A Concise Review on Tissue Engineered Artificial Skin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ultra Pure Collagen Regenerative Medicine
ENG Ultra pure collagen Regenerative medicine Because we are committed to limiting uncertainty, Specifications Integra continues to develop new products in regenerative technology. • An established product line with proven results. • Outstanding safety profile. • Integra LifeSciences has leveraged over 30 years of science and innovation in the development of • Implanted in over 900 000 patients. collagen technology. • Integra LifeSciences’ extensive collagen purification process, advanced bio-engineering proficiency, and manufacturing experience add value to our products designed for protection, regeneration and repair of human tissue in various clinical applications. • Ultra Pure Collagen™ is the base material of implants used successfully in over 10 million procedures worldwide. • Ultra Pure Collagen™ has been used in general surgery, burn surgery, neurosurgery, plastic and reconstructive surgery, peripheral nerve/tendon surgery & orthopedic surgery. Products for sale in Europe, Middle-East and Africa only Ultra pure collagen Regenerative medicine How was Integra LifeSciences’ Collagen Matrix Created? For over thirty years, Integra LifeSciences has been a leader in developing and manufacturing high quality collagen implants. In the early 1970’s, John F. Burke, MD, chief of Trauma Services at Massachusetts General Hospital and Shriners Burns Institute, identified the need to improve skin restoration of severely burned patients. While patient related donor skin was an option, immunorejection was a critical issue. Dr. Burke theorized that an artificial means to cover the skin might offer positive results without the potential for donor skin rejection. Dr. Burke collaborated with Dr. Ioannas Yannas, a professor What Makes Integra LifeSciences’ Collagen at MIT with a specialization in material sciences and Unique? physical chemistry, to develop a biocompatible product to improve wound healing. -
The Distribution of Sweat Glands Over the Human Body Has So Far Been In
NOTES ON THE VERTICAL DISTRIBUTION OF THE HUMAN SWEAT GLANDS SHUNZO TAKAGI AND KO TOBARU* Institute of Physiology, School of Medicine, University of Nagoya•õ The distribution of sweat glands over the human body has so far been in- vestigated in the dimension of area, and we have no general idea how deep they are distributed in the skin. In 1943, Kuno and his collaborators (3) expressed the opinion that chloride would be accumulated in the skin during the activity of sweat glands. The truth of this assumption has been confirmed with more certainty by Yoshimura and Chihaya (unpublished), who measured the chloride content in the skin tissue by means of Ag-AgCl electrodes. The chloride may presumably be accumulated in the immediate neighbourhood of the glomeruli of sweat glands, or more diffusely in the layers of skin tissues where the glomeruli are situated. For consideration of the amount of the accumulated chloride, the total volume of these skin layers, which can be estimated by the vertical distribution of the sweat-gland glomeruli, seems to be useful. The fol- lowing investigation was therefore performed. MATERIALS AND METHOD Skin samples of 33 regions of the body, as specified in table 1, were taken from the corpse of a Japanese male of 30 years old, who died an accidental death. The samples were fixed in 10 per cent formalin, embedded in celloidin and cut into sections 15 micra thick. The sections were stained with Delafield's hematoxylin and eosin. Observations of sweat glands were made with 2-3 pieces of the skin about 100 sq. -
Wound Healing: a Paradigm for Regeneration
SYMPOSIUM ON REGENERATIVE MEDICINE Wound Healing: A Paradigm for Regeneration Victor W. Wong, MD; Geoffrey C. Gurtner, MD; and Michael T. Longaker, MD, MBA From the Hagey Laboratory for Pediatric Regenerative Medi- CME Activity cine, Department of Surgery, Stanford University, Stanford, Target Audience: The target audience for Mayo Clinic Proceedings is primar- relationships with any commercial interest related to the subject matter ily internal medicine physicians and other clinicians who wish to advance of the educational activity. Safeguards against commercial bias have been CA. their current knowledge of clinical medicine and who wish to stay abreast put in place. Faculty also will disclose any off-label and/or investigational of advances in medical research. use of pharmaceuticals or instruments discussed in their presentation. Statement of Need: General internists and primary care physicians must Disclosure of this information will be published in course materials so maintain an extensive knowledge base on a wide variety of topics covering that those participants in the activity may formulate