Endangered and Threatened Wildlife and Plants
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nature Policy Plan
Ministry of Public Housing, Spatial Planning, Environment And Infrastructure Ministerie van Volkshuisvesting, Ruimtelijke Ordening, Milieu en Infrastructuur Nature Policy Plan 2021 – 2025 Established/Approved: Date: By: i Nature Policy Plan Sint Maarten 2021 – 2025 “We the people of Sint Maarten: RESOLVED to provide for the continuing preservation of nature and the environment”. Constitution of Sint Maarten ii Nature Policy Plan Sint Maarten 2021 – 2025 Nature Policy Plan Sint Maarten 2021 – 2025 Ministry of Public Housing, Spatial Planning, Environment and Infrastructure (Ministry of VROMI) Address: Government of Sint Maarten Ministry of VROMI Soualiga Road #1 Pond Island, Great Bay Sint Maarten Contact: [email protected] [email protected] iii Nature Policy Plan Sint Maarten 2021 – 2025 Lignum Vitae (Guaiacum officinale) iv Photo by: Mark Yokoyama Nature Policy Plan Sint Maarten 2021 – 2025 Acknowledgments In writing the Nature Policy Plan Sint Maarten 2021 – 2025, the Ministry of VROMI consulted several government ministries, and external stakeholders including private sector entities and NGO’s. Some were engaged in the preparation of the policy from the onset; others were part of a review of the policy and stakeholder meetings. The Ministry of VROMI acknowledges and appreciates the time and effort of the stakeholders who contributed to the formulation of this Nature Policy Plan, which provides insights into the current state of affairs of nature on Sint Maarten and the proposed way forward on nature conservation -
Haseltonia Articles and Authors.Xlsx
ABCDEFG 1 CSSA "HASELTONIA" ARTICLE TITLES #1 1993–#26 2019 AUTHOR(S) R ISSUE(S) PAGES KEY WORD 1 KEY WORD 2 2 A Cactus Database for the State of Baja California, Mexico Resendiz Ruiz, María Elena 2000 7 97-99 BajaCalifornia Database A First Record of Yucca aloifolia L. (Agavaceae/Asparagaceae) Naturalized Smith, Gideon F, Figueiredo, 3 in South Africa with Notes on its uses and Reproductive Biology Estrela & Crouch, Neil R 2012 17 87-93 Yucca Fotinos, Tonya D, Clase, Teodoro, Veloz, Alberto, Jimenez, Francisco, Griffith, M A Minimally Invasive, Automated Procedure for DNA Extraction from Patrick & Wettberg, Eric JB 4 Epidermal Peels of Succulent Cacti (Cactaceae) von 2016 22 46-47 Cacti DNA 5 A Morphological Phylogeny of the Genus Conophytum N.E.Br. (Aizoaceae) Opel, Matthew R 2005 11 53-77 Conophytum 6 A New Account of Echidnopsis Hook. F. (Asclepiadaceae: Stapeliae) Plowes, Darrel CH 1993 1 65-85 Echidnopsis 7 A New Cholla (Cactaceae) from Baja California, Mexico Rebman, Jon P 1998 6 17-21 Cylindropuntia 8 A New Combination in the genus Agave Etter, Julia & Kristen, Martin 2006 12 70 Agave A New Series of the Genus Opuntia Mill. (Opuntieae, Opuntioideae, Oakley, Luis & Kiesling, 9 Cactaceae) from Austral South America Roberto 2016 22 22-30 Opuntia McCoy, Tom & Newton, 10 A New Shrubby Species of Aloe in the Imatong Mountains, Southern Sudan Leonard E 2014 19 64-65 Aloe 11 A New Species of Aloe on the Ethiopia-Sudan Border Newton, Leonard E 2002 9 14-16 Aloe A new species of Ceropegia sect. -
Native Trees and Plants for Birds and People in the Caribbean Planting for Birds in the Caribbean
Native Trees and Plants for Birds and People in the Caribbean Planting for Birds in the Caribbean If you’re a bird lover yearning for a brighter, busier backyard, native plants are your best bet. The Caribbean’s native trees, shrubs and flowers are great for birds and other wildlife, and they’re also a part of the region’s unique natural heritage. There’s no better way to celebrate the beauty, culture and birds of the Caribbean than helping some native plants get their roots down. The Habitat Around You Habitat restoration sounds like something that is done by governments in national parks, but in reality it can take many forms. Native plants can turn backyards and neighborhood parks into natural habitats that attract and sustain birds and other wildlife. In the Caribbean, land is precious—particularly the coastal