Strategic Use of the Internet and E-Commerce: Cisco Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Networking Hardware: Absolute Beginner's Guide T Networking, 3Rd Edition Page 1 of 15
Chapter 3: Networking Hardware: Absolute Beginner's Guide t Networking, 3rd Edition Page 1 of 15 Chapter 3: Networking Hardware In this chapter z Working with network interface cards z Selecting and installing a NIC z Using hubs z Working with PC motherboards z Understanding processors and PC RAM z Working with hard drives z Differentiating server and client hardware Our Age of Anxiety is, in great part, the result of trying to do today’s jobs with yesterday’s tools. –Marshall McLuhan Now that we’ve discussed the different kinds of networks and looked at network topologies, we should spend some time discussing the hardware involved in networking. This chapter will concentrate on the connectivity devices that define the network topology—the most important being the network interface card. We will also take a look at hubs, routers, and switches. Another important aspect of building your network is selecting the hardware for your client PCs and your network servers. There are many good primers on computer hardware—for example, the Absolute Beginner’s Guide to PC Upgrades, published by Que. Also, numerous advanced books, such as Upgrading and Repairing PCs (by Scott Mueller, also from Que), are available, so we won't cover PC hardware in depth in this chapter. We will take a look at motherboards, RAM, and hard drives because of the impact these components have on server performance. We will also explore some of the issues related to buying client and server hardware. Let's start our discussion with the network interface card. We can then look at network connectivity devices and finish up with some information on PC hardware. -
N94-22776 the AGRHYMET Data Communications Project
N94-22776 The AGRHYMET Data Communications Project G. R. Mah Hughes STX EROS Data Center Sioux Falls, SD 57198, USA D. P. Salpini USAID/Information Resource Management 11O0Wilson Boulevard Arlington, VA 22209, USA ABSTRACT clude supplying food production advice to govern- ment ministries, locust plague prediction and con- The U.S. Geological Survey (USGS) and the trol, and assistance to the Famine Early Warning U.S. Agency for International Development (USAID) System program. To accomplish its mission the are providing technical assistance to the AGRHYMET program has set up the AGRHYMET AGRHYMET program in West Africa. AGRHYMET regional center (ARC) in Niamey, Niger, and na- staff use remote sensing technology to produce sat- tional AGRHYMET centers (NAC) in each of the ellite image maps of the Sahel region of West Af- member nations. A receiving station for satellite im- rica. These image maps may show vegetation ages from NOAA's Advanced Very High Resolution greenness, sea surface temperatures, or processed Radiometer (AVHRR) instrument was installed at weather satellite imagery. The image maps must be the ARC by the French Government as part of its distributed from the AGRHYMET Regional Center in foreign aid program. The U.S. Agency for Interna- Niger to national AGRHYMET centers in the mem- tional Development (USAID), in cooperation with the ber countries of Burkina Faso, Cape Verde, Chad, U.S, Geological Survey's EROS Data Center (EDC), Gambia, Guinea-Bissau, Mali, Mauritania, Niger, have set up a system to process the AVHRR data to and Senegal. After consideration of a number of make image maps that indicate the relative "green- land- and space-based solutions for image map ness" of the area. -
The Great Telecom Meltdown for a Listing of Recent Titles in the Artech House Telecommunications Library, Turn to the Back of This Book
The Great Telecom Meltdown For a listing of recent titles in the Artech House Telecommunications Library, turn to the back of this book. The Great Telecom Meltdown Fred R. Goldstein a r techhouse. com Library of Congress Cataloging-in-Publication Data A catalog record for this book is available from the U.S. Library of Congress. British Library Cataloguing in Publication Data Goldstein, Fred R. The great telecom meltdown.—(Artech House telecommunications Library) 1. Telecommunication—History 2. Telecommunciation—Technological innovations— History 3. Telecommunication—Finance—History I. Title 384’.09 ISBN 1-58053-939-4 Cover design by Leslie Genser © 2005 ARTECH HOUSE, INC. 685 Canton Street Norwood, MA 02062 All rights reserved. Printed and bound in the United States of America. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the publisher. All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Artech House cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark. International Standard Book Number: 1-58053-939-4 10987654321 Contents ix Hybrid Fiber-Coax (HFC) Gave Cable Providers an Advantage on “Triple Play” 122 RBOCs Took the Threat Seriously 123 Hybrid Fiber-Coax Is Developed 123 Cable Modems -
Non-IBM Parts Catalog Book Cover COVER Book Cover ------Non-IBM Parts Catalog