their own judgments all body systems as well as common and uncommon disorders. Mayo Clinic regarding the presentation. Proceedings aims to leverage the expertise of its authors to help physicians In their editorial and administrative roles, William L. Lanier, Jr, MD, Terry L. understand best practices in diagnosis and management of conditions Jopke, Kimberly D. Sankey, and Nicki M. Smith, MPA, have control of the encountered in the clinical setting. content of this program but have no relevant financial relationship(s) with Accreditation: College of Medicine, Mayo Clinic is accredited by the Accred- industry. itation Council for Continuing Medical Education to provide continuing med- The authors report no competing interests. -
Post-Summer Skin Repair
36 RIVIERA WELLNESS POST-SUMMER SKIN REPAIR Healthy, radiant skin begins from within season of summer indulgences, whe- Niacin (B3) is found in avocado and turkey and ther it be swimming in chlorinated pools, helps to speed up skin cell regeneration - essen- A several weeks of rosé wine, or too much tial for repairing sun damage, acne hyperpigmen- sun bathing, our skin can look a little worse for tation, and reduces the symptoms of rosacea. wear. Once the summer holidays are over, we Niacin also helps your skin to retain moisture, so can be left with dehydrated and perhaps wrinkly make sure you are properly hydrated! Turkey has skin, sun damage, blocked pores and chapped 30 x more niacin than avocado. lips. So what´s the best remedy? Good nutrition Green Tea - Epigallocatechin gallate (EGCG), the can help protect the skin not just pre-holiday antioxidant found in green tea has been shown season, but also post-holiday to help the skin re- prevent genetic damage in skin cells exposed to pair. UV radiation. A large mug of green tea (250ml) The skin can be thought of as the window to ove- with a squeeze of fresh lemon juice to add the rall health of the body. It is the largest elimination vitamin C may help achieve that post-summer route for toxins, so an overworked liver from a glow! long summer of excesses can show up on the skin. The simplest step to a fresher complexion DON´T FORGET is to address water intake. Well-hydrated skin LIFESTYLE FACTORS! looks plump and less wrinkled. -
Hesitant Steps from the Artificial Skin to Organ Regeneration
Hesitant steps from the artificial skin to organ regeneration The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Yannas, Ioannis V. “Hesitant Steps from the Artificial Skin to Organ Regeneration.” Regenerative Biomaterials (June 26, 2018). As Published http://dx.doi.org/10.1093/RB/RBY012 Publisher Oxford University Press (OUP) Version Final published version Citable link http://hdl.handle.net/1721.1/120040 Terms of Use Creative Commons Attribution 4.0 International license Detailed Terms https://creativecommons.org/licenses/by/4.0/ Regenerative Biomaterials, 2018, 189–195 doi: 10.1093/rb/rby012 Advance Access Publication Date: 26 June 2018 Review Hesitant steps from the artificial skin to organ regeneration Ioannis V. Yannas* Downloaded from https://academic.oup.com/rb/article-abstract/5/4/189/5045640 by MIT Libraries user on 14 January 2019 Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA *Correspondence address. Department of Mechanical Engineering, Massachusetts Institute of Technology, Room 3-332, 77 Mass. Ave., Cambridge, MA 02139-4307, USA. E-mail: [email protected] Received 7 May 2018; accepted on 10 May 2018 Abstract This is a historical account of the steps, both serendipitous and rational, that led my group of stu- dents and colleagues at MIT and Harvard Medical School to discover induced organ regeneration. Our research led to methods for growing back in adult mammals three heavily injured organs, skin, peripheral nerves and the conjunctiva. We conclude that regeneration in adults is induced by a modification of normal wound healing. -
Periodic Acid-Schiff Positive Material Accumulating Within the Lumen of Eccrine Sweat Glands*
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector PERIODIC ACID-SCHIFF POSITIVE MATERIAL ACCUMULATING WITHIN THE LUMEN OF ECCRINE SWEAT GLANDS* GEORGE W. HAMBRICK, JR., M.D. The purpose of this paper is to record findings with regard to diastase-resistant, periodic acid-Schiff positive material in the lumen of eccrine ducts and glands of two individuals. This material has two possible sources in the normal eccrine sweat gland, namely, the cuticle lining of the eccrine duct and the cells of the secretory tubule. Holyoke and Lobits (3) studying 35 normal skin biopsies re- B pp HI D FIG. 1. A. Vertical section through skin of the control area showing dilatation of an eccrine sweat duct with eosinophilic material in the lumen. H. and E., X178. B. Same find- ings as in A above from an area treated daily with 3 per cent hexachloronaphthalene in acetone for one week, Xl7S. C. Section through dermal parts of eccrine duct containing a cast. H. and E., X355. D. Section through dermal eccrine duct containing periodic acid- Schiff positive material in the lumen, X660. *Fromthe Department of Dermatology (Donald M. Pillsbury, M.D., Director), School of Medicine, University of Pennsylvania, Philadelphia 4, Pennsylvania. This study was supported by U. S. Army grant DA-49-007-MD-154. Received for publication March 29, 1957. 213 214 THF JOURNAL OF INVESTIGATIVE DERMATOLOGY ported the presence of material in the lumen of the eccrine duct and gland; they classified the material as amorphous, cast, cellular or bacterial. -