areas where so many of us live. Restoring native habitat within our neighborhoods allows us to share the land with native plants and animals. Of course, it doesn’t just benefit the birds. Native landscaping makes neighborhoods more beautiful and keeps us in touch with Caribbean traditions. Why Native Plants? Many plants can help birds and beautify neighborhoods, but native plants really stand out. Our native plants and animals have developed over millions of years to live in harmony: pigeons eat fruits and then disperse seeds, hummingbirds pollinate flowers while sipping nectar. While many plants can benefit birds, native plants almost always do so best due to the partnerships they have developed over the ages. In addition to helping birds, native plants are themselves worthy of celebration. -
Taxonomy and Distribution of Opuntia and Related Plants
Taxonomy and Distribution of Opuntia and Related Genera Raul Puente Desert Botanical Garden Donald Pinkava Arizona State University Subfamily Opuntioideae Ca. 350 spp. 13-18 genera Very wide distribution (Canada to Patagonia) Morphological consistency Glochids Bony arils Generic Boundaries Britton and Rose, 1919 Anderson, 2001 Hunt, 2006 -- Seven genera -- 15 genera --18 genera Austrocylindropuntia Austrocylindropuntia Grusonia Brasiliopuntia Brasiliopuntia Maihuenia Consolea Consolea Nopalea Cumulopuntia Cumulopuntia Opuntia Cylindropuntia Cylindropuntia Pereskiopsis Grusonia Grusonia Pterocactus Maihueniopsis Corynopuntia Tacinga Miqueliopuntia Micropuntia Opuntia Maihueniopsis Nopalea Miqueliopuntia Pereskiopsis Opuntia Pterocactus Nopalea Quiabentia Pereskiopsis Tacinga Pterocactus Tephrocactus Quiabentia Tunilla Tacinga Tephrocactus Tunilla Classification: Family: Cactaceae Subfamily: Maihuenioideae Pereskioideae Cactoideae Opuntioideae Wallace, 2002 Opuntia Griffith, P. 2002 Nopalea nrITS Consolea Tacinga Brasiliopuntia Tunilla Miqueliopuntia Cylindropuntia Grusonia Opuntioideae Grusonia pulchella Pereskiopsis Austrocylindropuntia Quiabentia 95 Cumulopuntia Tephrocactus Pterocactus Maihueniopsis Cactoideae Maihuenioideae Pereskia aculeata Pereskiodeae Pereskia grandiflora Talinum Portulacaceae Origin and Dispersal Andean Region (Wallace and Dickie, 2002) Cylindropuntia Cylindropuntia tesajo Cylindropuntia thurberi (Engelmann) F. M. Knuth Cylindropuntia cholla (Weber) F. M. Knuth Potential overlapping areas between the Opuntia -
Molecular and Morphological Support for a Florida Origin of the Cuban
Journal of Biogeography (J. Biogeogr.) (2011) SPECIAL Molecular and morphological support ISSUE for a Florida origin of the Cuban oak Paul F. Gugger* and Jeannine Cavender-Bares Department of Ecology, Evolution and ABSTRACT Behavior, University of Minnesota, 100 Ecology Aim The origins of the Cuban biota are of long-standing interest in Building, 1987 Upper Buford Circle, Saint Paul, MN, USA biogeography, and the source of a small live oak (Quercus series Virentes) population on Cuba remains unresolved. Based on morphological evidence, previous authors have hypothesized a Florida origin from either Q. geminata or Q. virginiana or both; a Mexican origin from Q. oleoides; or a hybrid origin from both sources. We use molecular data and taxonomically informative leaf morphology to identify the source species and timing of colonization. Location Cuba, Central America, Mexico and the south-eastern United States. Methods We collected representative samples of Cuban oaks and each putative source species and genotyped each sample at 12 nuclear microsatellites and two chloroplast DNA sequences. We estimated population structure using a Bayesian clustering analysis and F-statistics, pairwise migration rates among taxa, and divergence time using an isolation-with-migration model. We measured seven leaf traits and conducted an analysis of similarity (ANOSIM) to determine which putative source species was most similar to Cuban oaks. Results Cuban oak contains one chloroplast DNA haplotype, which is common in southern Florida. Bayesian clustering analysis of microsatellites revealed that the Cuban oak forms a distinct and pure population cluster, and F-statistics showed that Cuban oaks are differentiated least from Q. virginiana and most from Q. -