Non-IBM Parts Catalog Book Cover COVER Book Cover -------------------------------------------------------------------------- Non-IBM Parts Catalog Document Number SA38-0041-04 -------------------------------------------------------------------------- ¦ Copyright IBM Corp. 1989, 1992 COVER - 1 Non-IBM Parts Catalog Notices NOTICES Notices This Feature pamphlet is a component of PS/2 Bill of Forms number SB0F-2480-00. ¦ Copyright IBM Corp. 1989, 1992 NOTICES - 1 Non-IBM Parts Catalog Edition Notice EDITION Edition Notice Fifth Edition (November 1992) This major revision obsoletes SA38-0041-03. The drawings and specifications contained herein shall not be reproduced in whole or in part without written permission. IBM has prepared this publication for the use of customer engineers in the installation, maintenance, or repair of the specific machines indicated. IBM makes no representations that it is suitable for any other purpose. This publication could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time. Requests for copies of IBM publications should be made to your IBM representative or to the IBM branch office servicing your locality. Address comments concerning the content of this publication to IBM Corporation, Dept. 90A, Bldg. 234-2, Internal Zip 4307, 951 NW 51st St., Boca Raton, Florida, U.S.A. 33432. IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any obligation to you. ¦ Copyright International Business Machines Corporation 1989, 1992. All rights reserved. -
Computer Networking in Nuclear Medicine
CONTINUING EDUCATION Computer Networking In Nuclear Medicine Michael K. O'Connor Department of Radiology, The Mayo Clinic, Rochester, Minnesota to the possibility of not only connecting computer systems Objective: The purpose of this article is to provide a com from different vendors, but also connecting these systems to prehensive description of computer networks and how they a standard PC, Macintosh and other workstations in a de can improve the efficiency of a nuclear medicine department. partment (I). It should also be possible to utilize many other Methods: This paper discusses various types of networks, network resources such as printers and plotters with the defines specific network terminology and discusses the im nuclear medicine computer systems. This article reviews the plementation of a computer network in a nuclear medicine technology of computer networking and describes the ad department. vantages and disadvantages of such a network currently in Results: A computer network can serve as a vital component of a nuclear medicine department, reducing the time ex use at Mayo Clinic. pended on menial tasks while allowing retrieval and transfer WHAT IS A NETWORK? ral of information. Conclusions: A computer network can revolutionize a stan A network is a way of connecting several computers to dard nuclear medicine department. However, the complexity gether so that they all have access to files, programs, printers and size of an individual department will determine if net and other services (collectively called resources). In com working will be cost-effective. puter jargon, such a collection of computers all located Key Words: Computer network, LAN, WAN, Ethernet, within a few thousand feet of each other is called a local area ARCnet, Token-Ring. -
An Extensible System-On-Chip Internet Firewall
An Extensible System-On-Chip Internet Firewall ----- ----- ----- ----- ----- ----- ABSTRACT Internet Packets A single-chip, firewall has been implemented that performs packet filtering, content scanning, and per-flow queuing of Internet Fiber packets at Gigabit/second rates. All of the packet processing Ethernet Backbone Switch operations are performed using reconfigurable hardware within a Switch single Xilinx Virtex XCV2000E Field Programmable Gate Array (FPGA). The SOC firewall processes headers of Internet packets Firewall in hardware with layered protocol wrappers. The firewall filters packets using rules stored in Content Addressable Memories PC 1 (CAMs). The firewall scans payloads of packets for keywords PC 2 using a hardware-based regular expression matching circuit. Lastly, the SOC firewall integrates a per-flow queuing module to Internal Hosts Internet mitigate the effect of Denial of Service attacks. Additional features can be added to the firewall by dynamic reconfiguration of FPGA hardware. Figure 1: Internet Firewall Configuration network, individual subnets can be isolated from each other and Categories and Subject Descriptors be protected from other hosts on the Internet. I.5.3 [Pattern Recognition]: Design Methodology; B.4.1 [Data Communications]: Input/Output Devices; C.2.1 [Computer- Recently, new types of firewalls have been introduced with an Communication Networks]: Network Architecture and Design increasing set of features. While some types of attacks have been thwarted by dropping packets based on the value of packet headers, new types of firewalls must scan the bytes in the payload General Terms of the packets as well. Further, new types of firewalls need to Design, Experimentation, Network Security defend internal hosts from Denial of Service (DoS) attacks, which occur when remote machines flood traffic to a victim host at high Keywords rates [1]. -