Sweat Gland Myoepithelial Cell Differentiation
Journal of Cell Science 112, 1925-1936 (1999) 1925 Printed in Great Britain © The Company of Biologists Limited 1999 JCS4638 Human sweat gland myoepithelial cells express a unique set of cytokeratins and reveal the potential for alternative epithelial and mesenchymal differentiation states in culture Margarete Schön1,*, Jennifer Benwood1, Therese O’Connell-Willstaedt2 and James G. Rheinwald1,2,‡ 1Division of Dermatology/Department of Medicine, Brigham and Women’s Hospital, and 2Division of Cell Growth and Regulation, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA *Present address: Department of Dermatology, Heinrich-Heine University, Moorenstrasse 5, 40225 Düsseldorf, Germany ‡Author for correspondence (e-mail: [email protected]) Accepted 9 April; published on WWW 26 May 1999 SUMMARY We have characterized precisely the cytokeratin expression myoepithelial cells, a constituent of secretory glands. pattern of sweat gland myoepithelial cells and have Immunostaining of skin sections revealed that only sweat identified conditions for propagating this cell type and gland myoepithelial cells expressed the same pattern of modulating its differentiation in culture. Rare, unstratified keratins and α-sma and lack of E-cadherin as the cell type epithelioid colonies were identified in cultures initiated we had cultured. Interestingly, our immunocytochemical from several specimens of full-thickness human skin. These analysis of ndk, a skin-derived cell line of uncertain cells divided rapidly in medium containing serum, identity, suggests that this line is of myoepithelial origin. epidermal growth factor (EGF), and hydrocortisone, and Earlier immunohistochemical studies by others had found maintained a closely packed, epithelioid morphology when myoepithelial cells to be K7-negative. -
Skin Resurfacing for the Burned Patient
00. ם NEW DIRECTIONS IN PLASTIC SURGERY, PART II 0094–1298/02 $15.00 SKIN RESURFACING FOR THE BURNED PATIENT Ryan A. Stanton, MD, and David A. Billmire, MD The ultimate goal and eventual reward in factory quality of life and adapt a functional treating severely burned patients is the estab- postburn lifestyle. A rough indicator of indi- lishment of a protective barrier from the out- vidual psychologic rehabilitation is reflected side world. Skin resurfacing for the burned by employment status. Patients who return to patient has made large strides since the mid- work after burn injury have less behavioral twentieth century. Improvements in resuscita- avoidance, higher self esteem, and greater at- tion, management of inhalation injuries, and tention to goals. It has been shown that the other advances in critical care are responsible most significant predictors of return to work for survival rates in burned patients nearly are involvement of the hand, grafting, size of doubling since the 1950s, increasing by al- burn, and age. Patients younger than 45 have most 1% each year.49, 57 Several factors have a higher return to work rate.74 The care of a contributed extensively to the evolution of severely burned patient requires the infra- clinical burn care, including a better under- structure of a dedicated burn center with in- standing of the critical need for adequate terdisciplinary involvement of nursing, coun- fluid resuscitation immediately postburn, seling, group therapy, and occupational and prophylaxis against wound sepsis and its physical therapy. Interventions designed to complications, the importance of adequate aid adjustment, work hardening, and other nutritional support, burn pathophysiology rehabilitative services and marital and family and its inflammatory mediators, management therapy are also important. -
Nomina Histologica Veterinaria, First Edition
NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria. -
Sweat Glands • Oil Glands • Mammary Glands
