Quantum Field Theory, James T Wheeler

Total Page:16

File Type:pdf, Size:1020Kb

Quantum Field Theory, James T Wheeler QUANTUM FIELD THEORY by James T. Wheeler Contents 1 From classical particles to quantum fields 3 1.1 Hamiltonian Mechanics . 3 1.1.1 Poisson brackets . 5 1.1.2 Canonical transformations . 7 1.1.3 Hamilton’s equations from the action . 9 1.1.4 Hamilton’s principal function and the Hamilton-Jacobi equation . 10 1.2 Canonical Quantization . 12 1.3 Continuum mechanics . 17 1.4 Canonical quantization of a field theory . 21 1.5 Special Relativity . 23 1.5.1 The invariant interval . 23 1.5.2 Lorentz transformations . 25 1.5.3 Lorentz invariant tensors . 29 1.5.4 Discrete Lorentz transformations . 31 1.6 Noether’s Theorem . 33 1.6.1 Example 1: Translation invariance . 35 1.6.2 Example 2: Lorentz invariance . 37 1.6.3 Symmetric stress-energy tensor (Scalar Field): . 40 1.6.4 Asymmetric stress-energy vector field . 41 2 Group theory 49 2.1 Lie algebras . 55 2.2 Spinors and the Dirac equation . 65 2.2.1 Spinors for O(3) .............................. 65 2.2.2 Spinors for the Lorentz group . 68 2.2.3 Dirac spinors and the Dirac equation . 71 2.2.4 Some further properties of the gamma matrices . 79 2.2.5 Casimir Operators . 81 3 Quantization of scalar fields 84 3.1 Functional differentiation . 84 3.1.1 Field equations as functional derivatives . 88 3.2 Quantization of the Klein-Gordon (scalar) field . 89 3.2.1 Solution for the free quantized Klein-Gordon field . 92 1 3.2.2 Calculation of the Hamiltonian operator . 96 3.2.3 Our first infinity . 99 3.2.4 States of the Klein-Gordon field . 99 3.2.5 Poincaré transformations of Klein-Gordon fields . 101 3.3 Quantization of the complex scalar field . 103 3.3.1 Solution for the free quantized complex scalar field . 105 3.4 Scalar multiplets . 109 3.5 Antiparticles . 110 3.6 Chronicity, time reversal and the Schrödinger equation . 118 4 Quantization of the Dirac field 120 4.1 Hamiltonian formulation . 120 4.2 Solution to the free classical Dirac equation . 122 4.3 The spin of spinors . 126 4.4 Quantization of the Dirac field . 130 4.4.1 Anticommutation . 134 4.4.2 The Dirac Hamiltonian . 136 4.5 Symmetries of the Dirac field . 139 4.5.1 Translations . 139 5 Gauging the Dirac action 140 5.1 The covariant derivative . 141 5.2 Gauging . 144 6 Quantizing the Maxwell field 146 6.1 Hamiltonian formulation of the Maxwell equations . 146 6.2 Handling the constraint . 150 6.3 Vacuum solution to classical E&M . 154 6.4 Quantization . 155 7 Appendices 157 7.1 Appendix A: The Casimir operators of the Poincaré group. 157 7.2 Appendix B: Completeness relation for Dirac solutions . 160 8 Changes since last time: 162 2 1 From classical particles to quantum fields First, let’s review the use of the action in classical mechanics. I’ll reproduce here a conden- sation of my notes from classical mechanics. If you’d like a copy of the full version, just ask; what’s here is more than enough for our purposes. 1.1 Hamiltonian Mechanics Perhaps the most beautiful formulation of classical mechanics, and the one which ties most closely to quantum mechanics, is the canonical formulation. In this approach, the position and velocity velocity variables of Lagrangian mechanics are replaced by the position and @L conjugate momentum, pi ≡ . It turns out that by doing this the coordinates and momenta @q_i are put on an equal footing, giving the equations of motion a much larger symmetry. To make the change of variables, we use a Legendre transformation. This may be familiar from thermodynamics, where the internal energy, Gibb’s energy, free energy and enthalpy are related to one another by making different choices of the independent variables. Thus, for example, if we begin with dU = T dS − P dV (1) where T and P are regarded as functions of S and V; we can set H = U + VP (2) and compute dH = dU + P dV + V dP (3) = T dS − P dV + P dV + V dP (4) = T dS + V dP (5) to achieve a formulation in which T and V are treated as functions of S and P: The same technique works here. We have the Lagrangian, L(qi; q_i) and wish to find a function H(qi; pi): The differential of L is N N X @L X @L dL = dq + dq_ (6) @q i @q_ i i=1 i i=1 i N N X X = p_idqi + pidq_i (7) i=1 i=1 where the second line follows by using the equations of motion and the definition of the conjugate momentum. Therefore, set N X H(qi; pi) = piq_i − L (8) i=1 3 so that N N X X dH = dpiq_i + pidq_i − dL (9) i=1 i=1 N N N N X X X X = dpiq_i + pidq_i − p_idqi − pidq_i (10) i=1 i=1 i=1 i=1 N N X X = dpiq_i − p_idqi (11) i=1 i=1 Notice that, as it happens, H is of the same form as the energy. Clearly, H is a function of the momenta. To see that we have really eliminated the dependence on velocity we may compute directly, N ! @H @ X = p q_ − L(q ; q_ ) (12) @q_ @q_ i i i i j j i=1 N X @L = p δ − (13) i ij @q_ i=1 j @L = pj − (14) @q_j = 0 (15) The equations of motion are already built into the expression above for dH: Since the differ- ential of H may always be written as N N X @H X @H dH = dq + dp (16) @q i @p i i=1 j i=1 j we can simply equate the two expressions: N N N N X X X @H X @H dH = dp q_ − p_ dq = dq + dp (17) i i i i @q i @p i i=1 i=1 i=1 i i=1 i Then, since the differentials dqi and dpi are all independent, we can equate their coefficients, @H p_i = − (18) @qi @H q_i = (19) @pj These are Hamilton’s equations. 4 1.1.1 Poisson brackets Suppose we are interested in the time evolution of some function of the coordinates, momenta and time, f(qi; pi; t): It could be any function – the area of the orbit of a particle, the period of an oscillating system, or one of the coordinates. The total time derivative of f is df X @f dqi @f dpi @f = + + (20) dt @qi dt @pi dt @t Using Hamilton’s equations we may write this as df X @f @H @f @H @f = − + (21) dt @qi @pi @pi @qi @t Define the Poisson bracket of H and f to be N X @f @H @f @H fH; fg = − (22) @q @p @p @q i=1 i i i i Then the total time derivative is given by df @f = fH; fg + (23) dt @t @f If f has no explicit time dependence, so that @t = 0; then the time derivative is given completely by the Poisson bracket: df = fH; fg (24) dt We generalize the Poisson bracket to two arbitrary functions, N X @g @f @g @f ff; gg = − (25) @q @p @p @q i=1 i i i i The importance of the Poisson bracket stems from the underlying invariance of Hamil- tonian dynamics. Just as Newton’s second law holds in any inertial frame, there is a class of canonical coordinates which preserve the form of Hamilton’s equations. One central re- sult of Hamiltonian dynamics is that any transformation that preserves certain fundamental Poisson brackets is canonical, and that such transformations preserve all Poisson brackets Since the properties we regard as physical cannot depend on our choice of coordinates, this means that essentially all truly physical properties of a system can be expressed in terms of Poisson brackets. In particular, we can write the equations of motion as Poisson bracket relations. Using the general relation above we have dq i = fH; q g (26) dt i 5 N X @qi @H @qi @H = − (27) @q @p @p @q j=1 j j j j N X @H = δ (28) ij @p j=1 j @H = (29) @pi and dp i = fH; p g (30) dt i N X @pi @H @pi @H = − (31) @q @p @p @q j=1 j j j j @H = − (32) @qi @qi Notice that since qi; pi and are all independent, and do not depend explicitly on time, = @pj @pi = 0 = @qi = @pi : @qj @t @t We list some properties of Poisson brackets. Bracketing with a constant always gives zero ff; cg = 0 (33) The Poisson bracket is linear faf1 + bf2; gg = aff1; gg + bff2; gg (34) and Leibnitz ff1f2; gg = f2ff1; gg + f1ff2; gg (35) These three properties are the defining properties of a derivation; which is the formal gen- eralization of differentiation. The action of the Poisson bracket with any given function f on the class of all functions, ff; ·} is therefore a derivation. If we take the time derivative of a bracket, we can easily show @ @f @g ff; gg = f ; gg + ff; g (36) @t @t @t The bracket is antisymmetric ff; gg = − fg; fg (37) and satisfies the Jacobi identity, ff; fg; hgg + fg; fh; fgg + fh; ff; ggg = 0 (38) 6 for all functions f; g and h: These properties are two of the three defining properties of a Lie algebra (the third defining property of a Lie algebra is that the set of objects considered, in this case the space of functions, be a finite dimensional vector space, while the space of functions is infinite dimensional).
