A Layman's Guide to Layer 1 Switching
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arista Networks, Inc. (Exact Name of Registrant As Specified in Its Charter)
UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549 FORM 10-Q (Mark One) ☒ QUARTERLY REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 For the quarterly period ended September 30, 2019 or ☐ TRANSITION REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 For the transition period from to Commission File Number: 001-36468 Arista Networks, Inc. (Exact Name of Registrant as Specified in its Charter) Delaware 20-1751121 (State or Other Jurisdiction of Incorporation or Organization) (I.R.S. Employer Identification No.) 5453 Great America Parkway , Santa Clara , California 95054 (Address of principal executive offices) (Zip Code) (408) 547-5500 (Registrant’s telephone number, including area code) Not Applicable (Former name, former address and former fiscal year, if changed since last report) Securities registered pursuant to Section 12(b) of the Act: Title of each class Trading Symbol(s) Name of each exchange on which registered Common Stock, $0.0001 par value ANET New York Stock Exchange Indicate by check mark whether the registrant (1) has filed all reports required to be filed by Section 13 or 15(d) of the Securities Exchange Act of 1934 during the preceding 12 months (or for such shorter period that the registrant was required to file such reports), and (2) has been subject to such filing requirements for the past 90 days. Yes x No o Indicate by check mark whether the registrant has submitted electronically every Interactive Data File required to be submitted pursuant to Rule 405 of Regulation S-T (§232.405 of this chapter) during the preceding 12 months (or for such shorter period that the registrant was required to submit such files). -
~DRAFT~ CHAPTER 5: Link Layer
~DRAFT~ CHAPTER 5: Link layer Contents Network notes – Link layer ..................................................................................................................... 1 1 Context of Chapter .................................................................................................................. 2 2 Introduction ............................................................................................................................. 2 3 Objectives of Chapter/module ................................................................................................ 3 4 Services of the link layer ......................................................................................................... 4 5 Error detection ........................................................................................................................ 4 a. Parity check ............................................................................................................................. 4 b. Cyclic Redundancy Check ...................................................................................................... 5 6 Error Correction ...................................................................................................................... 5 7 MAC ....................................................................................................................................... 6 a. Fixed assigned MAC .............................................................................................................. -
ISSN: 2320-5407 Int. J. Adv. Res. 5(4), 422-426 RESEARCH ARTICLE
ISSN: 2320-5407 Int. J. Adv. Res. 5(4), 422-426 Journal Homepage: - www.journalijar.com Article DOI: 10.21474/IJAR01/3826 DOI URL: http://dx.doi.org/10.21474/IJAR01/3826 RESEARCH ARTICLE CHALLENGING ISSUES IN OSI AND TCP/IP MODEL. Dr. J. VijiPriya, Samina and Zahida. College of Computer Science and Engineering, University of Hail, Saudi Arabia. …………………………………………………………………………………………………….... Manuscript Info Abstract ……………………. ……………………………………………………………… Manuscript History A computer network is a connection of network devices to data communication. Multiple networks are connected together to form an Received: 06 February 2017 internetwork. The challenges of Internetworking is interoperating Final Accepted: 05 March 2017 between products from different manufacturers requires consistent Published: April 2017 standards. Network reference models were developed to address these challenges. Two useful reference models are Open System Key words:- Interconnection (OSI) and Transmission Control Protocol and Internet OSI, TCP/IP, Data Communication, Protocol (TCP/IP) serve as protocol architecture details the Protocols, Layers, and Encapsulation communication between applications on network devices. This paper depicts the OSI and TCP/IP models, their issues and comparison of them. Copy Right, IJAR, 2017,. All rights reserved. …………………………………………………………………………………………………….... Introduction:- Network reference models are called protocol architecture in which task of communication can be broken into sub tasks. These tasks are organized into layers representing network services and functions. The layered protocols are rules that govern end-to-end communication between devices. Protocols on each layer will interact with protocols on the above and below layers of it that form a protocol suite or stack. The most established TCP/IP suite was developed by Department of Defence's Project Research Agency DARPA based on OSI suite to the foundation of Internet architecture. -