Florida Keys Terrestrial Adaptation Planning (Keystap) Species
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/330842954 FLORIDA KEYS TERRESTRIAL ADAPTATION PROJECT: Florida Keys Case Study on Incorporating Climate Change Considerations into Conservation Planning and Actions for Threatened and Endang... Technical Report · January 2018 CITATION READS 1 438 6 authors, including: Logan Benedict Jason M. Evans Florida Fish and Wildlife Conservation Commission Stetson University 2 PUBLICATIONS 1 CITATION 87 PUBLICATIONS 983 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Conservation Clinic View project Vinson Institute Policy Papers View project All content following this page was uploaded by Jason M. Evans on 27 April 2020. The user has requested enhancement of the downloaded file. USFWS Cooperative Agreement F16AC01213 Florida Keys Case Study on Incorporating Climate Change Considerations into Conservation Planning and Actions for Threatened and Endangered Species Project Coordinator: Logan Benedict, Florida Fish and Wildlife Conservation Commission Project Team: Bob Glazer, Florida Fish and Wildlife Conservation Commission Chris Bergh, The Nature Conservancy Steve Traxler, US Fish and Wildlife Service Beth Stys, Florida Fish and Wildlife Conservation Commission Jason Evans, Stetson University Project Report Photo by Logan Benedict Cover Photo by Ricardo Zambrano 1 | Page USFWS Cooperative Agreement F16AC01213 TABLE OF CONTENTS 1. ABSTRACT ............................................................................................................................................................... -
At the Forefront of Conservation
TABLE OF CONTENTS DEPARTMENT OF THE INTERIOR U.S. Fish and Wildlife Service Fiscal Year 2009 Budget Justifications Table of Contents General Statement.... ........... .....................................................................................GS-1 Organization Chart.... ........... .....................................................................................GS-2 Overview of Fiscal Year 2009 Request.......................................................................GS-3 Goal Performance Table....... ..................................................................................... PT-1 Budget At-A-Glance Table .... .....................................................................................BG-1 Appropriation: Resource Management Appropriations Language ............................................................................... RM-1 Authorizing Statutes .. .................................................................................... RM-1 Summary of Requirements........................................................................... RM-11 Justification of Fixed Costs and Related Changes....................................... RM-12 Program & Financing Schedules/Object Class/Personnel Summary........... RM-14 Endangered Species Overview........ ..................................................................................... ES-1 Candidate Conservation...................................................................... ES-7 Listing ............................................................................................. -
International Journal of Modern Pharmaceutical
IJMPR 2021, 5(4), 39-46 ISSN: 2319-5878 IJMPR Amandeep et al. International Journal International of Journal Modern of Modern Pharmaceutical Research 39 Review Article Pharmaceutical Research SJIF Impact Factor: 5.273 www.ijmpronline.com REVIEW ARTICLE ON MANILKARA HEXANDRA (KHIRNI) Amandeep Kaur* and Dr. Naresh Singh Gill Department of Pharmaceutical Chemistry, Rayat Institute of Pharmacy, Railmajra. Received on: 25/05/2021 ABSTRACT Revised on: 15/06/2021 Manilkara hexandra commonly known as Rayan and Khirni is an evergreen tree Accepted on: 05/07/2021 species with a long history of traditional medicinal uses in South Asia chiefly in western and central India, belongs to family Sapotaceae. The