Fragrant Prickly-Apple Cereus Eriophorus Var
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Haseltonia Articles and Authors.Xlsx
ABCDEFG 1 CSSA "HASELTONIA" ARTICLE TITLES #1 1993–#26 2019 AUTHOR(S) R ISSUE(S) PAGES KEY WORD 1 KEY WORD 2 2 A Cactus Database for the State of Baja California, Mexico Resendiz Ruiz, María Elena 2000 7 97-99 BajaCalifornia Database A First Record of Yucca aloifolia L. (Agavaceae/Asparagaceae) Naturalized Smith, Gideon F, Figueiredo, 3 in South Africa with Notes on its uses and Reproductive Biology Estrela & Crouch, Neil R 2012 17 87-93 Yucca Fotinos, Tonya D, Clase, Teodoro, Veloz, Alberto, Jimenez, Francisco, Griffith, M A Minimally Invasive, Automated Procedure for DNA Extraction from Patrick & Wettberg, Eric JB 4 Epidermal Peels of Succulent Cacti (Cactaceae) von 2016 22 46-47 Cacti DNA 5 A Morphological Phylogeny of the Genus Conophytum N.E.Br. (Aizoaceae) Opel, Matthew R 2005 11 53-77 Conophytum 6 A New Account of Echidnopsis Hook. F. (Asclepiadaceae: Stapeliae) Plowes, Darrel CH 1993 1 65-85 Echidnopsis 7 A New Cholla (Cactaceae) from Baja California, Mexico Rebman, Jon P 1998 6 17-21 Cylindropuntia 8 A New Combination in the genus Agave Etter, Julia & Kristen, Martin 2006 12 70 Agave A New Series of the Genus Opuntia Mill. (Opuntieae, Opuntioideae, Oakley, Luis & Kiesling, 9 Cactaceae) from Austral South America Roberto 2016 22 22-30 Opuntia McCoy, Tom & Newton, 10 A New Shrubby Species of Aloe in the Imatong Mountains, Southern Sudan Leonard E 2014 19 64-65 Aloe 11 A New Species of Aloe on the Ethiopia-Sudan Border Newton, Leonard E 2002 9 14-16 Aloe A new species of Ceropegia sect. -
Cassytha Pubescens
Cassytha pubescens: Germination biology and interactions with native and introduced hosts Hong Tai (Steven), Tsang B.Sc. Hons (University of Adelaide) Thesis submitted for the degree of Master of Science School of Earth & Environmental Science University of Adelaide, Australia 03/05/2010 i Table of Contents Table of Contents ........................................................................................................... ii Abstract .......................................................................................................................... v Declaration ................................................................................................................... vii Acknowledgements .................................................................................................... viii Chapter. 1 Introduction .................................................................................................. 1 1.1 General Introduction ............................................................................................ 1 1.2 Literature Review ................................................................................................. 3 1.2.1 Characteristics of parasitic control agents .................................................... 3 1.2.2. Direct impacts on hosts ................................................................................ 7 1.2.3. Indirect impacts on hosts ............................................................................. 8 1.2.4. Summary ................................................................................................... -
Cassytha) and Insights Into the Plastid Phylogenomics of Lauraceae
GBE Plastome Evolution in the Sole Hemiparasitic Genus Laurel Dodder (Cassytha) and Insights into the Plastid Phylogenomics of Lauraceae Chung-Shien Wu1,†, Ting-Jen Wang1,†,Chia-WenWu1, Ya-Nan Wang2, and Shu-Miaw Chaw1,* 1Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan 2School of Forestry and Resource Conservation, Nation Taiwan University, Taipei 10617, Taiwan *Corresponding author: E-mail: [email protected]. †These authors contributed equally to this work. Accepted: September 6, 2017 Data deposition: This project has been deposited at DDBJ under the accession numbers LC210517, LC212965, LC213014, and LC228240. Abstract To date, little is known about the evolution of plastid genomes (plastomes) in Lauraceae. As one of the top five largest families in tropical forests, the Lauraceae contain many species that are important ecologically and economically. Lauraceous species also provide wonderful materials to study the evolutionary trajectory in response to parasitism because they contain both nonparasitic and parasitic species. This study compared the plastomes of nine Lauraceous species, including the sole hemiparasitic and herbaceous genus Cassytha (laurel dodder; here represented by Cassytha filiformis). We found differential contractions of the canonical inverted repeat (IR), resulting in two IR types present in Lauraceae. These two IR types reinforce Cryptocaryeae and Neocinnamomum— Perseeae–Laureae as two separate clades. Our data reveal several traits unique to Cas. filiformis, including loss of IRs, loss or pseudogenization of 11 ndh and rpl23 genes, richness of repeats, and accelerated rates of nucleotide substitutions in protein- coding genes. Although Cas. filiformis is low in chlorophyll content, our analysis based on dN/dS ratios suggests that both its plastid house-keeping and photosynthetic genes are under strong selective constraints. -