Recommended publications
  • Glossary Physics (I-Introduction)
    1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay.
    [Show full text]
  • Minkowski Space-Time: a Glorious Non-Entity
    DRAFT: written for Petkov (ed.), The Ontology of Spacetime (in preparation) Minkowski space-time: a glorious non-entity Harvey R Brown∗ and Oliver Pooley† 16 March, 2004 Abstract It is argued that Minkowski space-time cannot serve as the deep struc- ture within a “constructive” version of the special theory of relativity, contrary to widespread opinion in the philosophical community. This paper is dedicated to the memory of Jeeva Anandan. Contents 1 Einsteinandthespace-timeexplanationofinertia 1 2 Thenatureofabsolutespace-time 3 3 The principle vs. constructive theory distinction 4 4 The explanation of length contraction 8 5 Minkowskispace-time: thecartorthehorse? 12 1 Einstein and the space-time explanation of inertia It was a source of satisfaction for Einstein that in developing the general theory of relativity (GR) he was able to eradicate what he saw as an embarrassing defect of his earlier special theory (SR): violation of the action-reaction principle. Leibniz held that a defining attribute of substances was their both acting and being acted upon. It would appear that Einstein shared this view. He wrote in 1924 that each physical object “influences and in general is influenced in turn by others.”1 It is “contrary to the mode of scientific thinking”, he wrote earlier in 1922, “to conceive of a thing. which acts itself, but which cannot be acted upon.”2 But according to Einstein the space-time continuum, in both arXiv:physics/0403088v1 [physics.hist-ph] 17 Mar 2004 Newtonian mechanics and special relativity, is such a thing. In these theories ∗Faculty of Philosophy, University of Oxford, 10 Merton Street, Oxford OX1 4JJ, U.K.; [email protected] †Oriel College, Oxford OX1 4EW, U.K.; [email protected] 1Einstein (1924, 15).
    [Show full text]
  • The Dirac-Schwinger Covariance Condition in Classical Field Theory
    Pram~na, Vol. 9, No. 2, August 1977, pp. 103-109, t~) printed in India. The Dirac-Schwinger covariance condition in classical field theory K BABU JOSEPH and M SABIR Department of Physics, Cochin University, Cochin 682 022 MS received 29 January 1977; revised 9 April 1977 Abstract. A straightforward derivation of the Dirac-Schwinger covariance condition is given within the framework of classical field theory. The crucial role of the energy continuity equation in the derivation is pointed out. The origin of higher order deri- vatives of delta function is traced to the presence of higher order derivatives of canoni- cal coordinates and momenta in the energy density functional. Keywords. Lorentz covariance; Poincar6 group; field theory; generalized mechanics. 1. Introduction It has been stated by Dirac (1962) and by Schwinger (1962, 1963a, b, c, 1964) that a sufficient condition for the relativistic covariance of a quantum field theory is the energy density commutator condition [T°°(x), r°°(x')] = (r°k(x) + r°k(x ') c3k3 (x--x') + (bk(x) + bk(x ') c9k8 (x--x') -+- (cktm(x) cktm(x ') OkOtO,3 (X--X') q- ... (1) where bk=O z fl~k and fl~--fl~k = 0mY,,kt and the energy density is that obtained by the Belinfante prescription (Belinfante 1939). For a class of theories that Schwinger calls ' local' the Dirac-Schwinger (DS) condition is satisfied in the simplest form with bk=e~,~r,, = ... = 0. Spin s (s<~l) theories belong to this class. For canonical theories in which simple canonical commutation relations hold Brown (1967) has given two new proofs of the DS condition.