genus Manilkara includes *Corresponding Author 135 plants that are distributed Worldwide. Sapotaceae family consists of 58 genus and Amandeep Kaur just about 1250 species with morphological variation, ranging from shrubs to medium and giant trees. Brazil comprises of 11 genera, and 231 species, covering 1 endemic Department of genus, and 104 endemic species. The plant has been famous for its curative properties Pharmaceutical Chemistry, and has been put to use for treatment of various ailments suchlike ulcer, bronchitis, Rayat Institute of Pharmacy, jaundice, fever, hyper dyspepsia, arthritis and alimentary disorders. A record of the Railmajra. literature show extracts and metabolites from this plant having pharmacological properties such as anti–inflammatory, antiulcer, aphrodisiac, alexipharmic, anthelmintic, antibacterial, and free radical scavenging activity. Apart from medicinal uses, plant has high scale value because of its edible and nutritive fruit, useful wood, latex and bark and contributes substantial livelihood support to local inhabitants. KEYWORDS: Khirni, Manilkara hexandra, Sapotaceae, Rayan, Pharmacological properties. -
Origen I Evolució Dels Endemismes Vegetals De Les Illes Del Carib
Òscar Castillo Agudo Final Degree Project Origin and evolution of the Biology (2020) Caribbean Islands endemic plants The Islands Geological History The Caribbean Islands, also known Greater Antilles: originated as a submerged volcanic arc (Proto-Greater as the West Indies, are conformed Antilles) between North and South America (130 Ma.) The last time the by three archipelago. These islands islands emerged as a landmass was 49 Ma and later Cuba, the have been categorized as one of Hispaniola and Puerto Rico split (25-20 Ma). the world’s biodiversity hotspots Lesser Antilles: originated in two times as oceanic islands. with conservation priority as the Bahames: got the current configuration in the Eocene but the land ecosystem is threatened by loss of surface and connections changed drastically due to the fluctuations in habitat from anthropogenic origin. the sea level. Figure 1. Source 8. GAARlandia: an hypothetical land bridge connecting the Biodiversity: some numbers north of South America and the Greater Antilles for 3 million 12.847 taxa of seed plants, 10.948 years at Eocene-Oligocene are native and 7.868 are endemic transition (c. 33 Ma). (72% out of the native). 1.447 native genera with 181 endemic and 10 nearly endemic, Biogeography Figure 3. Source 9. 47,5% of the endemic are monotypic. 2 ways of colonization of the islands from the continent: The Greater Antilles hosts most of Vicariance: the endemic genera. First interpretations considered the Proto-Antilles to be connected with Figure 2. Source 1. the continent but now we know they were submerged. Now it is Isolation atribuited to GAARAlandia acting as a low-land connection for the biota. -
CIRCULAR Issue No
FDACS-P-01915 CIRCULAR Issue No. 40 | October 2018 Florida Department of Agriculture and Consumer Services Division of Plant Industry The Buckthorns (Genus Sideroxylon): An Underappreciated Group of Florida Native Plants Paul T. Corogin; Bureau of Entomology, Nematology and Plant Pathology [email protected] or 1-888-397-1517 INTRODUCTION Tucked away amongst the rich diversity of Florida plant life surrounding us, one plant group can easily escape our notice: the genus Sideroxylon, belonging to the pantropical family Sapotaceae (sapodilla family). This circular will introduce the Sideroxylon species native to North America, featuring in detail species adapted to the temperate zone that may be of interest to the southern United States (U.S.). Some are endangered in Florida, and some are Florida endemics. Certain species have landscaping potential, but have long been ignored, but a few species are occasionally available from native plant nurseries (Betrock’s Plant Search 2018; FNPS 2018). Species of Sideroxylon attract pollinators when blooming, and birds and wildlife when fruiting; thus, they can be desirable additions to any Florida landscape. Sapotaceae are recognized by the presence of milky sap, brownish T-shaped hairs, fasciculate inflorescences (flowers in a bundle) and seeds with a large scar at one end (Pennington 1990, 1991). This woody family makes a large contribution to tropical plant biodiversity, being a major floristic component of tropical lowland wet forests in the Americas, Asia, Africa and the Pacific Islands (Gentry 1988). Sapotaceous plants are also economically important to humans. “Sapote” comes from the Nahuatl word meaning sweet fruit; most species bear such a fruit (e.g., the sapodilla and mamey sapote) (Smith et al. -