At the Forefront of Conservation
TABLE OF CONTENTS DEPARTMENT OF THE INTERIOR U.S. Fish and Wildlife Service Fiscal Year 2009 Budget Justifications Table of Contents General Statement.... ........... .....................................................................................GS-1 Organization Chart.... ........... .....................................................................................GS-2 Overview of Fiscal Year 2009 Request.......................................................................GS-3 Goal Performance Table....... ..................................................................................... PT-1 Budget At-A-Glance Table .... .....................................................................................BG-1 Appropriation: Resource Management Appropriations Language ............................................................................... RM-1 Authorizing Statutes .. .................................................................................... RM-1 Summary of Requirements........................................................................... RM-11 Justification of Fixed Costs and Related Changes....................................... RM-12 Program & Financing Schedules/Object Class/Personnel Summary........... RM-14 Endangered Species Overview........ ..................................................................................... ES-1 Candidate Conservation...................................................................... ES-7 Listing ............................................................................................. -
The Litsea Genome and the Evolution of the Laurel Family
The Litsea genome and the evolution of the laurel family Chen et al 1 Supplementary Note 1. Sample preparation for Litsea cubeba genome sequencing For genome sequencing, we collected buds of L. cubeba. Genomic DNA was extracted using a modified cetyltrimethylammonium bromide (CTAB) protocol. For transcriptome analysis, we collected leaves, flowers, and roots from L. cubeba in Zhejiang Province, China, using a karyotype of 2n = 24 (Supplementary Figure 2a). Genome sizes can be determined from the total number of k-mers, divided by the peak value of the k-mer distribution1. To estimate the genome size of L. cubeba, we used a 350 bp pair-end library with 93.08 Gb high-quality reads to calculate the distribution of k-mer values, and found the main peak to be 54 (Supplementary Figure 2b). We estimated the L. cubeba genome size as 1370.14 Mbp, with a 1% heterozygosity rate and a 70.59% repeat sequence, based on an analysis of k-mer-numbers/depths. We used k-mer 41 to obtain a preliminary assembly of L. cubeba, with a scaffold N50 size of 776 bp and a corresponding contig N50 size of 591 bp. Supplementary Note 2. Whole genome duplication analysis in Laurales The KS peaks for WGDs in L. cubeba are both younger (smaller KS values) than the orthologous KS peak between L. cubeba and V. vinifera, implying that the two WGD events are specific to Magnoliids. To compare the WGD peaks of L. cubeba and the speciation events in the lineage of Magnoliids, we performed relative rate tests and corrected orthologous KS peaks between L. -
A Study on the Flora and Vegetation of Cat Dua Island, Northeastern Vietnam
Pak. J. Bot., 44(4): 1229-1232, 2012. A STUDY ON THE FLORA AND VEGETATION OF CAT DUA ISLAND, NORTHEASTERN VIETNAM XIN-SHENG QIN1*, RONG-JING ZHANG2 AND FU-WU XING3 1College of Forestry, South China Agricultural University, Guangzhou, China 2College of Life Sciences, South China Agricultural University, Guangzhou, China 3South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China *Corresponding author’s e-mail: xinfw@scbg. ac.cn Abstract Cat Dua Island (namely Monkey Island) is situated in the Gulf of Tonkin, belonging to the Quang Ninh Province in Vietnam. A total vascular flora of 88 species belonging to 44 families and 76 genera was recorded from the island. The dominant families of the flora are Euphorbiaceae, Papilionaceae, Moraceae, Rutaceae and Rubiaceae etc. Most of the genera in the flora are tropical characteristic. In the island, there are few endemic species, which may be due to its young flora in geological respect. The vegetation are mainly classified as the evergreen broad-leaved forests, scrub forests and beach vegetation. It is urgent to protect biodiversity in limestone regions and how to deal with the relationship between development and protection is still a difficult task. Introduction Gulf of Tonkin. Geologically it is closely attached to the Hainan Island in South China. It can be accessed very Karst landscape is one kind of specific habitat conveniently by boat or canoe from Hai Phong or Quang distributed widely in the world. Because of the great Ninh. The Island is composed of limestone, it has an area diversity of edaphic conditions and topography, of about 12 sq. -