    [Show full text]
  • 1 Euclidean Vector Space and Euclidean Affi Ne Space
    Profesora: Eugenia Rosado. E.T.S. Arquitectura. Euclidean Geometry1 1 Euclidean vector space and euclidean a¢ ne space 1.1 Scalar product. Euclidean vector space. Let V be a real vector space. De…nition. A scalar product is a map (denoted by a dot ) V V R ! (~u;~v) ~u ~v 7! satisfying the following axioms: 1. commutativity ~u ~v = ~v ~u 2. distributive ~u (~v + ~w) = ~u ~v + ~u ~w 3. ( ~u) ~v = (~u ~v) 4. ~u ~u 0, for every ~u V 2 5. ~u ~u = 0 if and only if ~u = 0 De…nition. Let V be a real vector space and let be a scalar product. The pair (V; ) is said to be an euclidean vector space. Example. The map de…ned as follows V V R ! (~u;~v) ~u ~v = x1x2 + y1y2 + z1z2 7! where ~u = (x1; y1; z1), ~v = (x2; y2; z2) is a scalar product as it satis…es the …ve properties of a scalar product. This scalar product is called standard (or canonical) scalar product. The pair (V; ) where is the standard scalar product is called the standard euclidean space. 1.1.1 Norm associated to a scalar product. Let (V; ) be a real euclidean vector space. De…nition. A norm associated to the scalar product is a map de…ned as follows V kk R ! ~u ~u = p~u ~u: 7! k k Profesora: Eugenia Rosado, E.T.S. Arquitectura. Euclidean Geometry.2 1.1.2 Unitary and orthogonal vectors. Orthonormal basis. Let (V; ) be a real euclidean vector space. De…nition.
    [Show full text]
  • Chapter 5 ANGULAR MOMENTUM and ROTATIONS
    Chapter 5 ANGULAR MOMENTUM AND ROTATIONS In classical mechanics the total angular momentum L~ of an isolated system about any …xed point is conserved. The existence of a conserved vector L~ associated with such a system is itself a consequence of the fact that the associated Hamiltonian (or Lagrangian) is invariant under rotations, i.e., if the coordinates and momenta of the entire system are rotated “rigidly” about some point, the energy of the system is unchanged and, more importantly, is the same function of the dynamical variables as it was before the rotation. Such a circumstance would not apply, e.g., to a system lying in an externally imposed gravitational …eld pointing in some speci…c direction. Thus, the invariance of an isolated system under rotations ultimately arises from the fact that, in the absence of external …elds of this sort, space is isotropic; it behaves the same way in all directions. Not surprisingly, therefore, in quantum mechanics the individual Cartesian com- ponents Li of the total angular momentum operator L~ of an isolated system are also constants of the motion. The di¤erent components of L~ are not, however, compatible quantum observables. Indeed, as we will see the operators representing the components of angular momentum along di¤erent directions do not generally commute with one an- other. Thus, the vector operator L~ is not, strictly speaking, an observable, since it does not have a complete basis of eigenstates (which would have to be simultaneous eigenstates of all of its non-commuting components). This lack of commutivity often seems, at …rst encounter, as somewhat of a nuisance but, in fact, it intimately re‡ects the underlying structure of the three dimensional space in which we are immersed, and has its source in the fact that rotations in three dimensions about di¤erent axes do not commute with one another.