Digital Radio Technology and Applications
it DIGITAL RADIO TECHNOLOGY AND APPLICATIONS Proceedings of an International Workshop organized by the International Development Research Centre, Volunteers in Technical Assistance, and United Nations University, held in Nairobi, Kenya, 24-26 August 1992 Edited by Harun Baiya (VITA, Kenya) David Balson (IDRC, Canada) Gary Garriott (VITA, USA) 1 1 X 1594 F SN % , IleCl- -.01 INTERNATIONAL DEVELOPMENT RESEARCH CENTRE Ottawa Cairo Dakar Johannesburg Montevideo Nairobi New Delhi 0 Singapore 141 V /IL s 0 /'A- 0 . Preface The International Workshop on Digital Radio Technology and Applications was a milestone event. For the first time, it brought together many of those using low-cost radio systems for development and humanitarian-based computer communications in Africa and Asia, in both terrestrial and satellite environments. Ten years ago the prospect of seeing all these people in one place to share their experiences was only a far-off dream. At that time no one really had a clue whether there would be interest, funding and expertise available to exploit these technologies for relief and development applications. VITA and IDRC are pleased to have been involved in various capacities in these efforts right from the beginning. As mentioned in VITA's welcome at the Workshop, we can all be proud to have participated in a pioneering effort to bring the benefits of modern information and communications technology to those that most need and deserve it. But now the Workshop is history. We hope that the next ten years will take these technologies beyond the realm of experimentation and demonstration into the mainstream of development strategies and programs. -
Cisco Systems (A): Evolution to E-Business
Case #1-0001 Cisco Systems (A): Evolution to E-Business "We view the Internet as a prototype of how organizations eventually will shape themselves in a truly global economy. It is a self ruling entity." —John Morgridge, Annual Report, 1993 Cisco Systems, says president and CEO John Chambers, is “an end-to-end networking company.” Its products and services enable the construction of corporate information superhighways, a driving concern of today’s CEOs, seeking to become “e-business” leaders in their industries. Defining “e-business” can prove more difficult than embracing it, however. In executive programs at the Tuck School, Professor Phil Anderson frequently asks participants, “How will you know when you have seen the first e-business within your industry?” Typically, there is little consensus. Is it mass customization? Streamlined production processes? One- to-one marketing? Cisco’s Internet Business Systems Group (IBSG), an internal consulting group, advises senior executives on information technology investment strategies. The group is closer to major corporate buying decisions than anyone at Cisco. As advocates for Cisco’s equipment, group members’ main struggle is identifying the benefits of becoming an e-business, which are wide, varied, and difficult to quantify. Additionally, the initial infrastructure investment is large enough to prompt many CEOs to wonder whether it’s really worthwhile to become an e-business. Trying to build a business case (calculate an ROI) for making a major IT investment can be an exercise in frustration. Says Sanjeev Agrawal, a director within the IBSG, “Can you show me the ROI of going to sixth grade? The amount of time it is going to take to try to go through the logic of that is not worth it.” The IBSG hopes that potential customers will look to Cisco as an example of how a company can make the most of information technology. -
Ch05-Hardware.Pdf
5 Networking Hardware In the last couple of years, an unprecedented surge in interest in wireless networking hardware has brought a huge variety of inexpensive equipment to the market. So much variety, in fact, that it would be impossible to catalog every available component. In this chapter, well look at the sort of features and attributes that are desirable in a wireless component, and see several examples of commercial and DIY gear that has worked well in the past. Wired wireless With a name like “wireless”, you may be surprised at how many wires are involved in making a simple point-to-point link. A wireless node consists of many components, which must all be connected to each other with appropri- ate cabling. You obviously need at least one computer connected to an Eth- ernet network, and a wireless router or bridge attached to the same network. Radio components need to be connected to antennas, but along the way they may need to interface with an amplifier, lightning arrestor, or other de- vice. Many components require power, either via an AC mains line or using a DC transformer. All of these components use various sorts of connectors, not to mention a wide variety of cable types and thicknesses. Now multiply those cables and connectors by the number of nodes you will bring online, and you may well be wondering why this stuff is referred to as “wireless”. The diagram on the next page will give you some idea of the ca- bling required for a typical point-to-point link. -