Strategic Use of the Internet and E-Commerce: Cisco Systems
Journal of Strategic Information Systems 11 (2002) 5±29 www.elsevier.com/locate/jsis Strategic use of the Internet and e-commerce: Cisco Systems Kenneth L. Kraemer*, Jason Dedrick Graduate School of Management and Center for Research on Information Technology and Organizations, University of California, Irvine, 3200 Berkeley Place, Irvine, CA 92697-4650, USA Accepted 3October 2001 Abstract Information systems are strategic to the extent that they support a ®rm's business strategy. Cisco Systems has used the Internet and its own information systems to support its strategy in several ways: (1) to create a business ecology around its technology standards; (2) to coordinate a virtual organiza- tion that allows it to concentrate on product innovation while outsourcing other functions; (3) to showcase its own use of the Internet as a marketing tool. Cisco's strategy and execution enabled it to dominate key networking standards and sustain high growth rates throughout the 1990s. In late 2000, however, Cisco's market collapsed and the company was left with billions of dollars in unsold inventory, calling into question the ability of its information systems to help it anticipate and respond effectively to a decline in demand. q 2002 Elsevier Science B.V. All rights reserved. Keywords: Internet; e-commerce; Cisco Systems; Virtual Organization; Business Ecology 1. Introduction Information systems are strategic to the extent that they are used to support or enable different elements of a ®rm's business strategy (Porter and Millar, 1985). Cisco Systems, the world's largest networking equipment company, has used the Internet, electronic commerce (e-commerce), and information systems as part of its broad strategy of estab- lishing a dominant technology standard in the Internet era. -
Logical Link Control and Channel Scheduling for Multichannel Underwater Sensor Networks
ICST Transactions on Mobile Communications and Applications Research Article Logical Link Control and Channel Scheduling for Multichannel Underwater Sensor Networks Jun Li ∗, Mylene` Toulgoat, Yifeng Zhou, and Louise Lamont Communications Research Centre Canada, 3701 Carling Avenue, Ottawa, ON. K2H 8S2 Canada Abstract With recent developments in terrestrial wireless networks and advances in acoustic communications, multichannel technologies have been proposed to be used in underwater networks to increase data transmission rate over bandwidth-limited underwater channels. Due to high bit error rates in underwater networks, an efficient error control technique is critical in the logical link control (LLC) sublayer to establish reliable data communications over intrinsically unreliable underwater channels. In this paper, we propose a novel protocol stack architecture featuring cross-layer design of LLC sublayer and more efficient packet- to-channel scheduling for multichannel underwater sensor networks. In the proposed stack architecture, a selective-repeat automatic repeat request (SR-ARQ) based error control protocol is combined with a dynamic channel scheduling policy at the LLC sublayer. The dynamic channel scheduling policy uses the channel state information provided via cross-layer design. It is demonstrated that the proposed protocol stack architecture leads to more efficient transmission of multiple packets over parallel channels. Simulation studies are conducted to evaluate the packet delay performance of the proposed cross-layer protocol stack architecture with two different scheduling policies: the proposed dynamic channel scheduling and a static channel scheduling. Simulation results show that the dynamic channel scheduling used in the cross-layer protocol stack outperforms the static channel scheduling. It is observed that, when the dynamic channel scheduling is used, the number of parallel channels has only an insignificant impact on the average packet delay. -
Physical Layer Overview
ELEC3030 (EL336) Computer Networks S Chen Physical Layer Overview • Physical layer forms the basis of all networks, and we will first revisit some of fundamental limits imposed on communication media by nature Recall a medium or physical channel has finite Spectrum bandwidth and is noisy, and this imposes a limit Channel bandwidth: on information rate over the channel → This H Hz is a fundamental consideration when designing f network speed or data rate 0 H Type of medium determines network technology → compare wireless network with optic network • Transmission media can be guided or unguided, and we will have a brief review of a variety of transmission media • Communication networks can be classified as switched and broadcast networks, and we will discuss a few examples • The term “physical layer protocol” as such is not used, but we will attempt to draw some common design considerations and exams a few “physical layer standards” 13 ELEC3030 (EL336) Computer Networks S Chen Rate Limit • A medium or channel is defined by its bandwidth H (Hz) and noise level which is specified by the signal-to-noise ratio S/N (dB) • Capability of a medium is determined by a physical quantity called channel capacity, defined as C = H log2(1 + S/N) bps • Network speed is usually given as data or information rate in bps, and every one wants a higher speed network: for example, with a 10 Mbps network, you may ask yourself why not 10 Gbps? • Given data rate fd (bps), the actual transmission or baud rate fb (Hz) over the medium is often different to fd • This is for -