    [Show full text]
  • Scalar-Tensor Theories of Gravity: Some Personal History
    history-st-cuba-slides 8:31 May 27, 2008 1 SCALAR-TENSOR THEORIES OF GRAVITY: SOME PERSONAL HISTORY Cuba meeting in Mexico 2008 Remembering Johnny Wheeler (JAW), 1911-2008 and Bob Dicke, 1916-1997 We all recall Johnny as one of the most prominent and productive leaders of relativ- ity research in the United States starting from the late 1950’s. I recall him as the man in relativity when I entered Princeton as a graduate student in 1957. One of his most recent students on the staff there at that time was Charlie Misner, who taught a really new, interesting, and, to me, exciting type of relativity class based on then “modern mathematical techniques involving topology, bundle theory, differential forms, etc. Cer- tainly Misner had been influenced by Wheeler to pursue these then cutting-edge topics and begin the re-write of relativity texts that ultimately led to the massive Gravitation or simply “Misner, Thorne, and Wheeler. As I recall (from long! ago) Wheeler was the type to encourage and mentor young people to investigate new ideas, especially mathe- matical, to develop and probe new insights into the physical universe. Wheeler himself remained, I believe, more of a “generalist, relying on experts to provide details and rigorous arguments. Certainly some of the world’s leading mathematical work was being done only a brief hallway walk away from Palmer Physical Laboratory to Fine Hall. Perhaps many are unaware that Bob Dicke had been an undergraduate student of Wheeler’s a few years earlier. It was Wheeler himself who apparently got Bob thinking about the foundations of Einstein’s gravitational theory, in particular, the ever present mysteries of inertia.
    [Show full text]
  • Integrating Electrical Machines and Antennas Via Scalar and Vector Magnetic Potentials; an Approach for Enhancing Undergraduate EM Education
    Integrating Electrical Machines and Antennas via Scalar and Vector Magnetic Potentials; an Approach for Enhancing Undergraduate EM Education Seemein Shayesteh Maryam Rahmani Lauren Christopher Maher Rizkalla Department of Electrical and Department of Electrical and Department of Electrical and Department of Electrical and Computer Engineering Computer Engineering Computer Engineering Computer Engineering Indiana University Purdue Indiana University Purdue Indiana University Purdue Indiana University Purdue University Indianapolis University Indianapolis University Indianapolis University Indianapolis Indianapolis, IN Indianapolis, IN Indianapolis, IN Indianapolis, IN [email protected] [email protected] [email protected] [email protected] Abstract—This Innovative Practice Work In Progress paper undergraduate course. In one offering the course was attached presents an approach for enhancing undergraduate with a project using COMSOL software that assisted students Electromagnetic education. with better understanding of the differential EM equations within the course. Keywords— Electromagnetic, antennas, electrical machines, undergraduate, potentials, projects, ECE II. COURSE OUTLINE I. INTRODUCTION A. Typical EM Course within an ECE Curriculum Often times, the subject of using two potential functions in A typical EM undergraduate course requires Physics magnetism, the scalar magnetic potential function, ܸ௠, and the (electricity and magnetism) and Differential equations as pre- vector magnetic potential function, ܣ (with zero current requisite
    [Show full text]
  • Basic Four-Momentum Kinematics As
    L4:1 Basic four-momentum kinematics Rindler: Ch5: sec. 25-30, 32 Last time we intruduced the contravariant 4-vector HUB, (II.6-)II.7, p142-146 +part of I.9-1.10, 154-162 vector The world is inconsistent! and the covariant 4-vector component as implicit sum over We also introduced the scalar product For a 4-vector square we have thus spacelike timelike lightlike Today we will introduce some useful 4-vectors, but rst we introduce the proper time, which is simply the time percieved in an intertial frame (i.e. time by a clock moving with observer) If the observer is at rest, then only the time component changes but all observers agree on ✁S, therefore we have for an observer at constant speed L4:2 For a general world line, corresponding to an accelerating observer, we have Using this it makes sense to de ne the 4-velocity As transforms as a contravariant 4-vector and as a scalar indeed transforms as a contravariant 4-vector, so the notation makes sense! We also introduce the 4-acceleration Let's calculate the 4-velocity: and the 4-velocity square Multiplying the 4-velocity with the mass we get the 4-momentum Note: In Rindler m is called m and Rindler's I will always mean with . which transforms as, i.e. is, a contravariant 4-vector. Remark: in some (old) literature the factor is referred to as the relativistic mass or relativistic inertial mass. L4:3 The spatial components of the 4-momentum is the relativistic 3-momentum or simply relativistic momentum and the 0-component turns out to give the energy: Remark: Taylor expanding for small v we get: rest energy nonrelativistic kinetic energy for v=0 nonrelativistic momentum For the 4-momentum square we have: As you may expect we have conservation of 4-momentum, i.e.
    [Show full text]
  • Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
    Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions.