Chapter 4 The Integumentary System Lecture Presentation by Steven Bassett Southeast Community College © 2015 Pearson Education, Inc. Introduction • The integumentary system is composed of: • Skin • Hair • Nails • Sweat glands • Oil glands • Mammary glands © 2015 Pearson Education, Inc. Introduction • The skin is the most visible organ of the body • Clinicians can tell a lot about the overall health of the body by examining the skin • Skin helps protect from the environment • Skin helps to regulate body temperature © 2015 Pearson Education, Inc. Integumentary Structure and Function • Cutaneous Membrane • Epidermis • Dermis • Accessory Structures • Hair follicles • Exocrine glands • Nails © 2015 Pearson Education, Inc. Figure 4.1 Functional Organization of the Integumentary System Integumentary System FUNCTIONS • Physical protection from • Synthesis and storage • Coordination of immune • Sensory information • Excretion environmental hazards of lipid reserves response to pathogens • Synthesis of vitamin D3 • Thermoregulation and cancers in skin Cutaneous Membrane Accessory Structures Epidermis Dermis Hair Follicles Exocrine Glands Nails • Protects dermis from Papillary Layer Reticular Layer • Produce hairs that • Assist in • Protect and trauma, chemicals protect skull thermoregulation support tips • Nourishes and • Restricts spread of • Controls skin permeability, • Produce hairs that • Excrete wastes of fingers and supports pathogens prevents water loss provide delicate • Lubricate toes epidermis penetrating epidermis • Prevents entry of -
Genetics of Hair and Skin Color
11 Sep 2003 14:51 AR AR201-GE37-04.tex AR201-GE37-04.sgm LaTeX2e(2002/01/18) P1: GCE 10.1146/annurev.genet.37.110801.143233 Annu. Rev. Genet. 2003. 37:67–90 doi: 10.1146/annurev.genet.37.110801.143233 Copyright c 2003 by Annual Reviews. All rights reserved First published online as a Review in Advance on June 17, 2003 GENETICS OF HAIR AND SKIN COLOR Jonathan L. Rees Systems Group, Dermatology, University of Edinburgh, Lauriston Buildings, Lauriston Place, Edinburgh, EH3 9YW, United Kingdom; email: [email protected] Key Words melanin, melanocortin 1 receptor (MC1R), eumelanin, pheomelanin, red hair ■ Abstract Differences in skin and hair color are principally genetically deter- mined and are due to variation in the amount, type, and packaging of melanin polymers produced by melanocytes secreted into keratinocytes. Pigmentary phenotype is genet- ically complex and at a physiological level complicated. Genes determining a number of rare Mendelian disorders of pigmentation such as albinism have been identified, but only one gene, the melanocortin 1 receptor (MCR1), has so far been identified to explain variation in the normal population such as that leading to red hair, freckling, and sun-sensitivity. Genotype-phenotype relations of the MC1R are reviewed, as well as methods to improve the phenotypic assessment of human pigmentary status. It is argued that given advances in model systems, increases in technical facility, and the lower cost of genotype assessment, the lack of standardized phenotype assessment is now a major limit on advance. CONTENTS INTRODUCTION ..................................................... 68 BIOLOGY OF HUMAN PIGMENTATION ................................ 69 by San Jose State University on 10/05/10. -
Skin 1. Describe the Basic Histological Structure of the Skin, Identifying The
Skin lecture notes 1 Lecture objectives: skin 1. Describe the basic histological structure of the skin, identifying the layers of the skin and their embryologic origin. 2. Identify the cell layers that constitute the epidermis and the differences between thick and thin skin. 3. Describe the cellular components of the epidermis and their function: keratinocytes, melanocytes, Langerhans cells and Merkel cells: 4. Describe the structural organization of the dermis and the components of the papillary and reticular layers. 5. Identify other structures present in the skin: vessels, skin sensorial receptors, hair follicles and hairs, nails and glands. 6. Understand the mechanism of skin repair 7. Describe histological findings in common skin diseases. Skin lecture notes 2 HISTOLOGY OF THE SKIN The skin is the heaviest, largest single organ of the body. It protects the body against physical, chemical and biological agents. The skin participates in the maintenance of body temperature and hydration, and in the excretion of metabolites. It also contributes to homeostasis through the production of hormones, cytokines and growth factors. 1. Describe the basic histological structure of the skin, identifying the layers of the skin and their embryologic origin. The skin is composed of the epidermis, an epithelial layer of ectodermal origin and the dermis, a layer of connective tissue of mesodermal origin. The hypodermis or subcutaneous tissue, which is not considered part of the skin proper, lies deep to the dermis and is formed by loose connective tissue that typically contains adipose cells. Skin layers 2. Identify the cell layers that constitute the epidermis and the differences between thick and thin skin.