Telematics Chapter 3: Physical Layer
Telematics User Server watching with video Chapter 3: Physical Layer video clip clips Application Layer Application Layer Presentation Layer Presentation Layer Session Layer Session Layer Transport Layer Transport Layer Network Layer Network Layer Network Layer Data Link Layer Data Link Layer Data Link Layer Physical Layer Physical Layer Physical Layer Univ.-Prof. Dr.-Ing. Jochen H. Schiller Computer Systems and Telematics (CST) Institute of Computer Science Freie Universität Berlin http://cst.mi.fu-berlin.de Contents ● Design Issues ● Theoretical Basis for Data Communication ● Analog Data and Digital Signals ● Data Encoding ● Transmission Media ● Guided Transmission Media ● Wireless Transmission (see Mobile Communications) ● The Last Mile Problem ● Multiplexing ● Integrated Services Digital Network (ISDN) ● Digital Subscriber Line (DSL) ● Mobile Telephone System Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 3: Physical Layer 3.2 Design Issues Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 3: Physical Layer 3.3 Design Issues ● Connection parameters ● mechanical OSI Reference Model ● electric and electronic Application Layer ● functional and procedural Presentation Layer ● More detailed ● Physical transmission medium (copper cable, Session Layer optical fiber, radio, ...) ● Pin usage in network connectors Transport Layer ● Representation of raw bits (code, voltage,…) Network Layer ● Data rate ● Control of bit flow: Data Link Layer ● serial or parallel transmission of bits Physical Layer ● synchronous or asynchronous transmission ● simplex, half-duplex, or full-duplex transmission mode Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 3: Physical Layer 3.4 Design Issues Transmitter Receiver Source Transmission System Destination NIC NIC Input Abcdef djasdja dak jd ashda kshd akjsd asdkjhasjd as kdjh askjda Univ.-Prof. -
RT-ROS: a Real-Time ROS Architecture on Multi-Core Processors
Future Generation Computer Systems 56 (2016) 171–178 Contents lists available at ScienceDirect Future Generation Computer Systems journal homepage: www.elsevier.com/locate/fgcs RT-ROS: A real-time ROS architecture on multi-core processors Hongxing Wei a,1, Zhenzhou Shao b, Zhen Huang a, Renhai Chen d, Yong Guan b, Jindong Tan c,1, Zili Shao d,∗,1 a School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, PR China b College of Information Engineering, Capital Normal University, Beijing, 100048, PR China c Department of Mechanical, Aerospace, and Biomedical Engineering, The University of Tennessee, Knoxville, TN, 37996-2110, USA d Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China article info a b s t r a c t Article history: ROS, an open-source robot operating system, is widely used and rapidly developed in the robotics Received 6 February 2015 community. However, running on Linux, ROS does not provide real-time guarantees, while real-time tasks Received in revised form are required in many robot applications such as robot motion control. This paper for the first time presents 20 April 2015 a real-time ROS architecture called RT-RTOS on multi-core processors. RT-ROS provides an integrated Accepted 12 May 2015 real-time/non-real-time task execution environment so real-time and non-real-time ROS nodes can be Available online 9 June 2015 separately run on a real-time OS and Linux, respectively, with different processor cores. In such a way, real-time tasks can be supported by real-time ROS nodes on a real-time OS, while non-real-time ROS nodes Keywords: Real-time operating systems on Linux can provide other functions of ROS. -
Networking Packet Broadcast Storms
Lesson Learned Networking Packet Broadcast Storms Primary Interest Groups Balancing Authorities (BAs) Generator Operators (GOPs) Reliability Coordinators (RCs) Transmission Operators (TOPs) Transmission Owners (TOs) that own and operate an Energy Management System (EMS) Problem Statement When a second network cable was connected from a voice over internet protocol (VOIP) phone to a network switch lacking proper settings, a packet broadcast storm prevented network communications from functioning, and supervisory control and data acquisition (SCADA) was lost for several hours. Broadcast storm events have also arisen from substation local area network (LAN) issues. Details A conference room was set up for a training class that needed to accommodate multiple PCs. The bridge protocol data unit (BPDU) packet propagation prevention setting was disabled on a port in the conference room in order to place a network switch off of that port. Upon completion of the training, the network switch was removed; however, the BPDU packet propagation setting was inadvertently not restored. As part of a telephone upgrade project, the traditional phone in this conference room was recently replaced by a VOIP phone. Later, an additional network cable was connected to the output port of this VOIP phone into a secondary network jack within the conference room. When the second network cable was connected from a VOIP phone to a network switch lacking proper settings, a switching loop resulted. Spanning tree protocol is normally used to prevent switching loops from propagating broadcast packets continuously until the network capacity is overwhelmed. A broadcast packet storm from the switching loop prevented network communications from functioning and SCADA was lost for several hours. -