Nesting of the Acrocephalus Warblers
Acta zoologica cracoviensia, 46(2): 97-195, Kraków, 30 June, 2003 Nesting of the Acrocephalus warblers Zygmunt BOCHEÑSKI and Piotr KUŒNIERCZYK Received: 14 Feb 2003 Accepted: 26 May 2003 BOCHEÑSKI Z., KUŒNIERCZYK P. 2003. Nesting of the Acrocephalus warblers. Acta zoo- logica cracoviensia, 46(2): 97-195. Abstract. The paper contains data concerning nest sites, material, construction, shape, and sizes in the majority of Acrocephalus species. The descriptions are based on field studies, museum specimens, and literature. The system proposed by CLEMENTS (2000) including 36 species in the genus Acrocephalus has been adopted. Similarities and differ- ences in nesting of 32 species and four subspecies are studied in the last chapter on the ba- sis of 38 characters assembled in Table XLI. They do not always reflect systematic relations of warblers within the genus Acrocephalus on the basis of molecular data. Key words: genus Acrocephalus, nest site, nest material, nest construction, nest shape, nest sizes. Z. BOCHEÑSKI (corresponding author), Institute of Systematics and Evolution of Ani- mals, P.Ac.Sc., 31-016 Kraków, S³awkowska 17, Poland. E-mail: [email protected] P. KUŒNIERCZYK, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, P. Ac.Sc., 53-114 Wroc³aw, Rudolfa Weigla 12, Poland. I. INTRODUCTION The genus Acrocephalus seems not to be defined unequivocally. From time to time it resembles a “witch’s sack”, to which various ornithologists place, according to their predilections, various species of Sylviinae, apart of a few, which are always in this genus. Those additional species are in- cluded in other genera, set up especially for them by other researchers . -
Appendix A. Plant Species Known to Occur at Canaveral National Seashore
National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Vegetation Community Monitoring at Canaveral National Seashore, 2009 Natural Resource Data Series NPS/SECN/NRDS—2012/256 ON THE COVER Pitted stripeseed (Piriqueta cistoides ssp. caroliniana) Photograph by Sarah L. Corbett. Vegetation Community Monitoring at Canaveral National Seashore, 2009 Natural Resource Report NPS/SECN/NRDS—2012/256 Michael W. Byrne and Sarah L. Corbett USDI National Park Service Southeast Coast Inventory and Monitoring Network Cumberland Island National Seashore 101 Wheeler Street Saint Marys, Georgia, 31558 and Joseph C. DeVivo USDI National Park Service Southeast Coast Inventory and Monitoring Network University of Georgia 160 Phoenix Road, Phillips Lab Athens, Georgia, 30605 March 2012 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado publishes a range of reports that address natural resource topics of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Data Series is intended for the timely release of basic data sets and data summaries. Care has been taken to assure accuracy of raw data values, but a thorough analysis and interpretation of the data has not been completed. Consequently, the initial analyses of data in this report are provisional and subject to change. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner. -
Nauru’S Biodiversity Strategy and Action Plan
FINAL DRAFT NAURU’S BIODIVERSITY STRATEGY AND ACTION PLAN Rehabilitate and Conserve Government of the Republic of Nauru 1 Nauru’s Biodiversity Strategy & Action Plan Prepared by: Dr Komeri Onorio and Tyrone Deiye for the National Environmental Coordinating Committee (NECC), Department of Commerce Industries and Environment Funded under: GEF/UNDP – Enabling Activities: The Convention on Biological Diversity 2 nauru vision for the future We are proceeding with the rehabilitation of our beloved island home in three overlapping and interlocking steps – physical, biological and cultural. Each step will be fully integrated with the other two so our process of future development rehabilitation and sustainable development will be interconnected. Physical rehabilitation must first deal with the land and water systems. The coral pinnacles will be dismantled, sawed and polished into building materials for homes and buildings. The coral pinnacles will also be crushed to make land fill, land will be graded, catchment areas and reservoirs built for storage of rainwater, and the freshwater underground lens are tapped for sustainable use. As part of the physical rehabilitation of Nauru island, topsoil, which we have stockpiled and carefully preserved, will be spread where it is needed for forests and fields, according to the land use plan that has been developed with maximum possible participation of all Nauruans. Biological rehabilitation will address the fields and forests, the coral reefs, and the surrounding seas. Areas of biological diversity will be established at strategically placed locations on the periphery of the island, and expanding gradually into the rainforest of tomorrow. Horticultural stations will be built at each of these strategic locations to nurse seedlings into trees, trees into forests, all according to the overall land use plan under development. -