    [Show full text]
  • Quantum Theory of Scalar Field in De Sitter Space-Time
    ANNALES DE L’I. H. P., SECTION A N. A. CHERNIKOV E. A. TAGIROV Quantum theory of scalar field in de Sitter space-time Annales de l’I. H. P., section A, tome 9, no 2 (1968), p. 109-141 <http://www.numdam.org/item?id=AIHPA_1968__9_2_109_0> © Gauthier-Villars, 1968, tous droits réservés. L’accès aux archives de la revue « Annales de l’I. H. P., section A » implique l’accord avec les conditions générales d’utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Henri Poincaré, Section A : Vol. IX, n° 2, 1968, 109 Physique théorique. Quantum theory of scalar field in de Sitter space-time N. A. CHERNIKOV E. A. TAGIROV Joint Institute for Nuclear Research, Dubna, USSR. ABSTRACT. - The quantum theory of scalar field is constructed in the de Sitter spherical world. The field equation in a Riemannian space- time is chosen in the = 0 owing to its confor- . mal invariance for m = 0. In the de Sitter world the conserved quantities are obtained which correspond to isometric and conformal transformations. The Fock representations with the cyclic vector which is invariant under isometries are shown to form an one-parametric family. They are inequi- valent for different values of the parameter. However, its single value is picked out by the requirement for motion to be quasiclassis for large values of square of space momentum.
    [Show full text]
  • Scalar Wave Transponder
    Konstantin Meyl Scalar wave transponder Field-physical basis for electrically coupled bi- directional far range transponder With the current RFID -Technology the transfer of energy takes place on a chip card by means of longitudinal wave components in close range of the transmitting antenna. Those are scalar waves, which spread towards the electrical or the magnetic field pointer. In the wave equation with reference to the Maxwell field equations, these wave components are set to zero, why only postulated model computations exist, after which the range is limited to the sixth part of the wavelength. A goal of this paper is to create, by consideration of the scalar wave components in the wave equation, the physical conditions for the development of scalar wave transponders which are operable beyond the close range. The energy is transferred with the same carrier wave as the information and not over two separated ways as with RFID systems. Besides the bi-directional signal transmission, the energy transfer in both directions is additionally possible because of the resonant coupling between transmitter and receiver. First far range transponders developed on the basis of the extended field equations are already functional as prototypes. Scalar wave transponder 3 Preface Before the introduction into the topic, the title of the book should be first explained more in detail. A "scalar wave" spreads like every wave directed, but it consists of physical particles or formations, which represent for their part scalar sizes. Therefore the name, which is avoided by some critics or is even disparaged, because of the apparent contradiction in the designation, which makes believe the wave is not directional, which does not apply however.
    [Show full text]
  • The Velocity and Momentum Four-Vectors
    Physics 171 Fall 2015 The velocity and momentum four-vectors 1. The four-velocity vector The velocity four-vector of a particle is defined by: dxµ U µ = =(γc ; γ~v ) , (1) dτ where xµ = (ct ; ~x) is the four-position vector and dτ is the differential proper time. To derive eq. (1), we must express dτ in terms of dt, where t is the time coordinate. Consider the infinitesimal invariant spacetime separation, 2 2 2 µ ν ds = −c dτ = ηµν dx dx , (2) in a convention where ηµν = diag(−1 , 1 , 1 , 1) . In eq. (2), there is an implicit sum over the repeated indices as dictated by the Einstein summation convention. Dividing by −c2 yields 3 1 c2 − v2 v2 dτ 2 = c2dt2 − dxidxi = dt2 = 1 − dt2 = γ−2dt2 , c2 c2 c2 i=1 ! X i i 2 i i where we have employed the three-velocity v = dx /dt and v ≡ i v v . In the last step we have introduced γ ≡ (1 − v2/c2)−1/2. It follows that P dτ = γ−1 dt . (3) Using eq. (3) and the definition of the three-velocity, ~v = d~x/dt, we easily obtain eq. (1). Note that the squared magnitude of the four-velocity vector, 2 µ ν 2 U ≡ ηµνU U = −c (4) is a Lorentz invariant, which is most easily evaluated in the rest frame of the particle where ~v = 0, in which case U µ = c (1 ; ~0). 2. The relativistic law of addition of velocities Let us now consider the following question.
    [Show full text]