Biogeochemical Relationships of a Subtropical Dry Forest on Karst
2017 CARIBBEANCaribbean Naturalist NATURALIST No. 41:1–24No. 41 E. Medina, E. Cuevas, H. Marcano-Vega, E. Meléndez-Ackerman, and E.H. Helmer Biogeochemical Relationships of a Subtropical Dry Forest on Karst Ernesto Medina1,2,*, Elvira Cuevas3, Humfredo Marcano-Vega4, Elvia Meléndez-Ackerman3, and Eileen H. Helmer1 Abstract - Tropical dry forests on calcareous substrate constitute the main vegetation cover in many islands of the Caribbean. Dry climate and nutrient scarcity in those environments are ideal to investigate the potential role of high levels of soil calcium (Ca) in regulating plant selection and productivity. We analyzed the elemental composition of soil, loose lit- ter, and leaf samples of the woody vegetation on the plateau of Mona Island, an emergent block of carbonate rock in the Caribbean located between Puerto Rico and the Dominican Republic, to explore the nutrient relationships of plants growing on calcareous substrates. The mineral soil has an elemental composition characterized by high levels of aluminum (Al) and iron (Fe) in agreement with the hypothesis that it derives in part from sediments transported by rivers eroding plutonic rocks, and deposited before the massive lifting of biological limestone. Calcium concentration varied within sites, and Ca–Al and Ca–Fe cor- relations were negative in soils and positive in plant material, implying that element uptake from these soils depends on acidification of the rhizosphere. This acidification should be high enough to extract carbonate-bound elements and solubilize Al, Fe, and probably phos- phate (P) compounds. The most abundant cation in leaves was Ca, followed by potassium (K) and magnesium (Mg); Ca/K and Ca/Mg molar ratios averaged 2 and 3, respectively, in- dicating that most species maintain K and Mg uptake in the presence of high Ca levels. -
Fragrant Prickly-Apple Cereus Eriophorus Var
Fragrant Prickly-apple Cereus eriophorus var. fragrans (Small) L. Benson ereus eriophorus var. fragrans is a rare, slender, Federal Status: Endangered (Nov. 1, 1985) columnar cactus restricted to 11 small disjunct sites Critical Habitat: None Designated Cin eastern St. Lucie County. A 1996 survey Florida Status: Endangered documented the presence of 320 plants. Habitat loss and fragmentation remains a serious threat for plants on private Recovery Plan Status: Revision (May 18, 1999) lands. On public lands this species is protected from Geographic Coverage: Rangewide destruction, but in many areas it is experiencing a precipitous decline in abundance. This account represents a revision of the existing Figure 1. County distribution of the fragrant prickly-apple. recovery plan for the fragrant prickly-apple (FWS 1988). Description Cereus eriophorus var. fragrans is a solitary tree cactus that may have from one to eight, spiny, cane-like, stout, and succulent stems. The columnar stems are 2.5 to 5.0 cm in diameter, and have 10 or 12 ridges alternated with deep, sharp grooves (Benson 1982). Stems may be erect, or for longer stems, the plant may recline over neighboring vegetation. The branching can be extensive, and the roots of this cactus are coarse, fibrous, and shallow (Small 1920). The spine-bearing regions (areoles) are aligned along its ridges about 2 cm apart. Each areole bears 9 to 13 spines, which are mostly grayish and yellowish at the tip, with one spine longer (2 to 4 cm) than the rest. Cereus eriophorus var. fragrans has initial flower buds that are 1 cm long, white, and exceedingly hairy.