Networking Hardware: Absolute Beginner's Guide T Networking, 3Rd Edition Page 1 of 15
Chapter 3: Networking Hardware: Absolute Beginner's Guide t Networking, 3rd Edition Page 1 of 15 Chapter 3: Networking Hardware In this chapter z Working with network interface cards z Selecting and installing a NIC z Using hubs z Working with PC motherboards z Understanding processors and PC RAM z Working with hard drives z Differentiating server and client hardware Our Age of Anxiety is, in great part, the result of trying to do today’s jobs with yesterday’s tools. –Marshall McLuhan Now that we’ve discussed the different kinds of networks and looked at network topologies, we should spend some time discussing the hardware involved in networking. This chapter will concentrate on the connectivity devices that define the network topology—the most important being the network interface card. We will also take a look at hubs, routers, and switches. Another important aspect of building your network is selecting the hardware for your client PCs and your network servers. There are many good primers on computer hardware—for example, the Absolute Beginner’s Guide to PC Upgrades, published by Que. Also, numerous advanced books, such as Upgrading and Repairing PCs (by Scott Mueller, also from Que), are available, so we won't cover PC hardware in depth in this chapter. We will take a look at motherboards, RAM, and hard drives because of the impact these components have on server performance. We will also explore some of the issues related to buying client and server hardware. Let's start our discussion with the network interface card. We can then look at network connectivity devices and finish up with some information on PC hardware. -
OSI Model and Network Protocols
CHAPTER4 FOUR OSI Model and Network Protocols Objectives 1.1 Explain the function of common networking protocols . TCP . FTP . UDP . TCP/IP suite . DHCP . TFTP . DNS . HTTP(S) . ARP . SIP (VoIP) . RTP (VoIP) . SSH . POP3 . NTP . IMAP4 . Telnet . SMTP . SNMP2/3 . ICMP . IGMP . TLS 134 Chapter 4: OSI Model and Network Protocols 4.1 Explain the function of each layer of the OSI model . Layer 1 – physical . Layer 2 – data link . Layer 3 – network . Layer 4 – transport . Layer 5 – session . Layer 6 – presentation . Layer 7 – application What You Need To Know . Identify the seven layers of the OSI model. Identify the function of each layer of the OSI model. Identify the layer at which networking devices function. Identify the function of various networking protocols. Introduction One of the most important networking concepts to understand is the Open Systems Interconnect (OSI) reference model. This conceptual model, created by the International Organization for Standardization (ISO) in 1978 and revised in 1984, describes a network architecture that allows data to be passed between computer systems. This chapter looks at the OSI model and describes how it relates to real-world networking. It also examines how common network devices relate to the OSI model. Even though the OSI model is conceptual, an appreciation of its purpose and function can help you better understand how protocol suites and network architectures work in practical applications. The OSI Seven-Layer Model As shown in Figure 4.1, the OSI reference model is built, bottom to top, in the following order: physical, data link, network, transport, session, presentation, and application. -
Medium Access Control Layer
Telematics Chapter 5: Medium Access Control Sublayer User Server watching with video Beispielbildvideo clip clips Application Layer Application Layer Presentation Layer Presentation Layer Session Layer Session Layer Transport Layer Transport Layer Network Layer Network Layer Network Layer Univ.-Prof. Dr.-Ing. Jochen H. Schiller Data Link Layer Data Link Layer Data Link Layer Computer Systems and Telematics (CST) Physical Layer Physical Layer Physical Layer Institute of Computer Science Freie Universität Berlin http://cst.mi.fu-berlin.de Contents ● Design Issues ● Metropolitan Area Networks ● Network Topologies (MAN) ● The Channel Allocation Problem ● Wide Area Networks (WAN) ● Multiple Access Protocols ● Frame Relay (historical) ● Ethernet ● ATM ● IEEE 802.2 – Logical Link Control ● SDH ● Token Bus (historical) ● Network Infrastructure ● Token Ring (historical) ● Virtual LANs ● Fiber Distributed Data Interface ● Structured Cabling Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 5: Medium Access Control Sublayer 5.2 Design Issues Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 5: Medium Access Control Sublayer 5.3 Design Issues ● Two kinds of connections in networks ● Point-to-point connections OSI Reference Model ● Broadcast (Multi-access channel, Application Layer Random access channel) Presentation Layer ● In a network with broadcast Session Layer connections ● Who gets the channel? Transport Layer Network Layer ● Protocols used to determine who gets next access to the channel Data Link Layer ● Medium Access Control (MAC) sublayer Physical Layer Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 5: Medium Access Control Sublayer 5.4 Network Types for the Local Range ● LLC layer: uniform interface and same frame format to upper layers ● MAC layer: defines medium access ..