UNIT :II Hardware and Software Requirements for E-Commerce Web Server Meaning • It Refers to a Common Computer, Which Provides
UNIT :II Hardware and Software Requirements for E-Commerce Web Server Meaning • It refers to a common computer, which provides information to other computers on the internet. • It is either the hardware (the computer) or the software (the computer programs) that stores the digital information (web content) and delivers it through Internet whenever required. The three components to a web server • The Hardware • Operating system software • web server software Website & Internet Utility Programs Meaning of Website • A Website is a collection of related web pages on a web server maintained by any individual or organization. • A website is hosted on web server, accessible via internet or private LAN through an internet address called URL (Uniform Resource Locator). All publicly accessible websites collectively constitute the WWW (world wide web) Meaning of Utility Programs These are software tools to help users in developing, writing and documenting programs (a sequence of instructions to a computer) There are 2 types of utility programs 1) File Management Utilities – it helps in creating, copying, printing, erasing and renaming the files. 2) Program Development Utilities – it is useful in assembler, compiler, linker, locator etc, Website & utility programs include: Electronic Mail – sending & receiving messages globally via internet. Use Net News – it’s a software that enables a group of internet users to exchange their view, ideas, information on some common topic of interest with all members belonging to the group. Ex:-politics, social issues, sports etc. Real Time Chatting – It is an internet program available to users across the net to talk to each other, text messages, video chat and video conference via internet. -
Review Article an Overview of Multiple Sequence Alignments and Cloud Computing in Bioinformatics
Hindawi Publishing Corporation ISRN Biomathematics Volume 2013, Article ID 615630, 14 pages http://dx.doi.org/10.1155/2013/615630 Review Article An Overview of Multiple Sequence Alignments and Cloud Computing in Bioinformatics Jurate Daugelaite,1 Aisling O’ Driscoll,2 and Roy D. Sleator1 1 Department of Biological Sciences, Cork Institute of Technology,RossaAvenue,Bishopstown,Cork,Ireland 2 Department of Computing, Cork Institute of Technology, Rossa Avenue, Bishopstown, Cork, Ireland Correspondence should be addressed to Roy D. Sleator; [email protected] Received 24 May 2013; Accepted 23 June 2013 Academic Editors: M. Glavinovic and X.-Y. Lou Copyright © 2013 Jurate Daugelaite et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Multiple sequence alignment (MSA) of DNA, RNA, and protein sequences is one of the most essential techniques in the fields of molecular biology, computational biology, and bioinformatics. Next-generation sequencing technologies are changing the biology landscape, flooding the databases with massive amounts of raw sequence data. MSA of ever-increasing sequence data sets is becoming a significant bottleneck. In order to realise the promise of MSA for large-scale sequence data sets, it is necessary for existing MSA algorithms to be run in a parallelised fashion with the sequence data distributed over a computing cluster or server farm. Combining MSA algorithms with cloud computing technologies is therefore likely to improve the speed, quality, and capability for MSA to handle large numbers of sequences. In this review, multiple sequence alignments are discussed, with a specific focus on the ClustalW and Clustal Omega algorithms. -
Wide-Area Networking Overview
Wide-Area Networking Overview Last Updated: October 6, 2011 Cisco IOS software provides a range of wide-area networking capabilities to fit almost every network environment need. Cisco offers cell relay via the Switched Multimegabit Data Service (SMDS), circuit switching via ISDN, packet switching via Frame Relay, and the benefits of both circuit and packet switching via Asynchronous Transfer Mode (ATM). LAN emulation (LANE) provides connectivity between ATM and other LAN types. The Cisco IOS Wide-Area Networking Configuration Guide presents a set of general guidelines for configuring the following software components: This module gives a high-level description of each technology. For specific configuration information, see the appropriate module. • Finding Feature Information, page 1 • Frame Relay, page 1 • Switched Multimegabit Data Service, page 4 • Link Access Procedure - Balanced and X.25, page 5 • Layer 2 Virtual Private Network, page 6 • Wide Area Application Services, page 7 Finding Feature Information Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information Table at the end of this document. Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required. Frame Relay The Cisco Frame Relay implementation currently supports routing on IP, DECnet, AppleTalk, XNS, Novell IPX, CLNS, Banyan VINES, and transparent bridging.