2014 Abstract We review the theory of quantum fields propagating in an arbitrary, clas- sical, globally hyperbolic spacetime. Our review emphasizes the conceptual issues arising in the formulation of the theory and presents known results in a mathematically precise way. Particular attention is paid to the distribu- tional nature of quantum fields, to their local and covariant character, and to microlocal spectrum conditions satisfied by physically reasonable states. We review the Unruh and Hawking effects for free fields, as well as the be- havior of free fields in deSitter spacetime and FLRW spacetimes with an exponential phase of expansion. We review how nonlinear observables of a free field, such as the stress-energy tensor, are defined, as well as time- ordered-products. The “renormalization ambiguities” involved in the defini- tion of time-ordered products are fully characterized. Interacting fields are then perturbatively constructed. Our main focus is on the theory of a scalar field, but a brief discussion of gauge fields is included. We conclude with a brief discussion of a possible approach towards a nonperturbative formula- tion of quantum field theory in curved spacetime and some remarks on the formulation of quantum gravity. arXiv:1401.2026v2 [gr-qc] 10 Jun 2014 1Universitat¨ Leipzig, Institut fur¨ Theoretische Physik, Bruderstrasse¨ 16, D-04103 Leipzig, FRG 2Enrico Fermi Institute and Department of Physics, University of Chicago, Chicago, IL 60637, USA 1 1 The nature of Quantum Field Theory in Curved Spacetime Quantum field theory in curved spacetime (QFTCS) is the theory of quantum fields propagating in a background, classical, curved spacetime (M ;g).
    [Show full text]