The Stem Parasite Cassytha Filiformis a Botanical Relative of Avocado
California Avocado Society 1967 Yearbook 51: 159-160 THE STEM PARASITE CASSYTHA FILIFORMIS A BOTANICAL RELATIVE OF AVOCADO C. A. Schroeder University of California, Los Angeles The majority of genera and species which comprise the botanical family Lauraceae, of which the avocado is a commercially important member, are trees of variable size or woody shrubs or bushes. An unusual botanical relative in this interesting family of tropical and subtropical distribution is the "woevine," Cassytha filiformis. This species actually is a vine resembling the common parasitic dodder which is so prevalent in many parts of California and other subtropical and tropical areas of the world. While the habit is almost identical to Cuscuta, the floral structure is precisely like Cryptocarya, another botanical relative of the avocado, hence the genus is considered a member of the Lauraceae. The genus is chiefly Australian in more or less maritime climates. The "woevine" is cosmopolitan in the tropics where it sometimes becomes a pest of economic importance as it attaches itself to valuable orchard trees and ornamental plants with its tough threadlike extensive branchlets. It is a common stem parasite on Lantana Toddalia and certain other plants in South India (6). This plant is unique in the family in that it is a parasite. Because of its particular characteristics and its parasitic habit it is classified in a separate tribe. Cassytheae, within the family Lauraceae and is represented by the single genus Cassytha (2) in which 18 species have been described (3). The genus derives its name, Cassytha, from the Greek name for Cuscuta. Probably the most important and prominent species is C. -
Rapid Biodiversity Assessment of REPUBLIC of NAURU
RAPID BIODIVERSITY ASSESSMENT OF REPUBLIC OF NAURU JUNE 2013 NAOERO GO T D'S W I LL FIRS SPREP Library/IRC Cataloguing-in-Publication Data McKenna, Sheila A, Butler, David J and Wheatley, Amanda. Rapid biodiversity assessment of Republic of Nauru / Sheila A. McKeena … [et al.] – Apia, Samoa : SPREP, 2015. 240 p. cm. ISBN: 978-982-04-0516-5 (print) 978-982-04-0515-8 (ecopy) 1. Biodiversity conservation – Nauru. 2. Biodiversity – Assessment – Nauru. 3. Natural resources conservation areas - Nauru. I. McKeena, Sheila A. II. Butler, David J. III. Wheatley, Amanda. IV. Pacific Regional Environment Programme (SPREP) V. Title. 333.959685 © SPREP 2015 All rights for commercial / for profit reproduction or translation, in any form, reserved. SPREP authorises the partial reproduction or translation of this material for scientific, educational or research purposes, provided that SPREP and the source document are properly acknowledged. Permission to reproduce the document and / or translate in whole, in any form, whether for commercial / for profit or non-profit purposes, must be requested in writing. Secretariat of the Pacific Regional Environment Programme P.O. Box 240, Apia, Samoa. Telephone: + 685 21929, Fax: + 685 20231 www.sprep.org The Pacific environment, sustaining our livelihoods and natural heritage in harmony with our cultures. RAPID BIODIVERSITY ASSESSMENT OF REPUBLIC OF NAURU SHEILA A. MCKENNA, DAVID J. BUTLER, AND AmANDA WHEATLEY (EDITORS) NAOERO GO T D'S W I LL FIRS CONTENTS Organisational Profiles 4 Authors and Participants 6 Acknowledgements -
TAXON:Harrisia Eriophora (Pfeiff.)
TAXON: Harrisia eriophora (Pfeiff.) SCORE: 7.0 RATING: High Risk Britton Taxon: Harrisia eriophora (Pfeiff.) Britton Family: Cactaceae Common Name(s): fragrant apple cactus Synonym(s): Cereus eriophorus Pfeiff. fragrant prickly apple jijira pitahaya woolly prickly apple Assessor: Chuck Chimera Status: Assessor Approved End Date: 9 Oct 2017 WRA Score: 7.0 Designation: H(HPWRA) Rating: High Risk Keywords: Tropical Cactus, Spiny, Edible Fruit, Spreads Vegetatively, Bird-Dispersed Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 n Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 n outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 n 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) n 303 Agricultural/forestry/horticultural weed 304 Environmental weed n=0, y = 2*multiplier (see Appendix 2) n 305 Congeneric weed n=0, y = 1*multiplier (see Appendix 2) y 401